

CP violation in the b system at LHCb

Christian Linn, Heidelberg University

On behalf of the LHCb collaboration

Only source of CP violation in SM:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

in this talk:

- $B \rightarrow D h$: CP violation in decay
- $B_s \rightarrow J/\Psi \Phi (B_s \rightarrow J/\Psi \pi \pi)$: CP violation in interference of decay and mixing
- $B \rightarrow h^+h^-$: CP violation in decay and in interference of decay and mixing

CP violation in decay in ${\rm B}^{\pm} \rightarrow D \ h^{\pm}$

LHCb-PAPER-2012-001, submitted to Phys. Lett. B, arXiv:1203.3662

CP violation in $B^{\pm} \rightarrow D h^{\pm}$

CKM angle γ not yet precisely measured:

indirect constraints from CKMFitter(summer 2011): $\gamma = (67.1^{+4.6}_{-3.7})^{\circ}$

Measurement of CP violation in $B^{\pm} \rightarrow Dh^{\pm}$:

- first important step towards γ from trees measurement
- no large New Physics contribution in tree-level transitions

larger interference in ADS mode \rightarrow better sensitivity to γ

ADS mode

GLW mode

observables depend

on γ , r_B , r_D , δ_B , δ_D

Physics observables: GLW mode:

Ratio of partial widths:

 $\frac{<\Gamma(B^{\pm}\to[\pi\pi]_D h^{\pm}), \ \Gamma(B^{\pm}\to[KK]_D h^{\pm})>}{\Gamma(B^{\pm}\to D_f h^{\pm})} \longrightarrow R_{CP+}$

$$\frac{\Gamma(\mathbf{B}^{-} \to D_{CP}h^{-}) - \Gamma(\mathbf{B}^{+} \to D_{CP}h^{+})}{\Gamma(\mathbf{B}^{-} \to D_{CP}h^{-}) + \Gamma(\mathbf{B}^{+} \to D_{CP}h^{+})} \longrightarrow A_{CP+1}$$

ADS mode:

Ratio of partial widths:

$$\frac{\left(\mathbf{B}^{\pm} \rightarrow \boldsymbol{D}_{ADS} \boldsymbol{h}^{\pm}\right)}{\Gamma\left(\mathbf{B}^{\pm} \rightarrow \boldsymbol{D}_{f} \boldsymbol{h}^{\pm}\right)}$$

CP asymmetries:

$$\frac{\Gamma(\mathbf{B}^{-} \to D_{ADS}h^{-}) - \Gamma(\mathbf{B}^{+} \to D_{ADS}h^{+})}{\Gamma(\mathbf{B}^{-} \to D_{ADS}h^{-}) + \Gamma(\mathbf{B}^{+} \to D_{ADS}h^{+})} \longrightarrow A_{ADS}$$

 $\rightarrow R_{ADS}$

Analysis Strategy:

➢ Reconstructed all possible combinations $B^{\pm} → D[h^{\pm}h^{\pm}]h^{\pm}$

<u>Γ(</u>

- particle ID to distinguish final states
- Simultaneous fit to ADS and GLW modes

Largest systematics: particle identification, det./prod. asymmetries

Results ADS mode

Largest systematics: background shape, det./prod. asymmetrie

Observables depend on $\gamma \rightarrow$ large step towards γ -measurement

CP violation in $B_s \rightarrow J/\Psi \Phi$

LHCb-CONF-2012-002 $0.37 f b^{-1}$ published in PRL, arXiv:1112.3183

HCS CP violation in $B_s \rightarrow J/\Psi \Phi$

Interference between mixing and decay:

 \rightarrow CP violating phase $\phi_s = \phi_M - 2 \phi_D$

]/ΨΦ

 ϕ_D

 B_{s}

- > luminosity: $1fb^{-1}$
- Selection based on simple kinematic cuts
- \succ Cut on decay time t > 0.3 ps to suppress prompt background
- \succ Very clean signal with \approx 21200 signal candidates

Tagging and decay time resolution

Time dependent CP measurement \rightarrow need good flavor tagging and time resolution

Tag B production flavor:

- ▶ tagger calibration with $B^+ \rightarrow J/\Psi K^+$
- tagging efficiency: 33%

same side pion tagger

}B⁺.

