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Abstract: Extensions of the Standard Model with an extra U′(1) abelian group gener-

ically generate terms coming from loops of heavy fermions, leading to three gauge boson

couplings, in particular Z ′Zγ. We show that WMAP data constrains the gauge coupling

of the group gD to values comparable with the electro-weak ones, rather independently of

the mass of Z ′. Moreover, the model predicts a monochromatic γ-ray line which can fit a

130GeV signal at the FERMI telescope for natural values of the Chern-Simons terms and

a dark matter mass around 144.5GeV.
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1 Introduction

One of the most important issues in particle physics phenomenology is the nature and prop-

erties of the dark matter in our universe. The observations made by the WMAP collabora-

tion [1, 2] show that the matter content of the universe is dark, making up about 85 % of the

total amount of matter. On the other hand, the XENON collaboration recently released its

constraints on direct detection of Dark Matter [3, 4] excluding large regions of several exten-

sions of the Standard Model. These constraints makes it plausible that dark matter sits in

a different sector, communicating with our sector through new, weak enough interactions.

Neutral gauge sectors with an additional dark U′(1) symmetry in addition to the

Standard Model (SM) hypercharge U(1)Y and an associated Z ′ gauge boson are among

the most natural extensions of the SM, and give the possibility that a dark matter candidate

lies within this new gauge sector of the theory. Extra gauge symmetries are predicted in

most Grand Unified Theories (GUTs) and appear systematically in string constructions.

Larger groups than SU(5) or SO(10) allow the SM gauge group and U(1)′ to be embedded

into bigger GUT groups. String theory and brane-world U′(1)s are special compared to

GUT U′(1)’s; some of them are hidden, such that SM particles are uncharged under them.

For a review of the phenomenology of the extra U′(1)s generated in such scenarios see

e.g. [5]. In such a framework, the extra Z ′ gauge boson would act as a portal between the

dark world (particles not charged under the SM gauge group) and the visible sector.

Several papers considered that the key of the portal could be the gauge invariant

kinetic mixing (δ/2)FµνY F ′
µν [6–16]. One of the first models of dark matter from the hidden

sector with a massive additional U′(1), mixing with the SM hypercharge through both

mass and kinetic mixings can be found in [17]. The Dark Matter (DM) candidate ψ0 could

be the lightest (and thus stable) particle of this secluded sector. Such a mixing has been

justified in recent string constructions [18–22], but has also been studied within a model

independent approach [23–33] or in a supersymmetric extension [34–37].

However, there exists another possibility for the Z ′ portal: the diagrams generated by
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the Chern-Simons terms, usually related to the mechanism of gauge anomaly cancelation.

It has been shown [38–40] that these vertices could generate a specific smoking-gun signal

for dark matter searches: a monochromatic gamma ray line from the Galactic Center [41].

Moreover, the recent hint for such a line1 [42–44] raises the hope and interests for such

theoretical extensions of the Standard Model (see also [45–48] for very recent discussions

about this subject). The purpose of the present note is to prove that such models naturally

accomodate both the WMAP data on dark matter and the generation of a monochromatic

gamma ray line from the Galactic Center.2

This note is organized as follows. After defining the model, we present the phenomeno-

logical consequences and study the parameter space which could respect WMAP and si-

multaneously explain a monochromatic gamma-ray line signal from the Galactic Center.

2 The model

Gauge invariance is a fundamental condition to ensure renormalizability and quantum

consistency of any extension of the Standard Model. Triangle gauge anomalies cancelation

can occur by a consistent field theory content or by cancelation of triangle loops by axionic

couplings and Chern-Simons terms, via the string theory Green-Schwarz mechanism. At

low-energy, remnants of the anomaly cancelation can lead to generalized Chern-Simon

terms [59–61] containing new three gauge boson couplings. If one extend the Standard

Model by an abelian gauge group U′(1), at low-energy the particular Chern-Simons terms

we are interested in is

LCS = α1 ǫ
µνρσZ ′

µZνF
Y
ρσ + α2 ǫ

µνρσZ ′
µZνF

′
ρσ , (2.1)

where CS stands for Chern-Simons, F ′
ρσ = ∂ρZ

′
σ − ∂σZ

′
ρ and (α1,α2) are the coefficients

(computable exactly once given the fermionic content of the model) generated by the

triangle diagrams depicted in figure 1. In the loops are running heavy fermions charged

under both U(1)Y and U′(1) (when heavy fermion masses are SM gauge invariant such

diagrams are still generated by higher dimensional operators [38, 62]). Notice that the

CS terms (2.1) are invariant under electromagnetism3 U(1)A. The electroweak symmetry

breaking then generates Z ′ZZ, Z ′Zγ and Z ′Z ′Z vertices.

