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states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories
this is the quantum portrait of what in the classical limit are known as black holes. We
emphasize the importance of this quantum picture which liberates us from the artifacts of
the classical geometric limit and allows to scan a much wider landscape of experimentally-
interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories
for which the growth of classicalon production cross section can be as efficient as to compete
with QCD cross section already at 100TeV energy, signaling production of quantum black
holes with graviton occupation number N ∼ 104.
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1 Classicalization versus wilsonian physics

One of the fundamental goals of high-energy physics is to understand the nature of UV-
completion of the Standard Model. In the standard (Wilsonian) paradigm of UV-completion,
the new high-energy physics comes in form of weakly-coupled quantum particles that become
relevant degrees of freedom at scales shorter than the weak interaction length, approximately
10−16 − 10−17 cm. For example, a low scale supersymmetry is a typical representative of
such a Wilsonian UV-completion. As it is well-known, the above energy frontier is currently
being probed by the LHC experiments.

It is natural to ask, what are the prospects of experimentally testing ideas about UV-
completion in the collisions at even higher energes? One rare opportunity is provided by
ultra-high energy cosmic rays (see [1] for a review). Interestingly, there are also proposals
of earth-based accelerators of ultra-high energies, such as Plasma Wakefield accelerators
(see [2]).

In both of these cases the potential difficulty is a relatively low luminosity, which makes
the test of Wilsonian UV-completions exceedingly difficult. For example, the high energy
cosmic ray collisions in the atmosphere are dominated by soft exchanges and the statistics
for the events with high momentum-transfer is low. The purpose of the present paper is
to identify a class of theories, based on the concept of non-Wilsonian self-completion [3] by
classicalization [4], for which the ultra-high energy experiments can represent efficient probes
even at relatively low luminosity, due to an efficiently growing cross-section at high energies.
A potential importance of this general property for compensating the expected low luminosity
of Plasma Wakefield accelerators was noted in [2].

In order to probe the short-distance physics, one needs events with high momentum-
transfer. In weakly-coupled (Wilsonian) UV-completions of the Standard Model such events
are predicted to be extremely rare as compared to low momentum-transfer soft events medi-
ated by the strong interaction force. The reason is that in any weakly-coupled UV-completion
of the standard model the (all-inclusive) cross section diminishes with the increase of the cen-
ter of mass energy E. As a result, the cross section is dominated by soft QCD events. This
is why, at least for the current statistics, the high energy cosmic rays do not represent good
probes of Wilsonian UV-completions of the standard model.
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Recently, a concept of non-Wilsonian self-UV-completion was introduced [3, 4], in which
no new weakly-coupled physics is required above certain cutoff energy scale M∗ with the
corresponding cutoff length L∗ ≡ ~/M∗. In these theories low energy degrees of freedom
(e.g., gravitons) naively become strongly interacting at distances shorter than L∗ where
perturbative expansion in E L∗ breaks down. However, in contrast to the Wilsonian picture,
this breakdown does not imply the need for any new weakly-coupled physics that must be
integrated-in at distances less than L∗. Instead, the theory cures itself in the following way.
The would-be strongly-coupled particles get replaced by collective weakly-coupled degrees
of freedom with an effective interaction strength suppressed by powers of 1/(L∗E). These
collective degrees of freedom represent many-particle states of large wavelength. By large
wave-length we mean the wavelengths that exceed L∗. This characteristic length is set by an
energy-dependent scale which we denote by r∗(E). The necessary property is the increase of
r∗(E) with E, so that r∗(E) ≫ L∗ for E ≫ M∗. As a result, the UV-theory when described
in terms of collective degrees of freedom is weaker and weaker coupled and probes larger
and larger distances with increasing E. This phenomenon describes the essence of what was
termed as the non-Wilsonian self-completion by classicalization [4]. Various aspects of this
idea where studied in [5]–[13]. Intrinsic feature of the classicalization phenomenon, which
makes this picture phenomenologically distinct from Wilsonian completion is the efficient
growth of the cross section at trans-cutoff energies as some positive power of EL∗,

σ ∝ (EL∗)
α , α > 0 (1.1)

