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ABSTRACT

Extreme value statistics (EVS) is applied to the distribution of galaxy luminosities in the Sloan
Digital Sky Survey (SDSS). We analyze the DR8 Main Galaxy Sample (MGS), as well as the Luminous
Red Galaxies (LRG). Maximal luminosities are sampled from batches consisting of elongated pencil
beams in the radial direction of sight. For the MGS, results suggest a small and positive tail index ξ,
effectively ruling out the possibility of having a finite maximum cutoff luminosity, and implying that
the luminosity distribution function may decay as a power law at the high luminosity end. Assuming,
however, ξ = 0, a non-parametric comparison of the maximal luminosities with the Fisher-Tippett-
Gumbel distribution (limit distribution for variables distributed by the Schechter fit) indicates a good
agreement provided uncertainties arising both from the finite batch size and from the batch size
distribution are accounted for. For a volume limited sample of LRGs, results show that they can
be described as being the extremes of a luminosity distribution with an exponentially decaying tail,
provided the uncertainties related to batch-size distribution are taken care of.
Subject headings: methods: statistical — Galaxies: statistics — galaxies: general — galaxies: lumi-

nosity function — galaxies: fundamental parameters

1. INTRODUCTION

Extreme value statistics is a powerful tool for an-
alyzing the behavior of the tails of distributions. It
is well-known that the distribution of extreme val-
ues for a sample of N–i.i.d. (independent, identi-
cally distributed) random variables converge (as N →
∞) to a few limiting distributions depending on the
tail behavior of the parent population, namely Fisher-
Tippett-Gumbel, Weibull and Fisher-Tippett-Frechet
(Gumbel 1958; Galambos 1978; Embrechts et al. 1997;
Reiss & Thomas 1997; Coles 2001). However, the onset
of this finite sample size scaling behavior is quite slow,
and therefore requires very large samples to converge.
This is the primary reason why astronomy has seen few
applications of EVS to date.
The emergence of dedicated wide angle galaxy sur-

veys, such as SDSS (Stoughton et al. 2002), has made
possible an increase in statistics, making galaxy sam-
ples in the SDSS redshift survey just large enough to
attempt an analysis of the finite sample size scaling for
all galaxies. Here we chose to study the distribution
of maximal luminosities of galaxies, since the galaxy
luminosity distribution per volume or luminosity func-
tion (LF) is one of the most basic statistic measured in
galaxy surveys. This function has been well described
by a gamma distribution or so-called Schechter func-
tion (Schechter 1976), functionally similar (and moti-
vated by) the theoretically derived Press-Schechter for-
mula (Press & Schechter 1974), with a power law distri-
bution at the faint end and an exponentially falling tail
at the bright end. When galaxies are grouped accord-
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ing to their morphologies, their respective LFs seem to
belong to different classes, including bell-shaped distri-
butions as well as gamma functions of different shape and
scale parameters (Binggeli, Sandage & Tammann 1988).
Current modeling of the conditional LF (CLF) to galaxy
clusters in dark matter halos of a certain mass include the
presence of central or brightest cluster galaxies (BCGs)
with a log-normal CLF, while the rest of the galaxies
(satellites) are given a power law CLF with a finite cut at
high luminosities (Cooray & Milosavljevic 2005; Cooray
2006).
Special attention has always been paid to the high

luminosity tail of the all galaxy LF. BCGs are the
brightest of the old populations of red elliptical galax-
ies found in the high density cores of galaxy clusters are
thought to have their progenitors formed at high red-
shift (z & 3), and then have undergone a set of dry
mergers in their life history (e.g. Ostriker & Hausman
1977; De Lucia & Blaizot 2007). Their importance lies
in the low scatter of their luminosities, making them
useful as standard candles (Postman & Lauer 1995;
Loh & Strauss 2006; Lin et al. 2010; Paranjape & Sheth
2011; Dobos & Csabai 2011).
Several studies have been made to elucidate whether

BCGs are the extremes of a red or early type galaxies LF
or they come from other luminosity distribution. In or-
der to answer the question, Geller & Tremaine (1976),
Tremaine & Richstone (1977) and Bhavsar & Barrow
(1985) investigated the statistics derived from the first
and second brightest luminosities (and the gap between
them) in galaxy clusters. Their results based on smaller
samples has been confirmed by Loh & Strauss (2006),
who found that the luminosity gap between first and
second-ranked galaxies is substantially larger than what
can be explained with an exponentially decaying lumi-
nosity function. On the other hand, Lin et al. (2010)
shuffled the data to combine all galaxies of clusters to
form a composite cluster, finding that BCGs in high lu-

http://arxiv.org/abs/1204.0151v2


2 Taghizadeh-Popp et al.

minosity clusters are not drawn from the luminosity dis-
tribution of all red cluster galaxies, while BCGs in less
luminous clusters are consistent to be the statistical ex-
treme.
These previous studies were mainly directed toward the

luminosity statistics within galaxy clusters. In this pa-
per we will study galaxy luminosities as a whole, and the
sampling will not be restricted to the maximal luminosi-
ties from galaxy clusters. This will keep the sample size
large enough for studying the finite-size scaling behavior.
Since EVS is well known only for i.i.d. variables, one

approach we will follow is trying to minimize the correla-
tions between luminosities and positions by selecting the
maximal luminosities from batches or blocks of galaxies
in elongated regions or pencil beams along the line of
sight, and defined by the footprint of the HEALPix tes-
sellation on the sky (Górski et al. 2005). As we shall dis-
cuss, such elongated cells combined with the short range
correlations in luminosities make possible an analysis of
EVS based on the assumption that the luminosities ap-
proximate well an i.i.d. behavior. This approach allows
us to show a working example designed to mimic the
standard block maxima sampling method from EVS of
time series, but also generalizing it to the case of variable
block size, as discussed later in this paper. Another sim-
pler approach we will use for comparing with the previous
method is the random sampling of the luminosity parent
distribution in batches of fixed size. These are new ap-
proaches for testing the bright end of the overall LF, and
inherently different from previous studies that considered
testing the luminosity extremes in galaxy clusters.
Within the i.i.d. framework, the shape of the galaxy