1At 3.3σ if one takes into account the look elsewhere effect, but currently unconfirmed by FERMI

collaboration.
2Very few models can achieve such a signal as its production is one-loop suppressed. However, this

monochromatic ray can be enhanced in other scenarios like SUSY ones [49–51], extra-dimension construc-

tions [52], singlet DM [53], decaying DM [54], including a neutrino sector [55], effective DM models [56] or

inert Higgs doublet DM [57]. Internal Bremsstrahlung [58] can also exhibit a spectrum similar to the one

produced by the emission of a monochromatic γ-ray line.
3The broken SM symmetries and the U(1)′ are realized in a Stueckelberg phase, as explained in [38]. The

CS terms can be written in the manifestly gauge invariant way i

M2 ǫ
µνρσDµθ(DνH

†H −H†DνH)(c1F
Y
ρσ +

c2F
′
ρσ), where Dµθ = ∂µθ − gXZ′

µ, where θ is the Stueckelberg axion absorbed by the Z′ gauge boson.

Moreover M is a mass scale related to the mass of the heavy fermions. After electroweak symmetry

breaking, we recover (2.1) with αi ∼ civ
2/M2. We notice here that CS terms are also generic in string

constructions, where their gauge non-invariance is compensated by axionic couplings and triangle loops of

light fermions charged under the extra U(1)′. If light fermions are present, the computations of three gauge

boson vertices are changed qualitatively, see e.g. [39, 40, 59–61], but we expect similar results to hold.
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Figure 1. Triangle diagrams whose variation generate counter terms of the form eq. (2.1).
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Figure 2. Feynmam diagrams contributing to the dark matter annihilation and γ−ray line ob-

servable by FERMI telescope.

From eq. (2.1) one can deduce the vertices and Feynman rules after the electroweak

breaking:

ΓµνσZ′ZZ(p3; p1, p2) = 2α1sW ǫµνρσ(p1 − p2)ρ ,

ΓµνσZ′Zγ(p3; p1, p2) = 2α1cW ǫµνρσ(p2)ρ ,

ΓµνσZ′ZZ′(p3; p1, p2) = 2α2sW ǫµνρσ(p2 − p3)ρ , (2.2)

with the obvious notation sW = sin θW and cW = cos θW .

If ψ is the lighter of the fermions charged under U’(1) (but not under the SM gauge

group), coupling to Z ′ via the vertex

ΓZ
′ψ̄ψ

µ (p3; p1, p2) = i
gD
4
γµ[(qL + qR) + (qL − qR)γ

5] , (2.3)

where qL = qR = 1 in what follows, it can be considered to be a good dark matter

candidate. The diagrams giving the annihilation rate contributing to the relic abundance

are shown in figure 2. Depending on the kinematics and values of the couplings, each of

the two diagrams can dominate. Nowadays, the dark matter candidate being mainly at

rest, the process ψ̄ψ → Z ′ → Zγ can generate a monochromatic γ−ray line observable by

the FERMI telescope. Depending on the mass of ψ, we describe in detail each possibility

in the following section.

3 The monochromatic γ-ray line

Recently, it has been argued that the FERMI telescope did observe a monochromatic γ-

ray line from the galactic center around a region Eγ ≃ 130GeV, with an annihilation
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cross section 〈σv〉 ≃ 2 × 10−27cm3s−1 [42, 43], which would be a tantalizing smoking

gun signal for new physics. Without discussing or anticipating the official analysis of the

FERMI collaboration, we will try to check if such a clear signal can be produced by the

CS terms generated in eq. (2.1). In what follows, we need to distinguish three different

cases: 2mψ < MZ′ +MZ , mψ < MZ′ < 2mψ −MZ and MZ′ < mψ, for suitable values

of the dark matter mass and couplings to fit the supposed γ-ray line. We will show how

the first case is strongly disfavored by the astrophysical data and how the latter ones

are compatible with very natural values for the parameters of the model. Even if all the

discussion in what follows is qualitative, the numerical analysis has been done using a

version of Micromegas [63–65], adapted to include the new features of the model.

3.1 MZ′ > 2mψ −MZ

In this case, the only annihilation process kinematically allowed is the s−channel exchange

of a Z ′ (see the left figure 2). However, the two only final states being ZZ and Zγ, from the

values of the couplings in eq. (2.2) one can easily deduce 〈σv〉ZZ

〈σv〉Zγ
≃ 0.3 which means that the

Zγ final state is always the dominant one. If one wants to fulfill WMAP constraints for a

thermal relic (〈σv〉 ≃ 3×10−26cm3s−1), one should impose 〈σv〉Zγ ≃ 2×10−26cm3s−1. Such

a huge cross section would have produced a visible monochromatic line, which is already

apriori excluded by the FERMI collaboration. Therefore, the mass range 2mψ < MZ′+MZ

is disfavored.

