
LH
C

b-
PR

O
C

-2
00

6-
00

6
17

/0
2/

20
06

CONTROL AND MONITORING OF ON-LINE TRIGGER ALGORITHMS
USING A SCADA SYSTEM

E. van Herwijnen, L. Abadie, A. Barczyk, B. Damodaran, M. Frank, B. Gaidioz, C. Gaspar,

R. Jacobsson, B. Jost, N. Neufeld, CERN, Geneva, Switzerland

F. Bonifazi, Istituto Nazionale di Fisica Nucleare (INFN), I-40127 Bologna, Italia

O.Callot, Laboratoire de l'Accélérateur Linéaire (LAL), F-91898 Orsay, France

H. Lopes, Instituto di Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

Abstract
LHCb [1] has an integrated Experiment Control System
(ECS) [2], based on the commercial SCADA system
PVSS [3]. The novelty of this approach is that, in addition
to the usual control and monitoring of experimental
equipment, it provides control and monitoring for
software processes, namely the on-line trigger algorithms.

Algorithms based on Gaudi [4] (the LHCb software
framework) compute the trigger decisions on an event
filter farm of around 2000 PCs. Gaucho [5], the GAUdi
Component Helping Online, was developed to allow the
control and monitoring of Gaudi algorithms. Using
Gaucho, algorithms can be monitored from the run
control system provided by the ECS. To achieve this,
Gaucho implements a hierarchical control system using
Finite State Machines.

In this article we describe the Gaucho architecture, the
experience of monitoring a large number of software
processes and some requirements for future extensions.

THE PROBLEM
The configuration of the LHCb DAQ is shown in

Figure 1. The data from the detector is sent from the front
end electronics via the readout network to the event filter
farm. The event filter farm consists of the order of 50
subfarms with approximately 35 dual CPU dual core
nodes each. The data acquisition is distributed across the
many nodes of this large event filter farm. Each node
processes a fraction of the events from the detector. The
configuration and control of this farm is a complex task
which is done by the experiment’s control system. In
addition to controlling and monitoring of the hardware,
the ECS manages the trigger processes running on the
event filter farm. This means the ECS sends commands to
the processes to control their activities and it receives
counters, rates, histograms, status variables and messages
for display. Furthermore, the ECS needs to be the central
point where the monitoring data from all the processes is

collected, so that full histograms are produced and tagged
regularly for further analysis.

Figure 1: Configuration of the LHCb DAQ

THE SOLUTION
To obtain a seamless integration with the overall run

control system, we use PVSS to monitor the on-line
trigger algorithms. The configuration, starting and
stopping of the algorithms is done using the run control
system’s PVSS user interface. Counters, rates, status
variables and messages are displayed in PVSS panels.
The data from the trigger algorithms (counters as well as
histograms) are accessed via the communications package
DIM [6]. The manipulation of histograms will take place
by a ROOT [7] based histogram framework, which will
also handle automatic summing of histograms.

GAUCHO
The Gaucho system consists of:
• A C++ part integrated into Gaudi allowing the

trigger algorithms to publish monitorable objects
• The communications package DIM for

publishing/subscribing to data upon change or at
regular intervals

• A PVSS backend for displaying monitored objects.

C++ part
The Gaucho C++ package implements the monitor service
interface (IMonitorSvc) as DIM services and RPCs. It has
one method called DeclareInfo to declare variables and

ECS

switch

CPU
Farm

Readout Network

Front-end Electronics TFC
Syste

Storag
e

C

C

C

C

C

C

C

C

C

C

C

C

50 Racks
~1800 boxes
~3600 CPU’s

F

F

F

F

F

F

Switch Switch Switch Switch

histograms for monitoring. Algorithm writers use it to
publish the quantities that need to be monitored by the
ECS. Special care was taken to ensure the same code can
be used without modifications in both the online and
offline contexts.

Messages are published by the OnlineMsgSvc (in the
offline context by the MsgSvc).

A Gaudi shell instantiates a DIM server and creates an
FSM machine allowing the algorithms to start and stop.
The state (not_ready, ready, running, error) is published
via a status variable (see Table 1). The Gaudi shell also
instantiates the Gaudi Application Manager. This is a
flexible and generic way to add a FSM to any Gaudi
algorithm. Indeed it is planned that, in addition to the
trigger algorithms, the event building software and
various other Data Acquisition programs handling the
data will also be constructed in this way so that they can
all be controlled by the farm’s run control system.