luminosity function is important for the EVS. The expo-
nential tail in the high luminosity end of the LF would
imply a Fisher-Tippett-Gumbel (FTG) EVS distribu-
tion, with corrections for the finite sample sizes depend-
ing on the power law at lower luminosities (Györgyi et al.
2008). In this analysis we will test the agreement with
these expectations, and the analysis will also reveal
whether or not a sharp cutoff at a high but finite lu-
minosity exists.
We emphasize that even though the SDSS sample is

large, the residual from the FTG distribution can be ex-
plained only when we consider the corrections due to
both the finite size of the samples of each HEALPix pen-
cil beam and the distribution present in the sample sizes
(the number of galaxies in a cone is finite and varies from
cone to cone). Thus we have here a pioneering example
where a generalized finite size scaling (including sample-
size distribution) is relevant in the data analysis.
The arguments and results will be presented in the fol-

lowing order. In Section 2 we describe our galaxy sample.
Section 3 shows the fits to the galaxy luminosity distribu-
tions and functions. Section 4 explains the construction
of the pencil beams and distribution of galaxy counts
inside them. Section 5 contains a discussion of the ba-
sic concepts of extreme value statistics with emphasis on
possible deviations from the expected limit distributions
due to finite number of the galaxies in the pencil beams
and, furthermore, due to the pencil-to-pencil fluctuations
in the galaxy counts. In Section 6 we present the results
about the distribution of maximal luminosities with the
conclusion that within the uncertainties coming from the
finiteness of samples and from the sample–size distribu-

tion, the Fisher–Tippett–Gumbel distribution gives an
excellent fit. The final remarks and discussion can be
found in Section 7.
Along this paper, we use the (ΩL, ΩM, h0, w0) = (0.7,

0.3, 0.7, -1) cosmology.

2. SAMPLE CREATION

In this paper we use photometric and spectroscopic
data of galaxies from SDSS-DR8 (York et al. 2000;
Stoughton et al. 2002; Aihara et al. 2011), available in
a MS-SQL Server database that can be queried on-
line via CasJobs 4, and analyzed directly inside the
database using an integrated cosmological functions li-
brary (Taghizadeh-Popp 2010). The galaxies studied
were the DR7 legacy spectroscopically-targeted Main
Galaxy Sample (MGS) (Strauss et al. 2002), as well
as the luminous red galaxies (LRGs) (Eisenstein et al.
2001). The sky footprint of the clean spectroscopic sur-
vey builds up from a complicated geometry defined by
sectors, which cover a fractional area FA ≃ 0.1923 of
the whole sky. Redshift incompleteness arises from the
fact that two 3” aperture spectroscopic fibers cannot be
put together closer than 55” in the same plate. As a
strategy, denser region in the sky are given a greater
number of overlapping plates. However, only ∼93%
(MGS) and ∼95% (LRG) of the initial galaxies photo-
metrically targeted have their spectra taken.
Several selection cuts and flags were applied in order to

have a clean sample. We selected only science primary
objects classified as galaxies and appearing in calibrated
images having the photometric status flag. We used
the score quantity as a measure of the field quality
with respect to the sky flux and the width of the point
spread function, and selected only the fields in the range
0.6 ≤ score ≤ 1.0. Furthermore, we neglected indi-
vidual objects with bad deblending flags (PEAKCENTER,
DEBLEND NOPEAK, NOTCHECKED ) and interpolation
problems (PSF FLUX INTERP, BAD COUNTS ERROR) or
suspicious detections (SATURATED NOPROFILE ), as well
with problems in the spectrum (ZWARNING) 5.
With respect to the MGS, they were observed as a

magnitude limited sample, with a targeted r-band pet-
rosian apparent magnitude cut of mr ≤ 17.77, and a red-
shift distribution peaking at z ∼ 0.1. We further restrict
this sample to safe cuts of [mr,1,mr,2] = [13.5, 17.65].
The lower limit is set due to the arising cross talk from
close fibers in the spectrographs when they carry light
from very bright galaxies, whereas the upper limit safely
avoids the slight variations in the targeting algorithm
of the limiting apparent magnitude around 17.77 over
the sky. As shown in Fig. 1, we chose galaxies in the
redshift interval [z1, z2] = [0.065, 0.22], since at redshift
lower than z1, the galaxy high luminosity tail becomes
incomplete (due to imposing the apparent magnitude cut
at mr,1). This left us with Ng = 348975 MGS galaxies

in a volume of VS = [V (z2)− V (z1)]× FA = 0.559Gpc3.
With respect to the LRGs, they where selected from

color cuts (in g-r v/s r-i space) in such a way that
are traced across redshift as an old population of lu-
minous and passively evolving red early type galaxies
(Eisenstein et al. 2001). This was done by modeling

4 http://casjobs.sdss.org
5 Detailed explanation in sdss3.org/dr8/algorithms

http://casjobs.sdss.org
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Figure 1. Completeness limits for the raw galaxy samples. Plot-
ted are the petrosian absolute Magnitude v/s redshift histogram
(log-scaled) for the full MGS and LRG samples. No k-correction
nor evolution is applied at this point. The red horizontal lines show
the absolute magnitude limits for a complete sample (-22.53 and
-22.35 for MGS and LRG respectively). Note that for redshifts
greater than z=0.065 (vertical red line), the MGS becomes com-
plete at the bright end. This redshift limit was also checked using
the Vmax method explained in Sec. 3.

them with an old stellar population spectral template
from PEGASE (Fioc & Rocca-Volmerange 1997). We
use LRGs in the CUT I sample, which was built to be al-
most a volume limited sample up to redshift 0.38 with an
r-band petrosian apparent magnitude cut of mr,2 = 19.2.
We apply a safe redshift window of [z1, z2] = [0.20, 0.38]
since, at lower redshift, the color selection cuts admit
blue galaxies belonging to the MGS. We further con-
straint this LRGs by considering galaxies whose r-band
surface light profile can be modeled mainly as a DeVa-
couleurs profiles (as in elliptical galaxies) more than an
exponential disc (fracDeV ≥ 0.9) (Strateva et al. 2001).
We also use the r-band concentration index R90/R50
(Shimasaku et al. 2001; Strateva et al. 2001) to select
mostly elliptical galaxies (R90/R50≥ 2.7 ). This left us
with Ng =52579 LRGs in a volume of VS = 2.18Gpc3.
Since our samples span broad redshift and time in-

