Towards a measurement of γ using B→DK decays

Sneha Malde

University of Oxford, on behalf of the LHCb Collaboration

Current experimental status

CKM matrix parameterises quark couplings

$$\gamma = -\arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Does α + β + γ = 180° ?

 $\boldsymbol{\gamma}$ is the least well know angle

Precision measurement of γ can be achieved at LHCb

Goal: Measure γ in tree and loop decays

B→DK decays

 $b \rightarrow c$ (favoured)

Sensitivity to γ from b \rightarrow c and b \rightarrow u interference

Require D⁰ and D⁰ to decay to same final state

Today's talk: focus on two body decays of D⁰ Simplest channel, high statistics, ideal for first results.

B→DK, D→CP eigenstates "GLW"

Both D⁰ and D⁰ decay to CP eigenstates KK, $\pi\pi$ [CP even]

$$\frac{\langle B^- \to \overline{D^0} K^- \rangle}{\langle B^- \to \overline{D^0} K^- \rangle} = r_B e^{i(\delta_B - \gamma)}$$

CP odd states also possible e.g $K_S\pi^0$

PLB 265 17 (1991)

Lower reconstruction efficiencies.

 $r_{B} \sim 0.1 \text{ Interference } \sim 10\%$ Construct observables of ratios of rates.
Partial cancellation of systemematic uncertainties $R_{CP+} = \frac{\langle \Gamma(B^{\pm} \rightarrow [\pi\pi]_{D}K^{\pm}), \Gamma(B^{\pm} \rightarrow [KK]_{D}K^{\pm}) \rangle}{\Gamma(B^{\pm} \rightarrow [K\pi]_{D}K^{\pm})} \qquad A_{CP+} = \frac{\Gamma(B^{-} \rightarrow D_{CP}K^{-}) - \Gamma(B^{+} \rightarrow D_{CP}K^{+})}{\Gamma(B^{-} \rightarrow D_{CP}K^{-}) + \Gamma(B^{+} \rightarrow D_{CP}K^{+})}$ favoured mode $R_{CP+} = 1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma \qquad A_{CP+} = \frac{2r_{B}\sin\delta_{B}\sin\gamma}{1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma}$

$B^{\pm} \rightarrow DK^{\pm}, D \rightarrow K^{\mp}\pi^{\pm} "ADS"$

Common final state K π favoured & suppressed combination

PRL 78(1997) 3257

LHCb Detector

Vertex Locator

Find B and D secondary vertices

RICH Detectors

Provide separation between Kaons and pions

Selection

Every mass hypothesis combination $B \rightarrow [hh]_D h$ is reconstructed. h=K, π

Analysis utilises full 2011 dataset 1 fb^{-1.}

Use TMVA BDT with 20 variables trained on MC and data sidebands from 2010 (35 pb⁻¹, independent dataset)

Useful variables include:

Transverse momenta

Impact parameters

•Flight distances

•Vertex quality

Further selection applied to remove specific backgrounds

e.g Cut on D flight distance to remove charmless bkg like B→hhh.

Vetos to remove other B decays.

Mass parameterisation

•Favoured decay modes dominate statistics and constrain the shapes

•Very low combinatoric levels.

•Partially reconstructed low mass background shapes determined from MC

•Particle identification information on h from B divides the data.

•mis-ID rates fix the yield of the mis-ID component relative to the yield in the opposite plot.

Clear asymmetry in B→DK

None seen in $B \rightarrow D\pi$ (r_B~x10 smaller)

arXiv:1203.3662

Similar observations for $D \rightarrow \pi \pi$

arXiv:1203.3662

Results from the CP modes

Particle indentification uncertaintes for Ratios

Production/interaction/detection effects for Asymmetries

Evidence of non-zero A_{CP+} with 4.5 σ significance

Asymmetries in $B \rightarrow D\pi$ consistent with 0

Sneha Malde, SM@LHC workshop, Copenhagen, April 2012

arXiv:1203.3662

Partially reconstructed $B_s \rightarrow D^0 K^- \pi^+$ contribution visible in this mode.

Results from the ADS modes

Hint of asymmetry in $B \rightarrow D\pi ADS 2.4\sigma$

Combining with CP modes, CP violation is observed in B \rightarrow DK with a significance of 5.8 σ

What about γ ?

Want to extract 3 parameters: $\textbf{r}_{B},\,\delta_{B}\,\boldsymbol{\&}\,\boldsymbol{\gamma}$

Using only the results presented today \rightarrow Multiple, overlapping solutions.

These can be resolved by looking at more D decay modes

All bring extra information for measurement of γ

Sneha Malde, SM@LHC workshop, Copenhagen, April 2012

arXiv:1201.4402

Impact of LHCb B→DK results

Combination of B factory data including GGSZ (D \rightarrow K_s $\pi\pi$) and today's results

Best fit value favours lower value of r_B.

Uncertainty on γ dependent on r_B ; Overall uncertainty on γ similar.

Summary & Outlook

- •Observation of direct CP violation in B→DK decays
- •Measurements shown today have dependence on $\boldsymbol{\gamma}$
- •Are an important contribution to a measurement of $\boldsymbol{\gamma}$
- •This is the first step. Other modes discussed targeted for this year.
- •It will be a very exciting year
- •More data → Opens up new decay channels