### WIT2012 Workshop on Intelligent Trackers





# A Self Seeded First Level Track Trigger for ATLAS

André Schöning

for the ATLAS collaboration



Bundesministerium für Bildung und Forschung



Institute of Physics, University Heidelberg

André Schöning, Heidelberg PI

WIT2012, Pisa, April 3-5, 2012

# **Motivation**

• Today, no clear picture about full spectrum of physics analysis at Phase II (L=5·10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>, Year>2022)

Need to design a robust and flexible L1 Trigger system that can cope with the unexpected, i.e. with enough redundancy

• Many of the scenarios we can think of today involve objects at (or near) the electroweak scale



André Schöning, Heidelberg PI

### **Rate Reduction using Track Cluster Match**

Using track-cluster matching in  $E_T / p_T$ , a rate reduction of up to a factor ~10 can be achieved



# **Challenges of L1 Track Trigger**

#### **Challenges**

O(10<sup>7</sup>) channels in strip detectors O(10<sup>8</sup>) channels in pixel detectors O(5000) central tracks per collision at LHC phase II O(10) Tbit/s data in tracker central region

#### **Simplifications** → **Data Reduction**

- only (selected layers of) strip detectors
- reduce data rate by:

  - \* kinematical filtering  $\rightarrow$  Self Seeded Track Trigger

# **Trigger Bandwidth Solutions**

#### two baseline concepts for L1 Track Trigger in ATLAS:

#### **"Region of Interest"**

- spatial cluster filter
- external trigger information (calo, muon, ...)
- new level L0 trigger required
- all tracks in regions



#### Double Frontend Buffer → talk D.Wardrope

#### André Schöning, Heidelberg Pl

#### "Self Seeded Track Trigger"

- momentum filter of clusters
- cluster size + local coincidence
- special HW design required
- all high p<sub>T</sub> tracks



# **Utopia Geometry**



studies only for central region

### ATLAS Utopia Strip Layer Design for Phase II



#### **Double strip layers**

- gap 7.35 mm
- tilted by 10 (16) degrees
- 80 µm pitch
- stereo angle (standard)
- no stereo angle for track trigger



# **Pixel + Strip Sensor Layers**

Long Strips ( $\Delta z=10cm$ )

Short Strips ( $\Delta z=2.5cm$ )

Pixel (not used)



Layer combinations studied for track trigger:

- #0, #1, #2 (only short strips)
- #3, #4 (only long strips)
- #2, #3, #4 (mixed, outer layers)

# **Questions addressed**

#### • Study of high $p_{\tau}$ local filter algorithms (Frontend)

- cluster size filter algorithm
- "offset method"

#### Best number of silicon double layers for triggers (2,3,4,...)?

#### Best layer combinations?

study combinations "012", "34", "234"

#### Performance:

- data reduction versus p<sub>r</sub>-threshold
- data reduction versus track finding efficiency

### **Cluster Size Filter**

Due to the rectangular strip geometry several strips collect charge if low momentum tracks are bent in the magnetic field



Complication: strip layers are tilted (10 degrees)

André Schöning, Heidelberg Pl

### **Results Cluster Method** (layer #0)





THEIT

muons percentage of hits lustersize 100 2 80 6 7 8+ 60 40 20 TLAS Montecarlo 0 400 50k 125 150 200 250 300 600 800 1k 2k 10k pT [MeV]

#### keep clusters with 1 or 2 hits



WIT2012, Pisa, April 3-5, 2012

André Schöning, Heidelberg PI

#### 11

# **Coincidence "Offset" Method**



#### • can be combined in a single step by defining acceptance windows

### Muon Momentum Selectivity (layer #0)



#### **Good momentum discrimination!**

# **Possible Hardware Realisation**



#### Fast Clustering Block → M.Newcomer

André Schöning, Heidelberg PI

# Simulation

#### GEANT4: ATLAS modified Utopia layout

#### Strip Sensors

- tilt angle 10 degrees
- no stereo angle
- Minimum Bias Events (PYTHIA) with 50, 100, 200, 400 events

#### Signal tracks:

- high  $p_{\tau}$  muons implanted in Minimum Bias events
- Chi<sup>2</sup> fit simulates track trigger processor (varied Chi<sup>2</sup> cut)
  - trigger rate calculation
- Matching with truth information
  - efficiency calculation
  - purity calculation

# **Rejection as Function of p<sub>T</sub>Threshold**



• most tracks (at low  $p_{T}$ ) are rejected already with a low  $p_{T}$  threshold

- rejection power higher if cluster size and offset cut are used
- rejection power affected by high pileup

# e, $\mu$ , $\pi^{\pm}$ Rejection (single particle)



### **Secondary Interactions**



#### Source of (low momentum) background

André Schöning, Heidelberg PI

# **Performance of Detector Filters**

pileup 100 minimum bias (Pythia)
p<sub>T</sub>>10 GeV (offset)