tervals, it is crucial to apply a (k+evolution)-correction
to Mr in the form Mr = mr - DM(z) - k(z) - e(z),
which brings all the galaxies to a common z = 0 rest-
frame. The k-corrections for the MGS were calculated
by modeling each galaxy spectrum as the closest non
negative linear combination of spectra drawn from the
Bruzual & Charlot (2003) templates (see Budavári et al.
(2000) and Csabai et al. (2000)). We applied a simple av-
erage evolution correction as a linear function of redshift,
derived by Blanton et al. (2003) as e(z)=-Qz (Q=1.62 for
r-band, Q=4.22 for u-band). For the LRG case, we used
the k+evolution correction derived from the PEGASE
template. This was modeled as a 4th order polynomial in
redshift, as used in Loh (2004) and Loh & Strauss (2006),
where k(z)+e(z)=0.115z +5.59z2-24.0z3+36.0z4.
We finally checked the first 1000 images of galaxies for

each sample ranked by brightest r-band petrosian abso-
lute magnitude, and rejected the objects whose photom-
etry appears to be ruined by the leaked light of a nearby
star. Also, objects where rejected in the case when the
petrosian magnitude was more different than 0.8 magni-
tudes compared with the model magnitude.

3. LUMINOSITY FUNCTIONS AND DISTRIBUTIONS

The luminosity function (LF), defined as the distribu-
tion of galaxy luminosities (or magnitudes) per volume,
has been for long well studied as a basic statistic. Since
galaxy surveys are generally apparent magnitude limited

at the faint end, the LF differs from the luminosity distri-
bution (LD) in that the former cannot be obtained from
a simple raw histogram of the luminosity data points as
LDs are. In fact, the faint luminosity tail of LDs is in-
complete, as faint galaxies can be observed only at close
enough distances (Malmquist bias). On the contrary,
the brightest galaxies can generally be observed over the
whole redshift limits of the survey. As a consequence,
LFs are identical to LDs at the bright end (except for a
scale factor equal to the survey’s volume VS) but start
to depart from each other at a departure luminosity LD

(specified next).
The important link between LFs and LDs is that, since

they behave the same way at the bright end, we can
study LFs in this regime by instead doing the sampling
and EVS on the LD of the individual data points. This is
the strategy followed in this paper, which works as long
as we sample galaxies with luminosities close enough to
or brighter than LD.
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Figure 2. 2-Dimensional histogram (in logarithmic gray-scale)
showing the onset of absolute magnitude incompleteness. For the
LRGs (left branch), we see wi ≥ 1 and wi ≥ 2 starting at Mr =
−22.63 and Mr = −22.05). For the MGS (right branch), it happens
at Mr = −22.43 and -21.91, respectively. The curves against the
vertical axis are the corresponding (unnormalized) distributions of
the weights wi.

In order to correct the incompleteness of low luminos-
ity galaxies, we construct LFs by adding more weight to
these galaxies, as used in the Vmax method (Schmidt
1968), where each i-th galaxy is assigned a weight wi =
VS/VM,i ≥ 1. Here we note that, given the particular
[z1, z2] and [m1,m2] intervals for the survey, the i-th
galaxy found at zi could be observed only within a max-
imum comoving volume VM,i inside the overall volume
VS of the survey. If the i-th galaxy of apparent mag-
nitude mi, k-correction ki = k(zi), evolution correction
ei = e(zi) and at a luminosity distance DL(zi) were to
have limiting apparent magnitudes m1,2, then it should
be moved to a limiting luminosity distance given by

DL,i(zlim;m1,2) =

DL(zi)× 10(m1,2−k(zlim)−e(zlim)−mi+ki+ei)/5. (1)

Hence, the maximum volume is defined by the biggest
interval of DL inside which a galaxy can appear in the
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Figure 3. Luminosity functions and distributions of the differ-
ent galaxy samples, together with the best Schechter, generalized
gamma, Gumbel and EVD fits from Tables 1 and 2. The vertical
lines denote the completeness boundary wi = 1, where the LFs
depart from LDs. The LDs were scaled by the factor Ng/VS in
order to compare them with the LFs.

survey:

VM,i=[V (min(DL(z2), DL,i(zlim;m2)))

−V (max(DL(z1), DL,i(zlim;m1)))] × FA, (2)

As Eq. 1 defines zlim in an implicit way, we solve for
it iteratively. The weights VS/VM,i are shown in Fig.
2. The departure magnitudes separating the complete
(wi = 1) and incomplete (wi > 1) parts of the samples
take the values of MD = -22.63 (LRG) and MD = -22.43
(MGS). Thus, the distribution of weights looks bimodal,
where the complete part of the sample creates the spike
at wi = 1, and the incomplete part forms the broad tail.
Note that the incomplete part presents at the beginning
a nearly linear trend given by logw ∼ 3

5Mr (derived from
Eq. 1). The part of the trend that departs and seems
extending into the high logw region, on the other hand, is
composed of galaxies whose apparent magnitude is very
close to the limiting apparent magnitude cut m2 of the
survey.
A non-parametric LF can be then easily estimated us-

ing a Vmax weighted histogram in the form

Φ(M)∆M =
1

∆M

∑

Mi∈∆M

ci
VM,i

, (3)

The extra weight ci takes into account the incomplete-
ness of the target selection algorithm for spectroscopic
follow up. The error δΦ(Mr) is estimated by using Jack-
Knife sampling of 38 regions about 200 SqDeg each.
The luminosity functions and distributions and their

fits are shown in Fig. 3, and Tables 1 and 2 contain the
fitting parameters.
For the MGS samples, we use a generalized gamma as

a fitting function, which results in the known Schechter
profile (Schechter 1976) when β = 1 :

Φ(L)dL = Φ∗ (L/L∗)
α
exp{−

[

(L/L∗)
β
]

}dL. (4)

The normalization factor Φ∗ is left as a free parame-
ter for LFs, whereas for the LDs is defined by Φ∗ =
β/[L∗Γ((α + 1)/β, (Lmin/L∗)

β)], where the incomplete
gamma function Γ(∗, (Lmin/L∗)

β) is the integral in the
interval [(Lmin/L∗)

β ,∞]. The fitted luminosity values
for the LFs and LDs we converted into magnitude units
using Mr=−2.5 log10[L/L⊙]+M⊙,r, where M⊙,r = 4.62

Table 1
Luminosity Function Fitting parameters.a

Sample Φ∗[10
−3 M∗ α β

Mpc−3Mag−1]