This growth can be understood as the result of creation of states composed of many
soft quanta, which behave more and more classically at high-energies. These are so-called
classicalons. Let us briefly describe their essence. In the classical limit (~ = 0) classicalons
represent static (usually singular) solutions of the classical equations of motion of character-
istic radius r∗(E) and energy (mass) E. These parameters appear as integration constants
that can take arbitrary values. A well-known example of such solutions is the celebrated
Schwarzschild black hole in classical general relativity. However, this geometric picture is
only valid in an idealized classical limit. In reality nature is quantum and ~ is non-zero. A
quantum theory of black holes and other classicalons was developed in [9, 14]. According
to the latter theory, these objects represent self-sustained bound-states of many bosons of
characteristic wave-length λ = r∗(E) and occupation number,

N(E) = E r∗(E) /~ . (1.2)

Due to their large wave-length and derivative coupling, these bosons interact extremely
weakly, with the effective coupling constant

αeff = 1/N(E) . (1.3)

Thus [14], physics of classicalons in general, and black holes in particular, is a weakly-coupled
large-N physics in t’Hooft’s sense [15]. This property emerges as the result of maximal
packing. The classicalons represent maximally packed states per given wave-length. The
maximized occupation number density results into the oversimplification of the system and
effectively converts it into a system with a single characteristics, N . In this way, classicaliza-
tion replaces a would-be strongly coupled physics of few hard quanta at energy E ≫ M∗ by
an extremely weakly-coupled physics in which the same energy is distributed among many
soft quanta of wavelength r∗ ≫ L∗.

– 2 –
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This picture defines the quantum N -portrait of black holes and other classicalons. The
reason for the efficient production rate of these objects in high energy particle collisions
is the exponential degeneracy of micro-states that over-compensates the usual exponential
suppression of many-particle states. At high energies the cross-section grows as

σ ∼ (~N(E)/E)2 . (1.4)

This cross section for large N(E) can be interpreted as a geometric cross section

σ ∼ r∗(E)2 . (1.5)

The relations (1.2), (1.3), (1.4) and (1.5) describe the essence of classicalizing theories.
Unlike in ordinary Wilsonian case, the high energy behavior of these theories , instead of
probing short distances, in reality probes large distance physics, due to the fact that the high
energy scattering is dominated by production of states with large occupation number of very
soft quanta.

Thus, deep-UV quantum behavior of classicalizing theories can be understood in terms
of the classical IR dynamics of the same theory! For example, the behavior of deep-UV
cross section can be derived by finding out the E-dependence of the r∗(E) radius of a static
source of mass E. The radius r∗ can be defined as the shortest distance for which the
linearized approximation is valid. This property simplifies enormously the predictive power
of the theory for high-energies, since the dependence of σ on center of mass energy E can
be read-off by solving the linearized classical equations of motion for a source of the same
energy E.

However, we need to be extremely careful not to be mislead by this simplification.
In order to understand properly the classicalon dynamics we must continuously monitor the
information obtained in an idealized classical limit (~ = 0) by translating it into the language
of the underlying quantum portrait. Without this guideline, the (semi) classical picture alone
can lead us to wrong conclusions. This becomes obvious, ones we identify the correct classical
and semi-classical limits. These limits correspond to taking

E → ∞ , L∗ → 0 r∗ = fixed . (1.6)

In addition, we may take ~ 6= 0 or ~ = 0 depending whether we want to be in semi-classical
or classical treatment. For example, most of (if not all) the previous semi-classical analysis
of the black hole physics is performed in this limit.

The quantum N portrait shows that none of these limits are correct approximations.
This becomes very clear by realizing that in both limits, irrespective whether we keep ~ finite
or zero, the occupation number of quanta becomes infinite, N → ∞. This immediately
tells us that all the subtleties of 1/N expansion become hidden. The typical example of the
invalidity of this approximation is the application of the semi-classical limit for micro-black
holes that can be produced at LHC. It is obvious that in reality these black holes correspond
to the quantum states with N ∼ 1. Thus, to apply to their properties the semi-classical
limit (N = ∞) gives invalid predictions, such as thermality and democracy of their decay
products. In reality, the micro-black hole if accessible at LHC will behave simply as unstable
quantum particles.

Likewise, for classicalons (including black holes) with large N — that as we shall argue
can be observed in high energy cosmic ray experiments — the classical limit can serve as an
useful guideline. But at the same time the quantum N portrait makes an essential difference
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at all the scales, since it allows us to bypass huge technical complications of extracting
information from the classical analysis.

For example, in the classical limit the question of black hole formation is complicated
with all possible technical subtleties, such as the question of horizon formation. Since in
such a limit the quantum nature is completely hidden, the only remaining characteristics
are geometric and one has to be extremely precise to prove the black hole formation. These
technicalities, if the only guideline used is the geometric picture, make the outcome of high-
energy scattering inconclusive.