Proper time resolution:

- > measured with prompt J/Ψ decaying at t=0
- effective resolution: 45 fs

Separation of CP eigenstates

P -> VV decay:

final state is mixture of CP even and CP odd eigenstates

Described by three polarization amplitudes:

Final states described by three transversity angles: $\Omega = \{\varphi, \theta, \psi\}$

 A_{\perp} (CP-odd)

 A_0 , A_{\parallel} (CP-even)

Kick Separation of CP eigenstates

 $\frac{HCb}{R_s} \to J/\Psi \Phi \text{ results}$

Largest systematics: direct CPV in mixing/decay, angular acceptances

Combination of $B_s \rightarrow J/\Psi \Phi$ and $B_s \rightarrow J/\Psi \pi \pi$ results:

$$\phi_s = -0.002 \pm 0.083 \pm 0.027 \ rad$$

Also resolved two-fold ambiguity: $\Delta\Gamma_s > 0$

LHCb-PAPER-2011-028 submitted to PRL, arXiv:1202.4717

Result in very good agreement with SM

Time dependent CP violation in ${\rm B} \rightarrow hh$

LHCb-CONF-2012-007

Hick Time dependent CPV in $B \rightarrow hh'$

CP Asymmetry:
$$A_{CP}(t) = \frac{\Gamma_{\bar{B}\to f}(t) - \Gamma_{B\to f}(t)}{\Gamma_{\bar{B}\to f}(t) + \Gamma_{B\to f}(t)} = \frac{A_f^{dir}\cos(\Delta m t) + A_f^{mix}\sin(\Delta m t)}{\cosh\left(\frac{\Delta\Gamma}{2}t\right) - A_f^{\Delta\Gamma}\sinh(\frac{\Delta\Gamma}{2}t)}$$

with:
$$(A_{f}^{dir})^{2} + (A_{f}^{mix})^{2} + (A_{f}^{\Delta\Gamma})^{2} = 1$$

 \succ asymmetries are related to CKM angles γ , β , β_s

New Physics dominantly in loop processes -> complementary approach to γ measurement in $B \rightarrow Dh$

- > luminosity: $0.69 f b^{-1}$
- Simple kinematic cuts to select candidates, particle identification to distinguish different modes ($\pi\pi$, KK, K π)
- \blacktriangleright Use $B \rightarrow K \pi$ for calibrating tagging efficiency and mistag probability
- \blacktriangleright Maximum likelihood fit to get time dependent asymmetries in $B \rightarrow KK$ and $B \rightarrow \pi\pi$

-0.2

-0.6

-0.4

-0.2

0

Results in good agreement with previous measurements

Largest systematics: external input of Δm_d

0.2 Α^{mix}_{ππ}

$$corr(A_{KK}^{dir}, A_{KK}^{mix}) = -0.10$$

▶ First measurement of time dependent CP asymmetry in $B_s \rightarrow K^+K^-$

Largest systematics: external input of Δm_s , decay time acceptance

- > LHCb successfully performed new CP measurements with data of last year
- ➤ Combined measurement of CP asymmetry in B → Dh GLW and ADS mode → important step towards precise γ measurement
- ► CP violation in $B_s \to J/\Psi \Phi$
 - \rightarrow results in agreement with SM prediction, room for NP gets smaller
- ➢ Time dependent CP asymmetries in B->hh
 → first measurement in $B_s \rightarrow KK$

Prospects:

- \succ all shown analysis still statistical limited \rightarrow improvement with 2012 data
- → ϕ_s in $B_s \rightarrow J/\Psi \Phi$: plan to publish results with $1fb^{-1}$ dataset