Schechter Fitting
MGS 3.10 ± 0.05 -21.46 ± 0.02 -1.34 ± 0.04 1

General Gamma Fitting
MGS 7.79 ± 0.38 -20.42 ± 0.10 -0.81 ± 0.05 0.75 ± 0.02

Sample Φ∗ Mµ Mσ ξ

[10−5 Mpc−3]

Gumbel Fitting
LRG 2.52±0.03 -22.85±0.01 -21.36±0.02 0

GEV Fitting
LRG 2.49±0.02 -22.86±0.01 -21.36±0.02 0.04±0.01

a Parameters from fitting to Eq. 4 (MGS) or Eq. 5 (LRG).
Parameters in luminosity units (L∗, Lµ and Lσ) were con-
verted into absolute magnitudes (M∗, Mµ and Mσ) using
M=−2.5 log

10
[L/L⊙]+M⊙, where M⊙ = 4.62, everything

measured in the petrosian r-band. MGS and LRG samples
are fitted in the ranges Mr ≤ −20.2 and Mr ≤ −22.64 re-
spectively.

(Blanton et al. 2001) and L⊙ is the solar luminosity in
the r band.
From Figure 3, we can see that the generalized gamma

function provides a better fitting for the MGS LF than
the Schechter fit. Indeed, β = 0.75 fits much better the
high luminosity tail, and is similar to the value found
by Bernardi et al. (2010) (β = 0.698). Our faint end
slope (α = −0.81) is steeper compared to their value
(α = −0.45), although we are fitting in a different mag-
nitude interval and to a galaxy sample of different mag-
nitude and redshift selection cuts. The errors in the
magnitude have little influence in the value of the fitted
parameters. As shown in Bernardi et al. (2010), bigger
magnitude errors might decrease the fitted value of β.
However, they showed that the inclusion of the .0.05
rms errors on the magnitude in SDSS provided discrep-
ancies in the fitting parameters generally smaller than
their statistical errors.
The LRG sample was made to include the brightest

early types. Therefore, they are naturally better fitted
with an extreme value distribution (EVD) or its special
case the Gumbel where ξ = 0 (see Sec. 5):

Φ(L) = Φ∗EVD(L), (5)

EVD(L) = L−1
σ t(L)ξ+1 exp(−t(L))dL, (6)

t(L) = (1 + ξ[
L−Lµ

Lσ
])−1/ξ, 1 + ξ[

L−Lµ

Lσ
] > 0.

with Lµ, Lσ and ξ being respectively the location, scale
and shape (or tail index) fitting parameters. The LRGs
were built to be a complete (volume limited) sample, but
some scattered lower luminosity galaxies passed the color
cuts and contaminated it (Fig. 1). Therefore, we only
fit the LF up to the completeness limit MD = −22.64 as
explained earlier.

4. SAMPLING THE MAXIMAL LUMINOSITIES: CREATION
OF I.I.D. BATCHES AND HEALPIX-BASED PENCIL

BEAMS

Classic extreme value statistics needs close-to-i.i.d real-
izations of the underlying parent probability distribution
from which to draw the maximal values.
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Table 2
Luminosity Distribution Fitting parameters.a

Sample M∗ α β

General Gamma Fitting
MGS -19.99 ± 0.16 1.52 ± 0.10 0.79 ± 0.03

a Parameters from fitting to Eq. 4 (MGS) using
Φ∗ = β/(L∗Γ((α + 1)/β, (Lmin/L∗)

β)). We used Mmax ≡

M(Lmin) = −20.2. Parameters in luminosity units were con-
verted into absolute magnitudes.

In the EVS of time series, a common practice is to
use the block maxima approach, where the (possibly
correlated) data set is grouped into disjoint and tem-
porally consecutive blocks or batches of the same size
from which to choose the extreme values (e.g. annual
maxima) (Embrechts et al. 1997; Reiss & Thomas 1997;
Coles 2001). The blocks can be chosen to span each of
the many different cycles of the underlying process, gen-
erally creating n blocks, with all the blocks having the
same number N (batch size) of data points. Thus, a
first simplified sampling strategy in this paper is the one
where the disjoint batches are chosen by random sam-
pling without replacement of the luminosity values.
In real life situations, however, some blocks might

present missing or sparse data, due to bad sampling
strategies or sensor failures. In other cases, the data
points clump in clusters of different sizes that exceed a
certain threshold level (e.g., insurance claims after a hur-
ricane). In all these situations, the different realizations
of the parent probability distribution will have different
number N of (possibly correlated) data points, with dis-
tribution P(N).
In order to show a real working equivalent example

of the previous time series process, the second sampling
strategy generalizes the block maxima approach by
extending it to the case of variable block size and weak
enough correlations (the meaning of weak is discussed
in Section 7). To this aim, we recreate this situation
by dividing the sky in equal-area patches, each one
defined by an individual cell of the HEALPix tessellation
(Górski et al. 2005). This creates 1-dimensional pencil-
like beams, each of which containing one close-to-i.i.d
realization of the galaxy distribution through redshift
and with a variable galaxy number N . We start with a
finer SDSS DR8 spectroscopic footprint with resolution
Nside = 512 (of cell size

√

Ωpix ≃ 6.87′). We further
degrade the footprint into 3 lower resolution maps
defined by Nside = 16, 32 and 64, creating thus the cells
that define the pencil beams. Note that these bigger cells
may partly cover an area not belonging to the footprint.
Hence, we define the fractional area occupancy f as the
area inside the footprint covered by the cell divided by
the total area of the cell. The cumulative distribution of
f (Fig. 5) shows clear breakpoints at f ∼ 0.97 for all 3
resolutions. We therefore decide to use only the group
of cells which satisfy f ≥ 0.97. A summary on the 3
different resolution HEALPix schemas is presented in
Table 3, and HEALPix maximal luminosity maps are
shown for the MGS in Fig. 4.