Instead, the large N portrait sheds a very powerful light on this process. It makes clear
that all the geometric issues, such as horizon-formation are secondary if we are interested
in the question of formation of large-N quantum states. For large N , this question can be
answered reliably in 1/N expansion, which is an excellent approximation for the cases of
interest.

With the large-N quantum portrait in mind, the questions whether the large-N states
are formed can be reliably answered already by linearized classical analysis properly trans-
lated into the underlying quantum language.

Equipped with the above knowledge, in the present note we shall focus on a class of
theoretically-motivated classicalizing theories that can be of interest for high energy cosmic
rays as well as for other high-energy but low luminosity experimental searches, with the
signatures that can be cross correlated with the signatures at LHC.

The class of theories of our interest represents UV-modification of Einstein’s gravity
that classicalize at energies above M∗ ∼TeV and thus are theoretically motivated for solving
the hierarchy problem. They can be viewed as a generalization of large extra dimensional
scenario [18], but we shall abandon the geometrical framework allowing ourselves to char-
acterize the dynamics in terms of degrees of freedom and their occupation number. As we
shall see, this approach since it liberates us from the frame of geometric thinking, allows us
to uncover a much wider class of phenomenologically-interesting possibilities.

We shall show that in the most efficiently classicalizing scenario, the high-energy growth
of the cross section can be as steep as

σ(E) ≃ π (E2L4
∗ ) . (1.7)

This approximately-quadratic growth takes place until the energy Ec ≡ (L2
∗m)−1, where, m

is the mass of the new spin-2 degrees of freedom. Above Ec the power-law growth of the
cross section changes to a logarithmic growth according to

σ(E) = πm−2 ln2

(

EL2
∗

√

σ(E)/π

)

. (1.8)

We estimate the phenomenological lower bound on the scalem, and show that forM∗ ∼ TeV
it can be as low as ∼ 20MeV. This lower bound comes from the combined constraints of
supernova cooling and the big bang nucleosynthesis.

To conclude, we show that in the interval of phenomenologically interesting energies,
classicalons with occupation number as large as N ∼ 104 can be produced in high energy
cosmic ray collisions with atmosphere at energies as low as 100TeV, with their production
cross-section competing or even exceeding the typical low-momentum-transfer QCD cross-
section σQCD ∼ 100mb ∼ 250GeV−2.

Of course, the possibility of micro black hole production in above-TeV-energy collisions
is not new and was already suggested in [19] and in a number of subsequent papers (see,
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e.g., [20]). This suggestion was based on combining the intuition about the classical black
hole formation in untra-Planckian energies pioneered in earlier papers [21–23] with the new
input of possibility of lowering the fundamental Planck mass down to TeV energies [18].
Therefore, most of the previous studies were done within the classical geometric frameworks
such as [18], which cannot capture the underlying quantum large-N structure of black holes.
By abandoning the pure geometric limit we manage to identify classes of theories with more
efficient growth of the cross section. The purpose of the present paper is not to confront
these models with any particular experimental data, but to point out their phenomenological
viability and their potential experimental importance for ultra-high energy experiments, both
cosmic ray as well as the earth based accelerators.

A very interesting representative of such an earth-based ultra-high-energy accelerator
is a currently-planned proton-driven wakefield accelerator [2]. These experiments have a
potential of going significantly above the current accelerator capacities, but with relatively
low luminosity. However, for probing classicalizing theories the low luminosity is not a
fatal problem since the large cross section can make up for it. Hence, such ultra-high energy
experiments represent potentially very interesting probes for the classicalization phenomenon.

2 Spin-2 classicalizers

We shall discuss the phenomenological implications of classicalizing theories in which the
classicalizer fields are spin-2 bosons. Our aim is to identify the most efficient low-energy
classicalizers that could be of potential interest for cosmic ray physics. These theories are in
the same universality class as the original large extra dimensions in which fundamental scale
of gravity is M∗ ∼TeV [18]. In the latter class of theories, above the energy scale set by
the inverse compactification radius, the theory is effectively described by Einstein gravity in
4 + d dimensions, with the fundamental Planck length being L∗. Such a theory classicalizes
above the energy scale M∗. According to the large-N quantum portrait, the classicalons of
this theory are many-graviton states of wavelength,