NOT_READY

ERROR

READY

RUNNING

configure

start

reset

stop

UNKNOWN
Task dies

load unload

recover

FIgure 2: The FSM implemented by the Gaudi shell

The MonitorSvc is currently used by trigger algorithm

developers. Information is only sent when subscribed to,
so there is no performance penalty when the algorithms
are run offline.

DIM
The communications package DIM provides the
connection between the Gaudi algorithms and PVSS.

The correspondence between the datatype of the
published object and the DIM service is shown in Table 1.

Table 1: Object types and DIM commands

Object Data type DIM Method

int DimService(infoname.c_str(),

(int&) var)

double DimService(infoname.c_str(),

(double&) var)

string DimService(infoname.c_str(),

(char*) var_cstr())

AIDA::IHistogram DimRpc(histoname.c_str(),

“I:1”,”F”)

PVSS backend
Using the PVSS user interface (the run control),
algorithms can be stopped/started and counters and
histograms can be followed in real-time. The results are
combined at the level of nodes, subfarms and the full
farm, so that it is easy to verify the correct functioning of
the trigger.

The PVSS DIM client is a convenient tool for
subscribing to counters and histograms published by
Gaudi algorithms using the MonitorSvc. The subscribed
data can be viewed using a three tier panel hierarchy, i.e.
per algorithm, summed per node and summed per
subfarm (currently only one subfarm is implemented).
The three tier panel hierarchy is shown in Figure 2.

Figure 3: Three tier Gaucho PVSS panel hierarchy

The configuration of the farm node structure in PVSS,
i.e. the number of subfarms, the number of nodes in a
subfarm, the number and types of algorithms running on
each node is done independently of the Gaucho system.
The CERN Joint Controls Project (JCOP [8]) has a
framework of PVSS applications for the LHC
experiments. In this context, a PVSS tool called fwEFF
for the configuration of event filter farms is developed.

After configuring the farm with fwEFF, the
corresponding Gaucho PVSS structure is created by a
script.

Gaucho offers the flexibility to monitor only counters,
or both counters and histograms.

SIZE OF MONITORING DATA
To evaluate the load of Gaucho on the network we have

calculated the size of the monitoring data. This is shown
in Table 2.

Table 2: Typical size of monitoring data

Item Test algorithm Typical Trigger
algorithm

strings 1 status, 5
comments

1 status, 3
comments

Bytes for
strings

228 188

counters 4 ints, 1 long 3 ints

Bytes for
counters

20 12

histograms
(nbins)

4 1D
(5,80,60,60), 1
2D (100)

24 1D (4x10,
1x11, 1x20,
2x40, 12x80,
4x150) 2 2D
(200)

Bytes for
histograms

1220 10044

Total #kb 1.5 10.5

Dataflow into PVSS
Tests were done on a testbed event filter farm

configured as a single subfarm with 40 nodes (dual
CPU). 6 jobs were run on each node (2 test algorithms, 4
trigger algorithms). The system was setup such that the
data was published every 20 seconds. This amounts to a
maximum of 1.6 Mbytes being sent every 20 seconds, out
of which 4 kbytes is from counters, the rest from
histograms. This quantity of data is well within the
capacity of the network (12 Mb/s or 100 Mbits/s).

SYSTEM PERFORMANCE
In our tests with 240 jobs, PVSS was running on a

Windows Xeon 3GHz CPU with 2 GB RAM.
• For counters (~1200), the summed values were

displayed on the panels via PVSS “datapoint
functions”, updated every 20 seconds. The PVSS
system used 3-12% of the CPU and 700 Mb
memory.

• Histograms (~3000) were updated and summed
sequentially, which meant once every 4 minutes.

The PVSS system used 5-55% of the CPU and 700
Mb memory.

HISTOGRAMMING FRAMEWORK
The experience of displaying counters and histograms

in PVSS highlighted our need for a more separated
histogramming framework. This work is now ongoing.
Some of the requirements and components of this
framework are: histogram booking using a database,
histogram access should be possible for online and offline
use, a flexible histogram presenter integrated with the run
control, and regular saving.

Histogram “adders” for accessing histograms
For example, the cascaded summing of histograms

could be implemented with stand alone “histogram
adders”, rather than inside PVSS (see Figure 4).