3.2 mψ < MZ′ < 2mψ −MZ

In this case, the opening of a new channel ψ̄ψ → Z ′ → Z ′Z allows the possibility to obtain

a relic density obeying WMAP constraint and a monochromatic γ−ray flux observable

by FERMI at the same time. In fact, the main difference with the case discussed in

the previous subsection consists in the fact that now the contribution to the ψ̄ψ → Z ′Z

process is proportional to the second Chern Simons coefficient of the eq. (2.1). Therefore,

it is possible to decouple the two different processes, the annihilation cross section to fulfill

WMAP, proportional to α2, and the annihilation cross section giving a monochromatic

signal, proportional to α1.

The result is shown in figure 3, where we plotted the regions of the parameter space still

allowed by WMAP and respecting 0.4× 10−27cm3s−1 < 〈σv〉Zγ < 1.09× 10−27cm3s−1 for

a dark matter mass mψ = 144.5GeV. One can see that the dependence on the parameters

can be expressed in terms of the products gD × αi. At the same time, as the WMAP

constraints require a relatively larger cross section than the one for the monochromatic

line, we require a ratio ≃ 10 between α2 and α1. Therefore, if one consider reasonable

values for standard coupling of the Chern Simons terms, α2 ≃ 10−2, from figure 3 one

obtains gD ≃ 1 and even stronger (non-perturbative) values for smaller values of α2. This

case is therefore compatible with the data, though a small hierarchy between α1 and α2

has to be assumed.
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Figure 3. Combinations of Chern-Simon coefficients gD ×α1 and gD ×α2 respecting WMAP con-

straint and producing a monochromatic γ−ray line around 130GeV with 〈σv〉Zγ ≃ 2×10−27 [42, 43]

for MZ′ . 2mψ −MZ (case B, see the text for details).

3.3 MZ′ < mψ

In this region the main contribution to the dark matter annihilation process comes from the

t-channel ψ exchange depicted in the right panel of figure 2. In this case, the relic density

condition (independent on α1 or α2) is essentially decoupled from the s−channel diagram

which produces the monochromatic line (figure 2 left). We recall again that it was because

the same diagram was responsible for the relic abundance and the monochromatic line

that for example the region MZ′ > 2mψ −MZ has been excluded in the discussion above.

Moreover, interestingly in this case, differently from the scenario in which mψ < MZ′ <

2mψ −MZ , our analysis becomes independent on the parameter α2 as soon as α2 . gD.

In more details, for a given monochromatic line (and so a givenmψ), the WMAP condi-

tion fixes the coupling gD: the cross-section for ψ̄ψ → Z ′Z ′ depends only weakly — through

a phase space coefficient — onMZ′ . Then for a given value of the monochromatic annihila-

tion cross section 〈σv〉Zγ , one can deduce the value of α1 fitting the FERMI data. We made

a scan on (MZ′ , gD, α1) and applied the 5σ constraint from WMAP and the annihilation

cross section proposed by [42, 43] in the case of an Einasto profile. The result is presented

in figure 4. In figure 5 we present an example of the gamma-ray spectrum obtained from

the diagrams shown in figure 2, for a point in the parameter space respecting WMAP.4

There are three striking features in figure 4: first, there is a weak dependence on

MZ′ ; secondly, the value of gD takes natural value for a U(1) coupling (we remind that

gEW = 0.65); and finally α1 takes typical one-loop order values ≃ 10−2, which are quite

consistent with loop contributions generated by triangle diagrams of figure 1.

This range of values is understandable. Indeed, we know that an annihilation cross

section 〈σv〉 ≃ 3× 10−26cm3s−1 leads to values of couplings of the order of the electroweak

one for a WIMP mass of 100GeV. As only the dark coupling gD appears in the annihilation

channel (figure 2 right), one expect gD ≃ 0.6 for a WIMP mass of ∼ 100GeV independently

on Z ′ mass (except around the threshold) as one can see in figure 4. Now, if one imposes

that 〈σv〉Zγ ≃ 10−27cm3s−1, one can check semi-analitically that α1 ≃ gD/30 which is

effectively what we also observe in figure 4.