λ = r∗(E) = L∗ (E L∗)
1

1+d , (2.1)

and occupation number

N = ~
−1E r∗(E) = ~

−1(E L∗)
2+d
1+d . (2.2)

Putting it shortly, black holes are graviton Bose-condensates. Given the wave-length, the
quantum interaction strength between graviton pairs is given by

αgr = ~ (E L∗)
− 2+d

1+d . (2.3)

Notice that all these quantities can be expressed in terms of N as,

λ = N
1

2+d L∗ αgr = 1/N . (2.4)

In the limit ~ = 0, L∗ → 0, N → ∞, these objects can be viewed as 4 + d-dimensional
Schwarzschild black holes of radius r∗. Thus, physics of black holes is the same large-N
physics that was used by t’Hooft for SU(N) gauge theories, except the role of N is played
by graviton occupation number.

However, the large-N quantum portrait of black holes makes it clear that overempha-
sizing the geometric meaning is not always very useful. First , for moderate values of N the
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geometric picture is simply not a good description. Secondly, it illustrates that restricting
the analysis to the configurations that have well-known geometric interpretation in the ~ = 0
limit, leaves aside a huge class of potentially interesting cases which can be easier to access
in high energy experiments and could have more spectacular experimental signatures than
the ”canonical” cases which have been studied in the geometric classical limit.

Therefore, the correct attitude in this search would be to adopt the fully quantum me-
chanical view in which the main role is played by the degrees of freedom and their occupation
number, with a geometric interpretation being secondary.

Gravity viewed as a quantum field theory is a theory of a dynamical metric, gµν(x),
which can be represented as a background metric 〈gµν〉 plus a small perturbation, δgµν ,

gµν = 〈gµν〉 + δgµν . (2.5)

We shall be interested in dynamics of the sources on asymptotically-Minkowski spaces, which
is an excellent approximation for the problems we shall study.

In such a case, the metric created by a static source sufficiently far from it, is approxi-
mately Minkowskian and can be described as,

gµν = ηµν + δgµν , (2.6)

where δgµν ≪ 1. The key approach of the quantum N -portrait is to think of such a geometry
as a quantum state (a sort of Bose-condensate) that is characterized by the occupation num-
ber N , the wavelengths of gravitons λ and by their interactions strength αgr. Classicalons
are then the special states in which all these parameters assume values that are fully deter-
mined by N , in such a way that a self-sustainability condition is satisfied. For example, the
quantum counterparts of Schwarzschild black holes are given by (2.4).

The dictionary between the quantum and classical characteristics can be established as
follows.

Metric perturbation δgµν can be written in terms of linear perturbations of canonically-
normalized fields that can be classified by their transformation properties with respect to
the Poincare group. Approaching the source from infinity, we shall measure δgµν which can
be found by solving the appropriate linear equations, in which it is sourced by an effective
energy-momentum tensor Tµν of energy E. Assume that this approximation breaks down at
some distance r ≡ r∗ for which δgµν becomes order one. We shall call the corresponding
radius, r∗ the classicalization scale.

The quantum mechanical meaning of r∗ is that we are dealing with a quantum-
mechanical state with graviton occupation number given by (1.2) and the characteristic
wavelength,

λ = r∗ (2.7)

The term classicalization radius has an obvious meaning. It is enough to notice that
N ≫ 1 whenever r∗ exceeds the Compton wavelength of the source (~/E). That is, we are
dealing with a large occupation number state that can approximately be treated as a classical
object. In a quantum Universe like ours, this is the only consistent meaning of classicality.

Also, r∗ acquires a classical geometric meaning in the formal limit ~ → 0 and N → ∞.
For example, in Einstein theory, in such a limit r∗ becomes a geometric Schwarzschild radius.
However, we shall not use this meaning. Treating r∗ quantum-mechanically shall allows us to
bypass unnecessary details emerging in exact classical limit, which in any case represent an
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idealized approximation of the real world and are only approximately applicable to a realistic
scattering processes.

Following the large-N quantum portrait of black holes and classicalons, for us r∗ will be
the scale (the characteristic wave-length) for which the interaction of N -gravitons becomes
strong and the system enters the regime in which a self-sustained bound-state starts to form.

This picture allows us to draw important conclusions about the quantum dynamics of
this self-sustained bound-state without going beyond the linearized approximation on the
IR side.