Backup

$$R^f_{K/\pi} = \frac{\Gamma(B^- \to [f]_D K^-) + \Gamma(B^+ \to [f]_D K^+)}{\Gamma(B^- \to [f]_D \pi^-) + \Gamma(B^+ \to [f]_D \pi^+)}$$

$$A_h^f = \frac{\Gamma(B^- \to [f]_D h^-) - \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [f]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}$$

$$R_h^{\pm} = \frac{\Gamma(B^{\pm} \to [\pi^{\pm} K^{\mp}]_D h^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm} \pi^{\mp}]_D h^{\pm})}$$

$$R_{CP+} = \frac{\langle R_{K/\pi}^{KK}, R_{K/\pi}^{\pi\pi} \rangle}{R_{K/\pi}^{K\pi}}$$

$$A_{CP+} = \langle A_{K}^{KK}, A_{K}^{\pi\pi} \rangle$$

$$R_{ADS(h)} = \frac{R_{h}^{-} + R_{h}^{+}}{2}$$

$$A_{ADS(h)} = \frac{R_{h}^{-} - R_{h}^{+}}{R_{h}^{-} + R_{h}^{+}}$$

$$R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma \qquad \qquad R_{ADS} = \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}{1 + (r_B r_D)^2 + 2r_B r_D \cos(\delta_B - \delta_D) \cos \gamma}$$

$$A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma} \qquad \qquad A_{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}$$

 r_B , r_D : relative magnitude of suppressed amplitude, $\delta_B \delta_D$: strong phases

$\frac{HCb}{B} \quad B \rightarrow Dh \text{ event yields}$

Systematics:

	Tal	ole 1: Corr	ected event yi	elds.	1
	B^{\pm} mode	D mode	B^{-}	B^+	I
		$K^{\pm}\pi^{\mp}$	3170 ± 83	3142 ± 83	A
	DV^+	$K^{\pm}K^{\mp}$	592 ± 40	439 ± 30	A
	DK	$\pi^{\pm}\pi^{\mp}$	180 ± 22	137 ± 16	A
		$\pi^{\pm}K^{\mp}$	23 ± 7	73 ± 11	A
		$K^{\pm}\pi^{\mp}$	40767 ± 310	40774 ± 310	A
	$D\pi^{\pm}$	$K^{\pm}K^{\mp}$	6539 ± 129	6804 ± 135	A
		$\pi^{\pm}\pi^{\mp}$	1969 ± 69	1973 ± 69	I
		$\pi^{\pm}K^{\mp}$	$191\pm~16$	143 ± 14	I
			1		F

$\times 10^{-3}$	PID	PDFs	Sim	$A_{\text{instr.}}$	Total
$R_{K/\pi}^{K\pi}$	1.4	0.9	0.8	0	1.8
$R_{K/\pi}^{KK}$	1.3	0.8	0.9	0	1.8
$R_{K/\pi}^{\pi \pi}$	1.3	0.6	0.8	0	1.7
$A_{\pi}^{K'\pi}$	0	1.0	0	9.4	9.5
$A_K^{K\pi}$	0.2	4.1	0	16.9	17.4
A_K^{KK}	1.6	1.3	0.5	9.5	9.7
$A_K^{\pi\pi}$	1.9	2.3	0	9.0	9.5
A_{π}^{KK}	0.1	6.6	0	9.5	11.6
$A_{\pi}^{\pi\pi}$	0.1	0.4	0	9.9	9.9
R_K^-	0.2	0.4	0	0.1	0.4
R_K^+	0.4	0.5	0	0.1	0.7
R_{π}^{-}	0.01	0.03	0	0.07	0.08
R_{π}^+	0.01	0.03	0	0.07	0.07

$R_{K/\pi}^{K\pi}$	=	$0.0774 \pm 0.0012 \pm 0.0018$
$R_{K/\pi}^{KK}$	=	$0.0773 \pm 0.0030 \pm 0.0018$
$R_{K/\pi}^{\pi\pi}$	=	$0.0803 \pm 0.0056 \pm 0.0017$
$A_{\pi}^{K\pi}$	=	$-0.0001 \pm 0.0036 \pm 0.0095$
$A_K^{K\pi}$	=	$0.0044 \pm 0.0144 \pm 0.0174$
A_K^{KK}	=	$0.148 \pm 0.037 \pm 0.010$
$A_K^{\pi\pi}$	=	$0.135 \pm 0.066 \pm 0.010$
A_{π}^{KK}	=	$-0.020 \pm 0.009 \pm 0.012$
$A_{\pi}^{\pi\pi}$	=	$-0.001 \pm 0.017 \pm 0.010$
R_K^-	=	$0.0073 \pm 0.0023 \pm 0.0004$
R_K^+	=	$0.0232 \pm 0.0034 \pm 0.0007$
R_{π}^{-}	=	$0.00469 \pm 0.00038 \pm 0.00008$
R_{π}^+	=	$0.00352 \pm 0.00033 \pm 0.00007.$