#### offset cut only

|       |                | 27-153 degrees        | 40-140 degrees        |  |  |
|-------|----------------|-----------------------|-----------------------|--|--|
|       | # hits (layer) | # hits (SS 3 accept.) | # hits (LS 2 accept.) |  |  |
| SS 1: | 6.4%           | 4.3%                  | 2.8%                  |  |  |
| SS 2: | 5.5%           | 4.7%                  | 2.9%                  |  |  |
| SS 3: | 5.1%           | 5.1%                  | 3.4%                  |  |  |
|       |                |                       |                       |  |  |
| LS 1: | 8.0%           | 8.0%                  | 6.2%                  |  |  |
| LS 2: | 6.5%           | 6.5%                  | 6.5%                  |  |  |

Reduction factors of:15-30 on short strip layers~15 on long strip layers

André Schöning, Heidelberg Pl

# **Performance of Detector Filters**

pileup 100 minimum bias (Pythia)
p<sub>T</sub>>10 GeV (offset)



#### cluster+offset cut

|       |                | 27-153 degrees        | 40-140 degrees        |  |  |
|-------|----------------|-----------------------|-----------------------|--|--|
|       | # hits (layer) | # hits (SS 3 accept.) | # hits (LS 2 accept.) |  |  |
| SS 1: | 4.0%           | 3.7%                  | 1.7%                  |  |  |
| SS 2: | 3.4%           | 2.9%                  | 1.8%                  |  |  |
| SS 3: | 3.2%           | 3.2%                  | 2.1%                  |  |  |
|       |                |                       |                       |  |  |
| LS 1: | 4.5%           | 4.5%                  | 3.5%                  |  |  |
| LS 2: | 4.0%           | 4.0%                  | 4.0%                  |  |  |

# Reduction factors of:25-50 on short strip layers~25 on long strip layers

# Simulation of Full Track Trigger

- Local hit filtering (cluster size + offset method)
- Link hits in all used layers (no redundancy)



#### Hardware Implementation:

fast lookups using next generation of associative memory chips  $(\rightarrow 3D)$ 



# **Track Efficiency vs Track Rate**

cluster size + offset cut p<sub>⊤</sub>>10 GeV

#### 3 double layers give sufficient low rate



André Schöning, Heidelberg PI

WIT2012, Pisa, April 3-5, 2012

# **Track Efficiency vs Purity**

cluster size + offset cut p<sub>7</sub>>10 GeV

3 double layers good purity



André Schöning, Heidelberg Pl

23

WIT2012, Pisa, April 3-5, 2012

# **Track Efficiency vs Purity**

only offset cut p<sub>⊤</sub>>10 GeV →higher efficiency w/o cluster size cut



André Schöning, Heidelberg Pl

# **Parameter Studies**

Choose chi<sup>2</sup> cut which maximises product: *efficiency*<sup>2</sup> \* *purity* 

| ATLAS Monte     | Carlo     | with cluster size cut |        |       |               |
|-----------------|-----------|-----------------------|--------|-------|---------------|
| $p_t$ threshold | layer set | efficiency            | purity | rate  | $\chi^2$ -cut |
|                 | 0/1/2     | 0.726                 | 0.468  | 0.507 | 12.0          |
| 10.0            | 2/3/4     | 0.656                 | 0.551  | 0.231 | 12.0          |
|                 | 3/4       | 0.720                 | 0.026  | 5.349 | 6.0           |
|                 | 0/1/2     | 0.743                 | 0.309  | 0.097 | 10.0          |
| 15.0            | 2/3/4     | 0.640                 | 0.750  | 0.029 | 10.0          |
|                 | 3/4       | 0.746                 | 0.006  | 3.312 | 6.0           |

For  $p_{\tau}$  threshold of 15 GeV rates of "only" 0.1 tracks/event

# **Analysis of Efficiency Losses**

#### Set #012 (short strips)

single hit efficiency ~98% in six layers  $\rightarrow$  ~12% loss cluster size cut ~1% per layer inefficiency of offset method ~0.4%  $\rightarrow$  ~1.2% loss inefficiency track fit

- $\rightarrow$  ~6% loss
  - $\rightarrow$  >1% loss

filtering algorithms affected by high pileup by up to 5%

Higher efficiency >95% possible be adding **more redundancy**:

- e.g. requiring 2x3 hits out of four double layers



#### more studies required

# Summary

- Design of a Self-Seeded First Level Track Trigger studies
- Local filtering algorithms: cluster size and coincidence
- At least 3 double layers for reasonable purity and trigger rate
- Design with more redundancy (4 double layers) would improve track efficiency

 Self Seeded Track Trigger at ATLAS possible with "minor" design changes of the Utopia design (no stereo angle, frontend electronics)