The key is to identify the energy dependence of the cross section. As we shall show this
is determined by the number and the couplings of gravitational species that δgµν propagates.
The number of new graviton species n which is a fixed input characteristics of a given theory,
should not be confused with the occupation number, N , of graviton quanta in a given black
hole. The latter number depending on the black hole mass and takes different values for
different black holes in one and the same theory.

The most general expansion of the linearized metric perturbation in terms of graviton
species has the following form,

δgµν =
1

MP

∑

m

g(2)m h(m)
µν +

1

MP

∑

m

g(0)m ηµν φ
(m) , (2.8)

where h
(m)
µν and φ(m) stand for spin-2 and spin-0 degrees of freedom respectively. The con-

stants g
(2)
m and g

(0)
m parameterize the strength of their coupling relative to the zero-mode

Einstein graviton (h
(0)
µν ), for which we have g

(2)
0 = 1.1

Consider now a localized static source of some characteristic wave-length λ = R. Clas-
sically, such a source can be approximated by a static energy momentum tensor smeared over
a spherical shell of radius R, Tµν = δ0µδ

0
ν

E
4πR2 δ(r−R). For such a source, the linear graviton

perturbations can be easily obtained by solving appropriate linearized equations which are
well-known and we shall not display. In particular, for the Newtonian components we get,

h
(0)
00 =

LPE

2r
, h

(m)
00 =

2

3
g(2)m

LPE

r
e−mr , φ(m) = g(0)m

LPE

r
e−mr . (2.9)

Substituting this expression into (2.8) we get for the total metric perturbation the following
expression,

δg00 =
L2
PE

r

∑

m

ρm e−mr , (2.10)

where ρm parameterize the relative strengths of massive spin-2 states with respect to the

massless graviton. That is, ρm ≡ 2
3(g

(2)
m )2 + (g

(0)
m )2, whereas ρ0 = 1/2.

It is clear that the sum in (2.10) measures the relative strength of gravity with respect
to pure Einstein gravity, and can be written as,

δg00

δg
(Einstein)
00

=
∑

m

ρm e−mr . (2.11)

1Notice, that since we couple the metric perturbation only to the conserved energy momentum tensor, the
would-be contribution from the derivatively-coupled scalars of the form ∂µ∂νφ

(m) as well as the contributions
from spin-1 states, vanishes. These are therefore neglected in the expansion (2.8).
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The quantum-mechanical picture described by the metric perturbation (2.10) is that a
source of energy E induces a state of graviton occupation number,

N =
∑

m

Nm = (E2 L2
P )
∑

m

ρm e−mR . (2.12)

Thus, each graviton of mass m and coupling ρm contributes the partial number Nm =
N0 ρme−mR, where N0 ≡ E2L2

P is the occupation number of the massless gravitons.

In our parameterization the classicalization self-completion threshold is set by the source
of the Compton wave-length L∗ that creates an order-one metric perturbation at the distance
r ∼ L∗. That is, δg00(r = L∗) = 1. Or equivalently, in the quantum language this is a
source for which the occupation number of gravitons, N , exceeds one. In other words, such
a source marks the boundary between the one-particle and multi-particle states.

Let us see, what relation this imposes on the spectrum of gravitational messenger species.
Since each graviton species of mass m contributes only at distances r < 1/m, at any given
distance r we are allowed to only take into the account modes that are not heavier than
1/r. Thus, for the estimate we can truncate the sum at m = 1/r. At the same time we can
approximate the exponential factors for all the light modes by one. The sum then simplifies to,

δg00(r) =
rg
r

m=1/r
∑

m=0

ρm . (2.13)

Now, the criterion that sources heavier than L−1
∗ must classicalize reads

δg00(r = L∗) =
L2
P

L2
∗

m=1/L∗
∑

m=0

ρm = 1. (2.14)

The bottom-line is that the cumulative strength of all the new degrees of freedom at the
scale L∗ must be L2

∗/L
2
P times the strength of Einstein’s gravity. This condition only

constraints the overall sum of coupling strengths as given by (2.14). This constraint can
be accommodated in different ways. For example, one can introduce many weakly-coupled
gravitons or few strongly coupled ones. By changing coupling strengths ρm and the number
of gravitons we can scan an entire landscape of classicalizing spin-2 theories.