Figure 4. HEALPix Maps of maximal luminosities (in linear
scale) for the MGS galaxy sample at different values of Nside.
Darker color means higher luminosity. Only cells included 97%
in the footprint are shown. The SDSS-DR8 footprint boundaries
become evident at resolution Nside = 64.
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Figure 5. Cumulative distribution of the HEALPix cell fractional
occupation area f , shown for the 3 different footprint cell sizes. The
black filled dots show the breakpoints at f = 0.97. We consider
only cells with f ≥ 0.97

4.1. Distributions of galaxy counts in a HEALPix cell

The number of galaxies N fluctuates in the pen-
cil beams. Unless the galaxy-count distribution in a
HEALPix cell F(N) is very narrow, this affects the limit
distribution one expects for the extreme luminosities. We
have thus evaluated F(N) for the MGS and LRG sam-
ples, and the results for decreasing Nside, i.e. for increas-
ing average of the galaxy count 〈N〉 are shown in Fig.6.
As one can see, the Nside = 64 suggest good statistics
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Figure 6. Galaxy count distributions in a HEALPix cell of size Nside = 64, 32, and 16, i.e. for increasing average galaxy count 〈N〉.

Gamma function of the form F(N) ∼ (N/N − d)3 exp(−N/N + d) fits well the distributions as can be seen and, to a good approximation,
count distributions for different galaxy samples can be scaled together by the average number of galaxies in a cell 〈N〉 (second row).
Note that equally good fits can also be provided by negative binomial distributions used in previous studies, e.g. Croton et al. (2007),
Yang & Saslaw (2011) and references therein.

Table 3
HEALPix schemas for the different galaxy samples a

HEALPix schemas

Nside

√

Ωpix nsphere nF nF nF,97 nF,97

MGS LRG MGS LRG
16 3.66o 3072 768 755 473 473
32 1.83o 12288 2659 2591 2030 2029
64 55.0′ 49152 10017 9461 8492 8256

a Here, nsphere is the total number of HEALPix cells in the
sky (each of area Ωpix), nF is the number of galaxy-containing
cells inside the footprint and nF,97 is the number of cells with
areas included at least 97% inside the footprint.

yielding smooth functions. We should note, however,
that the average galaxy count is rather low in this case
(〈N〉 ≈ 5 − 40), so it is far from the limit 〈N〉 → ∞ one
would like to take when investigating the EVS.
There are two lessons to learn from Fig.6. First, the

distributions are rather narrow which suggests that it is
a reasonable assumption that the theory of EVS known
for fixed N can be applied to galaxy luminosity. Second,
one can develop analytic approximations to these his-
tograms. Indeed, the distributions can be relatively well
approximated by a gamma function with free location
and scale parameters.

5. THEORY OF EXTREME VALUE STATISTICS

5.1. Classical Theory

Extreme value statistics (EVS) is concerned with the
probability, PN (v)dv, of the largest value in a batch of
N measurements {v1, v2, ..., vN} being v = maxi vi. For

us, the vis are galaxy luminosities, obtained by either
random samplingN galaxies from the sky, or chosen from
the HEALPix cells covering the sky, each with a variable
N .
The results of the EVS are simple provided the vis

are i.i.d. variables drawn from a general parent distri-
bution f(vi). Namely, the limit distribution PN→∞(v)
belongs to one of three types and the determining fac-
tor is the large-argument tail of the parent distribution
(Gumbel 1958; Galambos 1978). Frechet type distribu-
tion emerges if f decays as a power law, Fisher-Tippett-
Gumbel (FTG) distribution is generated by fs which de-
cays faster than any power law and, finally, parent distri-
butions with finite cutoff and power law behavior around
the cutoff yield the Weibull distribution (Gumbel 1958;
Galambos 1978). All the above cases can be unified as a
generalized EVD whose integrated distribution FN (v) is
given in the N → ∞ limit by

F (v) = exp

{

−
[

1 + ξ

(

v − µ

s

)]−1/ξ
}

(7)

with parameters µ, s and ξ. The shape parameter ξ can
take values ξ > 0, = 0, < 0, which correspond to the
Frechet, FTG, Weibull classes, respectively. The param-
eter ξ is also called the tail index, since it is related to
the exponent of the large-argument power-law behavior.
The probability density function associated to Eq. (7) is
shown in Eq. (6).
The EVS has been developed mainly for i.i.d. vari-

ables and there are only a few well established results
for systems with correlations between the vis. These re-
sults are mainly related to sufficiently weakly correlated
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variables where the i.i.d. results can be shown to apply
(Bermann 1964; Györgyi et al. 2007). In the following we
shall assume that the correlations between the galaxy lu-
minosities are sufficiently weak so that the experimental
histograms can be compared with the i.i.d. results. This
assumption is important for the sampling in HEALPix
cells in the sky, but not in a random sampling schema
(arguments in favor of this assumption will be discussed
in Section 7 using the knowledge of the correlations be-
tween galaxy positions).
The parent distribution for galaxy luminosities is

known to be well fitted by the Gamma-Schechter distri-
bution Φ(L) = Φ∗(L/L∗)

α exp[−(L/L∗)
β ] as given in (4)

where L∗ sets the scale, and α ≈ −1 together with β = 1
is the Schechter profile. For this parent distribution, the
theory of EVS tells us that the limit distribution of ex-
tremal luminosities belongs to the FTG class (ξ → 0)

P (v) =
dF (v)

dv
= a exp

[

−(av + b)− e−(av+b)
]

. (8)

where the parameters can be fixed by setting 〈v〉 = 0

and σ =
√

〈v2〉 − 〈v〉2 = 1, yielding a = π/
√
6 and

b = γE ≈ 0.577. It should be emphasized that this choice
leads to a parameter-free comparison with the empiri-
cal data. In fact, the histogram of the maximal lumi-
nosities P (v) should be plotted in terms of the variable
x = (v−〈v〉N )/σN where 〈v〉N is the average of the max-

imal luminosity while σN =
√

〈v2〉N − 〈v〉2N is its stan-
dard deviation. The resulting scaling function should
approach the universal function (8) in the N → ∞ limit

PN (x) = σNPN (σNx+ 〈v〉N ) → P (x) . (9)

5.2. Deviations from the Classical Theory

In addition to the assumption of vis being i.i.d. vari-
ables, there are two additional problems with the pro-
gram of comparing the data with the theory. First, a no-
torious aspect of EVS is the slow convergence of PN (x)
to the limit distribution P (x). Second, the batch size
N (the number of galaxies in a given solid angle) varies
with the direction of the angle. Thus the histogram of the
maximal luminosities PN (x) is built from a distribution
of Ns. Both of the above effects introduce corrections to
the limit distribution we are trying to use for comparison.
Below we estimate the magnitude of these corrections.

