

2004 IEEE NSS/MIC/SNPS and RTSD Rome, Italy • October 16 - 22, 2004 • Ergife Palace Hotel

Pixel Hybrid Photon Detector Magnetic Distortions Characterization and Compensation

<u>Gianluca Aglieri Rinella^{1,2}, T.F. Bellunato^{3,4}, C. D'Ambrosio¹, R. Forty¹, T. Gys¹, M. Patel¹, D. Piedigrossi¹, A. Van Lysebetten¹</u>

On behalf of the LHCb RICH collaboration

IEEE 2004 NSS N30-4

Introduction 2. Magnetic Distortions
 Characterization and correction 4. Field estimation

¹CERN, Geneva, Switzerland, ²DIEPA, University of Palermo, Italy ³University of Milano Bicocca, ⁴INFN Sezione di Milano

The LHCb experiment

- b physics at the LHC p-p collider: CP violation, rare decays
- Single arm forward spectrometer (*W.Witzeling, IEEE NSS N21-8*)
- Hadrons identification -> Ring Imaging Cherenkov detectors RICH

LHCb RICH detectors

Particle ID by Cherenkov angle measurement from photon hits on detector planes

Magnet fringe field shielding boxes

Magnetic shielding and photon detector requirements

Photon detectors requirements:

RICH 1

- Single photon detection in the 200-600 nm wavelength range
- 2.5x2.5 mm² spatial resolution on entrance window equivalent to $\sigma_{\theta c} = 0.62$ mrad error contribution to Cherenkov angle
- Operational in magnetic field of ~2.5 mT in RICH1 and ~1.0 mT in RICH2

Hybrid Photon Detectors

- Vacuum tube
- Quartz window, S20 photo-cathode, 25% peak QE
- Cross-focusing electron optics
- Anode assembly:
 - •hybrid pixel detector (16x16 mm²) *fully encapsulated* in the vacuum tube
 - 32×256 pixel silicon detector bump-bonded onto the LHCbPIX1 CMOS readout chip
 - Analog and digital chain readout on chip

- Electron trajectories distorted by magnetic field like in Image Intensifiers for fluoroscopy
- Rotation (S-distortion) due to axial component
- Translation due to transverse component

Magnetic distortions

- Individual magnetic shielding
- Smaller displacements for transverse component
- No losses due to magnetic effects unless image shifted out of anode (>> 5.0 mT)
- Reconstruct pixel hit photon hit position correspondence for each HPD
- Magnetic field not uniform and varying tube-by-tube

Set-up description

- Projection of collimated light on known positions on the HPD entrance window
- Magnetic field generated by Helmholtz coils
 - B field value is the one in the region when HPD and shield are not there
- Cylindrical Mumetal® magnetic shield

- 160 points Double Cross pattern to position the LED
- Characterization for axial magnetic field B_{||}
- Rotational symmetry
- Not too restrictive
 - local shielding very effective on transverse component
 - •Smaller displacement due to transverse field

HPD entrance window

Demagnification law

Non uniform radial dilation
Second order polynomial fit

$$\rho = \rho_1(B) r + \rho_2(B) r^2 \quad \rho_i(B) = \sum_j \rho_{i,j} B$$

Rotation law

Non uniform rotation (S-distortion)
Third order polynomial fit, first order coefficient zero $\Delta \varphi = \Delta \varphi_0(B) + \Delta \varphi_2(B) r^2 + \Delta \varphi_3(B) r^3$

$$\Delta \varphi_i(B) = \sum_j \Delta \varphi_{i,j} B^j$$

Photon hit reconstruction

інср

• Reconstruct photon hit position from pixel hit position given the magnetic field

•Develop an estimator of **B**_{//} with a test pattern

- Distorted images of double cross processed to calculate the photon hit position
- Reconstruction error at 2.5 mT larger than intrinsic resolution of the HPD (2.5/\(12) = 0.72 mm)
- First trial, on-going study

Applied B field [mT]	Average reconstruction error [mm]
0	0.82
1.0	1.24
2.0	1.40
3.0	1.78

Photon hits plane

Test Pattern

- Test pattern features:
 - Allows easy automatic search and identification of clusters (correspondence problem)
 - Spots averaged centers as coordinates for the analysis
 - Sample rotation of the image at various radii
 - Estimate the B field axial component by best fit of the model

Applied B field [mT]	Estimated field [mT]	Bias [mT]
1.0	0.90 0.20	-0.10
2.0	2.05 0.27	0.05
3.0	3.24 0.27	0.24
4.0	4.08 0.24	0.08
5.0	5.07 0.19	0.07

Estimator average bias: 0.07 mT

- Projection of a static pattern on the detectors plane in the experiment
- Automated calibration procedure on the full set of HPDs determining field in each tube

Conclusion

- Innovative Hybrid Photon Detectors developed by the LHCb collaboration and industrial partners fulfil the LHCb RICH detectors requirements
- Shielded HPDs are fully operational in the residual magnetic field (2.5 mT) inside the shielding boxes
- Characterization and parameterization of ExB distortions of the image
- Strong S-distortion correction possible given B_{||} value, recovering spatial resolution
- B_I estimation with test pattern
- Automated calibration procedure for the LHCb RICH to estimate the axial field applied on each of the 484 HPDs installed in the experiment has been proposed

Acknowledgements: The authors wish to thank Asmund Skjaeveland for the contribution given to this work in the framework of CERN Summer Students program

Test Pattern

- Test pattern features:
 - Allows easy automatic search and identification of clusters (correspondence problem)
 - Spots averaged centers as coordinates for the analysis
 - Sample rotation of the image at various radii
 - Estimate the B field axial component by best fit of the model

Applied B field [mT]	Estimated field [mT]	Bias [mT]
1.0	0.90 0.20	-0.10
2.0	2.05 0.27	0.05
3.0	3.24 0.27	0.24
4.0	4.08 0.24	0.08
5.0	5.07 0.19	0.07

Estimator average bias: 0.07 mT

- Projection of a static pattern on the detectors plane in the experiment
- Automated calibration procedure on the full set of HPDs determining field in each tube