Sources of energy E ≫ M∗ classicalize and represent N -particle states. This applies
both to static sources as well as to scattering two-particle states with center of mass energy
E. Our task is to single out the class of theories for which the classicalization radius can
exhibit the most efficient growth at phenomenologically-interesting low energies i.e above
M∗ ∼TeV. This task is simple to accomplish. Each member of the graviton tower of mass
mj and of strength ρmj

contributes into the classicalization process at distances shorter than

its Compton wavelength m−1
j and decouples at larger distances. Since the integrated over-all

strength of gravitons is fixed by (2.14) the most efficient growth of r∗(E) with E will be
achieved if we make all the new gravitons maximally light.

The classicalization radius of any source of energy E ≫ M∗ is determined by the
relation,

δg00(r∗) =
E

M2
P r∗





∑

j

e−mjr∗ ρmj
+ 1



 ≃ 1 (2.15)
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We now wish to find such consistent values of mj and ρj that would ensure the largest
possible value of r∗ for a given mass E. This is obviously achieved in the case when most
of the graviton masses are pushed down as much as possible. At any given energy E the
gravitons contributing efficiently into the growth of r∗ will be the ones that satisfy,

mj < m =
M2

∗

E
. (2.16)

The extreme case is achieved when all the gravitons open up at the same universal mass m.
Since what is important is the integrated strength, we can take all the graviton species to be
coupled with the uniform strength set by their inverse number, n,

ρm = L2
∗/L

2
P

1

n
. (2.17)

In other words, for a given center of mass energy E, the largest classicalization radius r∗(E)
is achieved when all the n graviton species open up at the common Compton wavelength
m−1 ≫ L∗. The r∗(E) radius of such a classicalon is then determined by the condition:

E

M2
∗

1

r∗

[

e−mr∗ +
M2

∗

M2
P

]

= 1 (2.18)

In order to translate this result into the relation between the classicalon production
cross-section (σ) and the center of mass energy (E), all we need to do is to identify σ = πr2∗
and plug it in (2.18). This identification gives us the relation,

E = M2
∗

√

σ
π

e−
√

σ
π
m + M2

∗ /M
2
P

. (2.19)

We can further simplify the above relation by noticing that for the values of interest
M∗ ∼TeV, the term M2

∗ /M
2
P is of order 10−32 and is absolutely negligible. The value of

r∗(E) is then determined by the condition

E

M2
∗

e−mr∗

r∗
= 1 (2.20)

or equivalently,

E = M2
∗

√

σ
π

e−
√

σ
π
m

. (2.21)

Which in terms of cross-section gives us (1.8). For m < (EL2
∗)

−1 the value of r∗ is given by

r∗ ≃ E L2
∗

(

1 − mEL2
∗

)

, (2.22)

which in terms of cross-section gives us leading expansion of (1.8) in mEL2
∗. The latter

expression is no longer applicable after the center of mass energy reaches Ec = (mL2
∗)

−1, or
equivalently the r∗ radius reachesm

−1. Above this energy we have to use the expression (2.21)
(which implies (1.8)), which indicates that the growth of cross section becomes logarithmic,

σ = πm−2ln2 (mEL2
∗) . (2.23)

As it is clear from (2.19), this logarithmic growth persists till the energies of order E ∼
M2

P /m, after which one enters into the regime in which classicalization is taken over by
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the Einsteinian massless graviton via production of Einsteinian black holes. Obviously, this
regime is way beyond the reach of current cosmic ray experiments. So the signature that is
of interest for the current observations is given by the cross section (1.8). As we shall show
in the next section, the phenomenological lower bound on m is as low as ∼MeV, allowing
the classicalization cross section to compete with or even dominate the QCD cross section at
the energies around ∼ 100TeV.

3 Phenomenological constraints on m

As we have shown above, the efficiency of the cross section growth in deep-UV is determined
by the Compton wave-length of the gravitons. This is a very peculiar characteristics of
classicalizing theories and is not present in weakly-coupled Wilsonian UV completions. For
example, the behavior of the cross section at energy E ≫ L−1

∗ instead of being determined
by the strength of the interaction at distance ~/E, is rather determined by the strength at
distance r∗ ≫ L∗. The gravitons of Compton wavelength shorter than r∗ effectively do not
participate in formation of classicalons. Thus for the efficient growth of the cross section
at energy E it is important to have as many light gravitons as possible with the Compton
wavelength exceeding r∗(E). However, graviton masses and couplings are constrained from
below by various observations. In case of large extra dimensions this constraints have been
studied in great detail [24]. We shall now apply the similar analysis in our more general case.

The number and couplings of gravitons available at each mass level m are constrained
by various high-energy processes as well as by the tabletop measurements. We shall now
briefly evaluate these constraints.