5.2.1. Finite size corrections

Finite size corrections in EVS have been studied in
detail with the main conclusion that to first order in the
vanishing correction in the N → ∞ limit, the scaling
function can be written as

PN (x) ≈ P (x) + q(N)P1(x) , (10)

where q(N → ∞) → 0 and the shape correction P1(x) is
universal function. Both the amplitude q and the shape
correction P1(x) are known for Schechter type parent dis-
tributions. The convergence to the limit distribution is
slow since we have (Györgyi et al. 2008, 2010)

q(N) = − α

ln2 N
. (11)

for β = 1. In the general case of a parent following the
generalized gamma distribution of Eq. (4), with β ≈ 1,

there are two terms which may have comparable contri-
butions (with the shape correction function being iden-
tical)

q(N) =
(1 − β)

β lnN
+

(2β − 1)(β − α− 1)

β2 ln2 N
. (12)

Note that this theoretical construct needs the values of
α and β to be fitted at the bright end tail of the luminos-
ity distribution, thus neglecting the low luminosity tail
(Györgyi et al. 2010). The value of β is roughly 1, thus
for a characteristic range of N ≈ 10−200, the amplitude
is of the order of 0.2-0.04. Thus one can expect a 20-4%
deviations coming from finite-size effects.
The finite-size shape correction is also known

(Györgyi et al. 2008):

P1(x) =

[

P (x)

[

−ax2

2
+

ζ(3)x

a2
+

a

2

]]′

(13)

where a = π/
√
6 and ζ(z) is the Riemann zeta function.

The function P1(x) is plotted on Fig.7 and one can see
that the first order correction has well defined signs in
various regions of x.
A special case arises when the parent distribution is of

Gumbel type. In this case, the EVD is also a Gumbel,
but with no apparent finite size correction. This is due to
the fact that the Gumbel distribution is a fixed point in
the renormalization theory formalism used for obtaining
the first order corrections (Györgyi et al. 2008, 2010). As
a result, the deviations should be caused only by random
shot noise from the data points.

-0.4

 0

 0.4

 0.8

-2  0  2  4  6

P 1
(x

)

x

P1(x)

Figure 7. First order finite size shape correction function in finite-
size scaling of EVS with the Schechter function being the parent
distribution. The amplitude of this correction is of the order of
1/ lnN for β 6= 1 while it is of the order of 1/ ln2 N if β = 1.

5.2.2. Variable batch size

Variable sample size raises basic questions about EVS.
In particular, the limiting procedure of sample size go-
ing to infinity becomes a problem. If the normalized
distribution of N is known F(N) then it is natural to
consider the average N =

∫

F(N)NdN as the parame-
ter corresponding to the fixed sample size of the usual
EVS. Therefore, using the limit N → ∞, the extreme
value distribution becomes

P (v) = lim
N→∞

∫ ∞

0

F(N)PN (v)dN . (14)
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Once P (v) is known, we can write it in scaled variables
thus obtaining P (x) and the difference P 1(x) ≡ P (x) −
P (x) provides us an estimate of corrections coming from
the variable sample size.
The actual calculation of P (x) assumes that we know

F(N). A simple form of F(N) which fits the observed
distribution reasonably well (see Fig.6) and allows ana-
lytic calculations is given by

F(N) =
(N/N − d)k

NΓ(k + 1)
exp(−N/N + d), (15)

where k = 3 and d is a free parameter distinct from zero,
since there is a finite cut in N (N > N0 = N). Note that
here we assumed that the distribution can be written in
a scaled form

F(N) = f(N /N)/N . (16)

This is a good approximation to all of the experimental
distributions. Using the above F(N), one finds that the
limit distribution is universal within the FTG class (and
so, for the Schechter function parent distribution as well)

P (v) =
[k + 1 + d(1 + e−v)] exp(−de−v − v)

[1 + e−v]k+2
. (17)

The appropriately scaled distribution (x variable) for
the case of d = 0 and k = 3 is given by the following
expression

P (x) =
4a exp(−ax− b)

(1 + exp(−ax− b))5
, (18)

where a =
√

π2

3 − 49
36 and b = 11

6 .
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Figure 8. Comparison of the FTG limit distribution (red) with
that obtained from the variable sample size case with the sample-
size distribution given by Eq.(15) (green line, for the case of d = 0
and k = 3). The difference of the two functions is also shown,
being in the order of 10%.

The functions P (x) and P (x) (FTG), and their differ-
ence is displayed on Fig.8. We can see that the maximal
difference P 1(x) = P (x) − P (x) is of the order of 10%.
What is more interesting is that the positive and neg-
ative regions of the differences are significantly shifted
compared to those of the finite size corrections (Fig.7).
Thus the two correction may amplify as well as cancel

each other, depending on the parent distribution and on
F(N).

6. DISTRIBUTION OF MAXIMAL LUMINOSITIES AND
THE EMPIRICAL FIRST ORDER CORRECTIONS

In order to compute statistics on the maximal lumi-
nosities, we used the 2 sampling methods (random sam-
pling and HEALPix-based batches) explained in section
4. As we deal with a fixed number Ng of galaxies, there
is a bias-variance trade-off in all statistics calculated. In
fact, increasing the number of batches n does indeed de-
crease the variance. However, at the same time the data
points per batch N decreases, which departs us from the
ideal case of N → ∞, having an increase in the bias. All
the statistics are then subject to the balance between N
and n.
One interesting statistic we measured empirically is

the tail index ξ on the extreme value distribution in Eq.
(6), which is the probability density distribution associ-
ated to Eq. (7). The importance of ξ is that it specifies
whether the parent distribution has an infinite reaching
tail (ξ ≥ 0) or a finite cut (ξ < 0) at a certain maximum
luminosity. Next, we measured as well the first order
finite size correction for the random sampling method,
as well as the influence of the variable batch size in the
HEALPix-based method.