4Micromegas was used for the calculation.
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Figure 4. Dark coupling gD and Chern-Simon coefficient α1 respecting WMAP constraint and

producing a monochromatic γ−ray line around 130GeV with 〈σv〉Zγ ≃ 2 × 10−27 [42, 43] for

MZ′ . mψ (case C, see the text for details).
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Figure 5. Example of spectrum observed from a cone within 0.1 radian from the Galactic Center,

respecting WMAP and producing a monochromatic γ-ray line around 130GeV with 〈σv〉Zγ ≃

2× 10−27.

It could be interesting to notice that in any of the cases discussed above, the direct

detection rate is largely suppressed. Indeed, this rate can become important for a kinetic

mixing around δ ≃ 10−3 [29–33] and could even explain DAMA/CoGENT excess with

δ ≃ 10−2. However, in the model we are considering, the “portal” between the dark matter

sector and the visible one does not go through this kinetic mixing, but through the tri-

vectorial couplings generated in eq. (2.1). In this case, very low values of δ are still allowed,

rendering the direct detection (through t-channel Z’ exchange) very difficult to observe.

One can also remark that for MZ′ . MZ , the Zγ final state channel is kinematically

closed. The main decay channel for the Z ′ is thus through the kinetic mixing with the Z.

It is important to check that in this case the kinetic mixing should not be too small to

disturb the Big Bang Nucleosynthesis (BBN) problem. A straightforward computation of

the Z ′ lifetime leads to

ΓZ′→qq ≃
e2δ2 cos2 θWMZ′

108π
(3.1)

⇒ τZ′ ≃ 10−22 8π

e2δ2 cos2 θW

(

MZ′

1GeV

)

(seconds) .
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One may deduce that for δ & 10−11, the Z ′ decays before one minute and will not affect

the BBN processes. Thus, the region 10−11 . δ . 10−2 allows for a safely Z ′ decay from

the BBN and electro-weak precision tests point of view. Moreover, notice that the natural

one-loop contribution to the mixing, due to the diagrams induced by CS interaction terms,

stays well inside that windows, for interesting (one-loop) values of the couplings αi and

reasonable assumptions5 for the scale Λ where the theory is completed (for example, the

mass M of the heavy fermions).

One should also notice that several constraints from the continuum photons should

be taken into account, especially the ones coming from the dwarf galaxies measured by

FERMI telescope6 [66, 67]. Indeed, one have checked that the photons fluxes generated by

the subsequent decays of the ZZ ′ final state (case B) or Z ′Z ′ (the ZZ final state giving

weak fluxes, reduced by a factor ≃ sin2 θW compared to Zγ) does not exceed the constraints

obtained by FERMI collaboration [66, 67].

4 Conclusion

We have discussed an extension of the Standard Model with an extra U′(1) abelian group,

where a three gauge boson couplings Z ′Zγ is generated from Chern-Simons terms. We

studied the different scenarios allowed by this model, for different values of the mass pa-

rameters, under the hypothesis that the dark matter candidate is charged only under the

extra abelian group. Depending on the ratio between the mass of the dark matter and the

mass of the mediator Z ′, WMAP data constrains, more or less severely, the gauge coupling

of the group gD, but always allowing it to have a very natural value comparable with the

usual electroweak ones, independently of the absolute value of the Z ′ mass. At the same

time, forMZ′ < 2mψ−MZ andMZ′ < mψ the model can provide a monochromatic γ−ray

line which can fit a 130GeV signal at FERMI telescope for a dark matter candidate mass

mψ = 144.5GeV, again for rather natural values of the Chern-Simons couplings.

Obviously, the model presented is intended to be an effective theory, where the unique

effects of the beyond the standard model physics are encoded in the trilinear vector bosons

couplings and the presence of a fermionic dark matter candidate. Nonetheless, already at

this level it is possible to have a good estimate of the constraints that the new physics

should satisfy in order to fit with this dark matter scenario. For example, the CS term

in (2.1) contributes, at the loop level, to the mass of the Z gauge boson, which is exper-

imentally known with an accuracy of 2 − 3MeV. An order of magnitude estimate gives

δM2
Z ∼ (α2

i /16π
2)Λ2, where again Λ is an UV cutoff naturally of the order of the fermions

generating the CS term. For couplings of order αi ∼ 10−2, we find Λ ≤ 500GeV, which

is marginally consistent with limits on vector-like fermions in the Standard Model. It

would be interesting to compare the constraints we obtained on α1 and gD from our com-

bined WMAP/FERMI analysis with the constraints one could find with the LEP searches

through the process e+e− → Z → γZ ′ → γγZ which is a 2γ plus Z final state signature.

However, such analysis is beyond the scope of the present paper.

5Stronger constraints on Λ are discussed in the conclusion.
6We are grateful to the referee for having pointing us this issue.
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