3.1 Star cooling

We shall consider the star-cooling constraints first. These constraints come from the fact
that gravitons can be produced in the interiors of the stars and contribute to their cooling.
The requirement that this is not disturbing the usual cooling rate, places the constraint on
the masses and couplings of the graviton species.

We can consider two different regimes depending whether mean free path of produced
gravitons is longer or shorter than the star radius Rstar. In the first case the gravitons escape
freely, whereas in the second case they can deposit the energy back into the star before
escaping. We shall consider a free-escape regime first.

3.1.1 Free escape regime

In such a regime the star-cooling rate is essentially given by the graviton production rate,
since probability of the re-capture is small.

For a star with an interior temperature T , the cooling rate due to emission of massive
gravitons is,

Γstar→ graviton ∼ T 3

M2
P

∑

j

ρj e
−mj/T , (3.1)

(where for simplicity we do not make distinction between the spin-2 and spin-0 cases). The
exponent comes from the Boltzmann suppression. This rate must be less than the standard
cooling rate. The most stringent bound comes from supernova 1987A, with the core temper-
ature T = 30MeV. In order to make a quick estimate, we can use the knowledge from the
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previous analysis (such as production of axion [25] or Kaluza-Klein gravitons [24]) indicating
that the cooling rate into new states should not exceed the quantity

Γmax ∼ T 3

1018GeV 2
. (3.2)

Demanding that (3.1) does not exceed (3.2) gives the following constraint,

∑

j

ρj e
−mj/30MeV < 1020 . (3.3)

Let us recall, that according to (2.11) the sum entering on the right hand side of (3.3)
measures the strength of gravity relative to pure Einstein at distances r = (30MeV )−1.
This means that the star-cooling constraints could still tolerate modified gravity that at
distances r ∼ (30MeV )−1 could become 1020-times stronger relative to standard Einstein
gravity. With this constraint in mind let us evaluate the case which could give the largest
possible cross section in the range of energies that can be potentially probed by high energy
cosmic ray experiments.

The two choices of the parameters that tend to enhance the classicalon production
cross section are: 1) Pushing the scale M∗ as low as possible; and 2) increasing the Compton
wavelengths of gravitons as much as possible. So the maximal effect is achieved when almost
all the new graviton species open up at the same mass scale m.

In such a case, the ratio of the supernova cooling rate into the gravitons to the maximal
allowed cooling rate (3.2) becomes,

Γstar→ graviton

Γstandard
∼
(

109GeV

M∗

)2

e−m/30MeV . (3.4)

LHC experiments already set the lowest bound on scale M∗ in the ∼TeV range. Substituting
this lower limit in (3.4) and demanding that the ratio must be below one we arrive to the
lower bound on m of few hundred MeV.

3.1.2 Energy recapture regime

We shall now consider a different regime in which the individual gravitons are strongly enough
coupled so that their mean free path is less than the star radius. Such a situation, for example,
can take place when gravitons that are produced in a hot inner core of the star decay into
the ordinary particles before reaching the surface. In such a case they deposit energy in the
interior of the star before escaping and this suppresses their contribution into the cooling.
Let us evaluate constraints for such a regime. The lifetime of a graviton of mass mj and
coupling ρj/M

2
P produced at temperature T & m in the interior of the star is

τ ∼ T

mj

M2
P

ρj m3
j

. (3.5)

The coefficient T/mj comes from a relativistic gamma factor. This lifetime sets the distance
that gravitons travel before decaying. Demanding that this distance is less than the radius
of a proto-neutron star, τ < Rstar ∼ 10km, we get the following bound on the mass,

m4
j &

TM2
P

Rstarρj
. (3.6)
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For the case, in which all the graviton species have the same mass m, we can translate the
above bound in terms of their number, n, using the relation (2.17),

m4 &
TM2

∗n

Rstar
. (3.7)

This has a clear physical meaning. For less number of graviton species, in order to accom-
modate the same collective strength, the individual couplings must be stronger. Thus, the
probability of re-capture for each graviton becomes higher. As an extreme case we can take
n = 1. In this case taking M∗ ∼TeV, we get the following re-capture bound,

m & MeV . (3.8)

Notice that in approximating the mean free path by (3.5) we assumed that the particles into
which gravitons decay are off-shell (due to thermal bath) by a sufficiently small amount so
that the decay is still allowed. This is a reasonable approximation for the current estimate.