6.1. Statistics from random sampling batches

6.1.1. The Tail index ξ

The tail index ξ can be readily calculated in standard
EVS using the maximum likelihood estimator on Eq.
(6),i.e., we find numerically the values Lµ,Lσ and ξ that

maximize lnΠ
i=Ng

i=1 EVD(Li|Lµ, Lσ, ξ) using the Nelder-
Mead algorithm (Press et al. 2007). We tried this for
various combinations of n and N . The fitted parameters
are in Table 4, with probability distributions of the max-
imal luminosities (in magnitude-space) shown in Figure
9. Note that the maximal luminosities are mostly sam-
pled in the region where wi ≤ 2, which assure us that
we are sampling also from the luminosity function. Note
the good overall fit to the EVDs, as well as the increase
of Lµ as N increases. The value of Lµ for the LRGs is
about twice the size of that for the MGS. As the amount
n of batches decreases with N , the dispersion and errors
in the parameters also increase at higher N as expected.
For the MGS sample, the value of ξ seems to be posi-

tive but very close to zero, with ξ < 0 being unlikely to
happen. Note that for the MGS, the tail index decreases
with increasing N , so the deviation of ξ from zero may
be just a finite size effect. In fact, we can observe that
ξ ∼ q(N), which is actually the theoretical prediction if
we assume a FTG EVD (Györgyi et al. 2010). The case
of the LRG is quite clear, where the value of the tail
index does not have a dependence on N , having ξ ≈ 0
within the errors.
Fig.9 also shows the averages of the maximum mag-

nitude 〈M ext〉 as function of the batch-size N . As one
can see, the results for both the MGS and LRG sam-
ples are well fitted by the theoretical large-N asymptote
a ln (lnN)+b which follows from the EVS of an exponen-
tial parent distribution for the luminosities. The test of
the theory, however, is not very stringent since N varies
less than 1 and 1/2 decades.
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Figure 9. Left:Distribution of r-band absolute magnitude Mr of the full samples. Also included are the distribution of the maximal
luminosity for each sample according to the fixed batch size sampling. The vertical lines show the points where wi = 1 (left line) and
wi = 2 (right line). Right: Mean of the maximal luminosity distributions (in absolute magnitude space) v/s batch size N using the fixed
batch size sampling. The dashed lines are fits to the asymptotes 〈Mext

r 〉 ∼ ln lnN following from the EVS theory for i.i.d. variables with
exponentially decaying parent distributions.

Table 4
Fitting parameters for maximal luminositiesa.

Sample N n Lµ Lσ ξ

[1010L⊙] [1010L⊙]

MGS 24 14540 7.99 ± 0.03 1.98 ± 0.03 0.086 ± 0.011

(Ng=348975) 50 6979 9.48 ± 0.05 2.10 ± 0.04 0.091 ± 0.017

100 3489 10.96 ± 0.08 2.26 ± 0.06 0.089 ± 0.023

200 1744 12.59 ± 0.12 2.43 ± 0.09 0.079 ± 0.033

LRG 24 2190 17.91 ± 0.12 2.72 ± 0.09 0.002 ± 0.028

(Ng=52579) 50 1051 19.86 ± 0.18 2.81 ± 0.13 -0.016 ± 0.038

100 525 21.75 ± 0.26 2.80 ± 0.18 -0.008 ± 0.054

200 262 23.69 ± 0.36 2.77 ± 0.25 -0.010 ± 0.075

a Parameters from the maximum likelihood fitting of the
extreme value distribution in Eq. 6. Maximal luminosity
values are sampled at n batches of fixed size N . Quoted
are the 1-σ standard errors. Ng denotes the total number of
galaxies in each sample.

6.1.2. The First order Finite Size Correction

Motivated by the presence of a finite-N , we analyzed
the behavior of the empirical finite size corrections for the
EVD, and plotted them in Fig. 10. Since the estimated
values of ξ in the previous section are zero or a small
positive number, which is difficult to specify precisely,
we assumed for simplicity ξ = 0 and used the theoreti-
cal corrections in 5.2.1 (theoretical corrections for ξ 6= 0
are not developed yet). Here, the empirical corrections
are obtained by standardizing the maximal luminosities
and subtracting them from the standard Gumbel distri-
bution. For plotting the theoretical corrections with an
amplitude given in Eq. (12), we need appropriate val-
ues of α and β. As explained in Sec. 5.2.1, these fitting
parameters should come from fitting the high luminosity
tail. Therefore, the fitted values of the full LD in Table
2 should not be used. In our case, Fig. 3 shows that
the full luminosity function fit (Table 1) is a much better
approximation of the high luminosity tail, and we use it
instead.
Fig. 10 shows that the empirical corrections for MGS

galaxies do have the same shape as the theoretical first
order correction. The amplitude of the function approx-
imately agrees, but we found that the empirical ampli-
tude does not increase significantly when N decreases.
The explanation is that as N becomes smaller, we start
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Figure 10. Empirical finite size corrections from n batches of
fixed size N (from Table 4). Each simulation is made by random
sampling (without replacement) of a fixed number N of luminosity
data points in order to mimic the block maxima approach in EVS.
Random sampling with replacement provides similar results. Also,
the theoretical first order correction in Eq. 10 is shown for the
cases N=24,50,100,200 (with decreasing amplitude).

sampling the maximal luminosities from the bulk of the
luminosity distribution instead of its high luminosity tail.
Of course, the departure of LF and LD in this regime
makes the LF fitting parameters α and β no longer valid
for calculating the theoretical corrections. A better fit
could be attained from α and β parameters obtained by
fitting the LD to slightly fainted magnitudes than the
departing magnitude MD. The other consideration is
the fact that we might need adding the next term in the
correction, which could be important if N is small.
In the LRG case, we cannot find a systematic correc-

tion, but just noise. This is in agreement with the ex-
pected behavior as explained in Sec. 5.2.1, since the
Gumbel parent distribution is a fixed point in the renor-
malization theory used for calculating the corrections
(Györgyi et al. 2008, 2010).

6.2. Statistics from HEALPix-based batches

The distributions of the maximal luminosities (in mag-
nitude space) for the HEALPix-based method are shown
in Fig. 11. Here, the low luminosity tails of the max-
imal distributions reach farther into the low luminosity
regions (aroundMr ≃ MD) than in the random sampling
method. The reason is that some of the HEALPix cells
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have very low values of N . The maximal luminosities,
however, are mostly sampled in the region where wi . 2.
As this is the high luminosity region where the LD and
LF mostly coincide, all the results obtained from analyz-
ing the bright end of the LD can be also extended and
associated with the LF.
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Figure 11. Parent distribution of r-band absolute magnitude Mr

for the full samples. Also included are the distribution of the max-
imal luminosity for each sample according to different HEALPix
resolutions. The vertical lines show the points where wi = 1 (left
line) and wi = 2 (right line).