$\frac{HCb}{B} \to Dh \text{ favoured mode}$

$\frac{HCb}{B_s} \to J/\Psi \Phi \text{ tagging calibration}$

$H \to J/\Psi \Phi$ likelihood scans

$\frac{HCb}{B_s} \to J/\Psi \Phi \text{ numerical results}$

Parameter	Value	Stat.	Syst.
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6580	0.0054	0.0066
$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	0.116	0.018	0.006
$ A_{\perp}(0) ^2$	0.246	0.010	0.013
$ A_0(0) ^2$	0.523	0.007	0.024
$F_{\rm S}$	0.022	0.012	0.007
$\delta_{\perp} \text{ [rad]}$	2.90	0.36	0.07
$\delta_{\parallel} [{ m rad}]$	[2.81,	3.47]	0.13
$\delta_s \text{ [rad]}$	2.90	0.36	0.08
$\phi_s \text{ [rad]}$	-0.001	0.101	0.027

Correlations:

	$\Gamma_{\rm s}$	$\Delta\Gamma_{\rm s}$	$ A_{\perp} ^2$	$ A_0 ^2$	ϕ_s
Γ_{s}	1.00	-0.38	0.39	0.20	-0.01
$\Delta\Gamma_{\rm s}$		1.00	-0.67	0.63	-0.01
$ A_{\perp}(0) ^2$			1.00	-0.53	-0.01
$ A_0(0) ^2$				1.00	-0.02
ϕ_s					1.00

Systematic uncertainties:

Source	Γ_s	$\Delta \Gamma_s$	A_{\perp}^2	A_{0}^{2}	F_S	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_s
	$[ps^{-1}]$	$[ps^{-1}]$		_		[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	-	-	-	-	-	-
Production asymmetry $(\pm 10\%)$	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay $(\pm 5\%)$	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

Kick $B \rightarrow KK$ decay time acceptance

LHCb $B \rightarrow K\pi$ fit

100	FUI	ALL NO
K		
	ି ର	
	5 IS	1473
	- Constant	

Systematic uncertainty	$A_{\pi\pi}^{\mathrm{dir}}$	$A_{\pi\pi}^{\mathrm{mix}}$	A_{KK}^{dir}	A_{KK}^{\min}
Tagging efficiencies	0.001	0.001	0.002	0.001
Mistag rates	0.001	0.008	0.002	0.004
Different average tagging efficiencies	0.007	0.001	0.009	0.005
Decay time resolution width	negligible	negligible	0.018	0.029
Decay time resolution bias	0.001	negligible	0.007	0.004
Decay time resolution model	negligible	negligible	0.002	0.007
Decay time acceptance	0.006	0.003	0.019	0.030
Input quantities Δm_d and Δm_s	0.026	0.018	0.023	0.031
Input quantity Γ_s	_	_	0.004	0.006
Combinatorial decay time model	0.007	0.008	0.009	0.005
Cross-feed decay time model	0.007	negligible	0.001	0.001
Signal mass lineshape model	negligible	0.009	0.008	0.005
Signal mass final state radiation	0.002	0.009	0.009	0.006
Combinatorial mass lineshape model	negligible	0.001	0.001	negligible
Cross-feed mass lineshape (smearing)	0.001	0.001	0.001	0.001
Cross-feed mass lineshape (shift)	negligible	0.002	0.001	0.001
Particle identification	0.001	0.006	0.002	0.001
Total	0.029	0.026	0.040	0.054