To summarize, the supernova gives the following constraints on the scale m in two
different regimes. In a free-streaming regime, when gravitons are many and weakly coupled,
the lower bound is about of few 100MeV. In the recapture regime, when gravitons are less
and strongly coupled, the bound is ∼ MeV .

3.2 Other atro-cosmo constraints

With the above bounds being satisfied the other astro-cosmo constraints (e.g., such as nucle-
osynthesis or the diffused gamma ray background) are either automatically satisfied or are
much milder.

Let us consider for example a big bang nucleosynthesis (BBN) bound. This bound can
be estimated from the requirement that graviton production rate at the BBN temperature
TBBN ∼MeV, should be subdominant to the expansion rate of the Universe which in that
epoch is HBBN ∼ T 2

BBN/MP . This requirement gives the bound,
∑

j

ρmj
e−mj/MeV < 1022 . (3.9)

This bound is milder than (3.3) and thus is automatically satisfied when supernova cooling
constraint is met in the free-streaming regime. For example, when all the graviton species
have a common mass ∼ 100MeV.

In the recapture case, when the number of graviton species is smaller and they are
stronger coupled, BBN bound is slightly stronger than the supernova bound and gives m &

20MeV.
Given the constraints from supernova and BBN the constraints from the diffused photon

background are easy to accomodate. This constraint usually comes from a possible late decay
of the gravitons [18].

Even if produced with a maximal abundance, for the value of m even at its lowest bound
20MeV, the lifetime of gravitons can be easily made shorter than the age of the Universe.
Indeed, for number of graviton species being n, the lifetime of graviton of mass m is,

τgravitons ∼ M2
∗n/m

3 . (3.10)

Requiring that this is less than the age of the Universe, τ < H−1
0 ∼ 1028cm, we get a very

mild upper constraint on the total number of gravitational species n . 1032, which in any
case is satisfied due to the constraints on the number of gravitational species implicit in
equation (2.14).
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3.3 tabletop measurements

Other constraints on the Compton wavelengths of new graviton species come from table-
top measurement of deviations from Newton’s law. These experiments have been probing
distances down to the micron range and are placing bounds on gravity competing forces of
various strengths.

In case when all the new gravitons are heavier than the star cooling constraint, the
Compton wavelengths are too short to be of interest for the above-mentioned table top
measurements.

However, as we have shown above, the combined star-cooling and BBN constraints
allow existence of longer Compton wave-length gravitons as long as their cumulative strength
is less than ∼ 1020 times the strength of Einstein gravity. This bound leaves a huge room
for the existence of lighter gravitons that could be of interest for table top experiments. The
absolute upper bound on Compton wave-length of any new graviton interacting with approx-
imately the same (or larger) strength as a massless graviton, comes from the torsion balance
experiment and is 0.5 mm [26]. Shorter scale experiments are sensitive to stronger forces.

4 Concluding remarks

The point of this note was to outline the potential importance of classicalizing theories
for ultra-high energy experiments with relatively low luminosity, such as the high-energy
cosmic ray or plasma Wakefield accelerators [2]. We have identified some phenomenologically-
consistent theories that exhibit a most efficient growth of the cross section at the energies of
experimental interest.

We have stressed importance of underlying quantum picture [14] according to which the
black holes (or classicalons in general) are Bose condensates of maximal (for a given size)
occupation number N . All the characteristics of this system can be understood in terms of
N . For the phenomenological studies in the ultra-high cosmic ray energy range, this quantum
picture is important because of at least two reasons. First, it allows to map the linear analysis
on an underlying quantum portrait, which would be impossible in the classical limit N = ∞,
r∗ = fixed. Secondly, it allows to cross correlate expected events at LHC with the ones
in ultra-high energy searches. For example, in the considered classicalizing models within
the energy interval between ∼ 1 − 100TeV we scan the classicalons states with occupation
number ranging in an interval N ∼ 1 − 104. Thus, we predicts, that the two-jet events at
LHC that are expected to come from the decay of the lightest classicalon resonances (N ∼ 1)
must be cross-correlated with the multi-jet events in higher energy collisions.

We have identified a phenomenologically-viable class of classicalizing spin-2 theories,
and have shown that the current observational constraints put a limit on the saturation
point of the cross-section-growth at about σ ∼ (20MeV )2. This cross section dominates
over the soft QCD cross section and thus represents an interesting potential target for the
experiments with high energy but low luminosity collisions, such that are expected in cosmic
rays or at plasma wakefield accelerators.
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