Fig. 12 presents the distributions of maximal luminosi-
ties (in luminosity space) observed in a HEALPix cell for
the three studied resolutions (Nside = 16, 32, 64) and for
the two galaxy populations. The distributions on this fig-
ure are scaled to zero mean and unite deviation in order
to compare them with the similarly scaled Gumbel dis-
tribution. The theoretical first order correction coming
from the finite-size (finite N) effects, together with the
correction to the i.i.d. limit distribution coming from the
distribution F(N) of the galaxy counts are also shown
on Fig. 12. Except for the cases of Nside = 16, where
the statistical noise has larger amplitude than the cor-
rections, it appears that the sum of this two corrections
is of the order of the residuals and have the same func-
tional shape. At the highest order resolution of the maps
(Nsize = 64), however, the batch sizes are rather small
and the finite-size corrections become large, and appear
to be in accord with the theoretical predictions.
The LRGs are special in the sense that finite size effects

do not emerge in their EVS, because the parent distribu-
tion itself is Gumbel, as explained in 5.2.1. Consequently
the only correction to the limit distribution comes from
the variable batch size N , in agreement what we see in
the fourth column in Fig. 12.
We carried out simulations as well in order to confirm

our theoretical results by modeling the empirical situa-
tion with less noise. Sampling the fitted functions of the
empirical parent and sample size distributions with high
statistics (n = 107) we get smoother histograms. As can
be seen on Fig. 12, the simulated corrections are indeed
a good model for the empirical corrections, and support
the theoretical expectations as we can observe the con-
vergence toward the theoretical curve for increasing N .

7. DISCUSSION AND CONCLUSION

Studying extreme statistics may have several out-
comes. One may discover that the objects under con-
sideration have a well defined i.i.d. type extreme value
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Figure 12. The normalized maximum luminosity histograms
(black circles) for Nside = 16, 32, 64 (from up to down) for the four
galaxy samples compared to the limit distribution FTG (solid red
line) in scaled variables (〈x〉 = 0 and σ = 1) while blue crosses are
the residuals to the FTG. For the MGS, the solid magenta curves
show q(N)P1(x) + P 1(x), i.e., the first order finite size correction
for the Schechter parent added to the variable batch size correction
calculated for (15). The LRG curve is different, in the sense that
the parent is FTG and the finite size corrections do not appear,
having corrections only due to the variable batch size (P 1(x)).
The black solid curves are the simulations that result from using
the experimentally given luminosity distributions and sample size
distributions.

distribution. This may then lead to the conclusion (pro-
vided the distribution is of the Weibull type - i.e. the
shape parameter is negative) that the underlying objects
have an intrinsic cutoff in size. In our case the luminosi-
ties have an i.i.d. EVS, but the shape parameter ξ is
in the positive range and very close to zero. Thus our
conclusion here is that the MGS and LRG luminosities
do not have an upper cutoff.
As far as the LRGs are concerned, we should note that

the same conclusion about the absence of an upper cutoff
can be reached by a straightforward fit to the high end
of the luminosity function. On the other hand, there are
difficulties with the agreement of the Schechter fitting
to the bright end of the MGS LF (e.g. Madgwick et al.
2002; Bell et al. 2003; Blanton et al. 2003; Smith et al.
2009). Here the EVS analysis suggests that the root of
the problem may be a small positive tail parameter ξ.
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This possibility was also noted by Alcaniz & Lima (2004)
with their proposal of the generalized double power law
fitting function for the LF.
Of course, the conclusion that MGS galaxies do not

have a finite luminosity cutoff and ξ has a small positive
value is valid only if the methods used in the study are
robust against possible corrections arising in the analysis.
Uncertainties may come from the finite size of the sample,
from the distribution of the number of objects in the
sample, and from the correlations among the objects.
We have taken care of the finite-size effects by including
the first order corrections in the limit distributions and,
furthermore, we handled the fluctuations in the sample
size by explicitly calculating their effect for the i.i.d. case.
As evidenced by Figs. 10 and 12, a parameter free

comparison with the data suggests good agreement with
the corrections (for the case ξ = 0) being the right or-
der of magnitude as well as of the right shape. Thus,
we believe that the above effects are in agreement with
the conclusion about the absence of upper cutoff in the
luminosity. Of course, the agreement proved to be valid
when the fitting parameters come from a parent distribu-
tion fitted in the high luminosity tail, as expected from
the theory. If the batch size N decreases and the peak of
the maximal luminosities moves into the lower luminos-
ity region, agreement with theory should obtained only if
the fitting is performed in an extended luminosity inter-
val considering the lower luminosity values. Since the LF
is basically constructed from a weighted LD, the strategy
of sampling the maxima from the bright luminosity tail
of the LD (where both the LF and LD coincide) was a
key part of our analysis. Thus it would be of interest for
future studies to develop an extended extreme value the-
ory, where the all data points coming from a given class
of parent distributions are each counted with different
weights. Such a theory may help in analyzing data sets
where there is incompleteness even at the tail where the
extremes are sampled from.
The correlations pose a more difficult problem. For

one dimensional systems, it is known from the studies
of 1/fα type signals that the correlations are irrelevant
if they are ”weak” (Györgyi et al. 2007). Weak means
that the integral of the correlation function is finite. The
effectively one-dimensionality of the pencil beam geome-
try considered in this paper allows the application of the
weakness criteria for the luminosity correlations. Indeed,
one may argue that the luminosity correlations CL(r) are
proportional to the density correlations Cρ(r) which, at
large distances decay as CL(r) ∼ Cρ(r) ∼ 1/r2. The
one-dimensional integral of this type of correlations is
convergent, thus we believe the weakness criteria is sat-
isfied, and our conclusion is not affected by the corre-
lations [note that any power relationship between the
correlations (CL(r) ∼ Cµ

ρ (r)) will also satisfy the criteria
of weakness provided µ > 1/2].
We can thus conclude that the extreme value statistics

of galaxy luminosities is i.i.d. type with zero or small
positive shape parameter, and this conclusion takes into
account the finite-size of the samples, the galaxy-number
fluctuations in the pencil beams, and the large-distance
spatial correlations among luminosities.
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Budavári, T., et al., 2000, AJ, 120, 1588
Csabai, I., Connolly, A. J., Szalay, A.S., & Budavári, T. 2000, AJ,
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