Figure 4: Adders for histograms

The adders perform the following tasks:
• Find out from PVSS which histograms should be

added (configuration).
• Subscribe directly to the Gaudi jobs as a DIM

client.
• Collect the histograms from the Gaudi jobs and

sum them.
• Publish summed histograms (using the

MonitorSvc) to clients such as the histogram
presenter or an analysis program or to subsequent
adders.

The adder can be implemented as a Gaudi algorithm
with the signature as shown in Table 3.

Table 3: Signature of the histogram adder

Function description

adder(std::string name,

std::vector <std::string>)

The constructor creates a

DimCommand with the

name of the node,

subfarm or farm and a

configuration

PVSS

add

DIM
client

DIM
server

DIM
server

Gaudi Gaudi Gaudi Gaudi
…

add

add

histos

Added histos

Analysis programs

PVSS/ROOT
Histogram

viewer

…

vector containing names

of histograms to be added

If the adder is run inside the Gaudi FSM shell

mentioned above, it can be controlled by the run control
system.

Access to summed and individual histograms will be
for display (online) and for regular saving (offline); the
regular saving can be done by a separate stand alone
program or inside the adders. The problem of saving the
final version of histograms before reset needs to be
addressed.

There is also a requirement to inform clients when new
versions of histograms are available and to “push” them
to clients; it is not clear if the current implementation of
the MonitorSvc which uses a “pull” mechanism
implemented with a DimRpc (see Table 1) is satisfactory.

Histogram presenter
The histogram presenter should provide well defined

display pages allowing a selection of histograms
(probably via PVSS). As ROOT is the standard
histogramming package for physics analysis the
histogram presenter will be based on ROOT. All the
interactive features to manipulate the histograms in
ROOT should be available from the histogram presenter.
Examples of local manipulations on displayed histograms
include changing the scale, fitting, zooming and changing
the camera position for lego plots.

Some of the monitoring information will be in the form
of PVSS trend plots; it is desirable to have a single
display containing these trend plots together with ROOT
histograms. This may be possible in the next release of
PVSS which will use the QT Qt [9] drawing system that
is also used by ROOT.

Finally the histogram presenter should have all the
features that one expects of a system that allows the shift
operator to understand the quality of the recorded data.
For example, we need a mechanism to analyse a given
histogram independently without interfering with the
main window, in which it is continuously updated; it
should be possible to compare with reference plots.

Current ROOT viewer
In our current implementation of Gaucho, we have a

ROOT viewer that implements a DIM client to display 1D
and 2D histograms (see Figure 5). This viewer allows us
to save data on demand or at regular intervals as text files
(for counters) or as root files (for histograms). It could be
extended to accommodate the requirements mentioned in
the previous section.

Figure 5: ROOT display

CONCLUSIONS
We have shown that it is possible to monitor counters
from trigger algorithms using PVSS, a commercial
SCADA system. A ROOT based histogram framework is
planned. Histogram adders controlled by PVSS will
connect directly to Gaudi jobs, and send their results to
other programs for further analysis, or feed a viewer. A
histogram viewer is planned in PVSS/ROOT for easy
viewing/saving of histograms. A histogram database will
contain the details of histograms for quality analysis.

REFERENCES
[1] http://lhcb.cern.ch/.
[2] http://lhcb-online.web.cern.ch/lhcb-

online/ecs/default.htm/.
[3] ETM, “PVSS II, Version 3.0”, Eisenstadt, Austria,

2004.
[4] G. Barrand et al., “GAUDI – A software architecture

and framework for building LHCb data processing
applications”, Proc. of CHEP, Padova, Italy,
February 2000.

[5] P. Vannerem, “Distributed Control and Monitoring of
High-Level Trigger Processes on the LHCb on-line
Farm”, ICALEPS 2003, Gyeongiu, Korea, October
2003.

[6] C. Gaspar, “DIM, a Portable, Light Weight Package
for Information Publishing, Data Transfer and Inter-
process Communication”, Proc. of CHEP, Padova,
Italy, February 2000.

[7] http://root.cern.ch/.
[8] IT-COBE group, “JCOP framework, version 2.3.3”,

CERN, Geneva, 2005.
[9] Trolltech, Cross Platform C++ application framework

http://www.trolltech.com/products/qt/index.html

http://lhcb.cern.ch/
http://lhcb-online.web.cern.ch/lhcb-online/ecs/default.htm/
http://lhcb-online.web.cern.ch/lhcb-online/ecs/default.htm/
http://root.cern.ch/

