

LHCb Physics prospects

Marta Calvi
Università Milano-Bicocca and INFN

On behalf of the LHCb collaboration

Interplay of Collider and Flavour Physics Workshop CERN, 3-4 December 2007

LHCb detector in place

The cavern is full: construction on schedule. Commissioning ongoing. Will be ready for data-taking at 2008 LHC start-up.

A possible running scenario

2008

Calibration and Trigger commissioning Assume to integrate ~ 0.1 fb⁻¹

2009

Start first significant physics data taking: >~ 0.5 fb⁻¹

2010-

Stable running. Expect ~ 2 fb⁻¹/ year

If found to be advantageous for physics, push average luminosity from 2×10^{32} to 5×10^{32} cm⁻²s⁻¹

LHCb should collect an integrated luminosity 10 fb⁻¹ for year 2014±1

Physics with "first year" data (~0.5 fb⁻¹)

Huge $b\overline{b}$ production at $\sqrt{s} = 14 TeV,$ in the forward region ${\sim}230~\mu b$ in ${\sim}300~mrad$

→ Corresponding to ~10¹¹ bb events in L=0.5 fb⁻¹

Very interesting B_s results already with first 0.5 fb⁻¹

Examples are:

- ightharpoonup CP violation in B_s ightharpoonup J/ ψ ϕ (ϕ_s measurement)
- \triangleright Search for B_s $\rightarrow \mu\mu$ decays, extending CDF+D0 limit
- $ightharpoonup s_0(A_{FB}=0)$ in $B_d \to K^{0^*} \mu \mu$ overtaking B-Factories

Before, high statistics channels will be used to calibrate the detector performance and to demonstrate LHCb physics capabilities

LHCb expected performance

Results obtained from MC simulation (full Detector simulation):

b-decay track resolutions:

impact parameter ~ 30 μm momentum resolution ~ 0.36%

Reconstructed B resolutions:

mass res. ~14-18 MeV/c² proper time res. ~ 40 fs

Particle ID performance with RICH

kaon ID eff. \sim 88%, pion mis-ID \sim 3%

 \rightarrow Good K/ π separation in 2-100 GeV/c range

Flavour Tagging performance from combination of several methods:

$$\varepsilon D^2 = 4-5\%$$
 for B_d

$$\varepsilon D^2 = 7 - 9 \%$$
 for B_s depending on channel

The search strategy for New Physics

Measurements with New Physics discovery potential

FCNC transitions and rare decays, where standard model contributions are suppressed enough to allow potential small NP effects to emerge:

- B_s mixing phase (φ_s)
- Very rare leptonic decays: eg. $B_s \rightarrow \mu\mu$
- Rare semi-leptonic decays: $b \rightarrow s\ell\ell$ (eg. $B_d \rightarrow K^{0*}\mu\mu$, $B_u \rightarrow Kee/B_u \rightarrow K\mu\mu$)
- Radiative decays: $b \to s\gamma$ (eg. $B_d \to K^*\gamma$, $B_s \to \phi\gamma$, $\Lambda_B \to \Lambda\gamma$, ...)
- LFV decays (eg. $B_{s,d} \rightarrow e\mu$)
- CPV in D⁰ decays and rare D decays....
- \succ Precision measurements of CKM parameters, including γ angle determination from tree level decays.
- Compare gamma from $B_{(s)} \to D_{(s)} K$ decays and gamma from $B_d \to \pi\pi$ and $B_s \to KK$
- Compare $sin(2\beta)$ from $B_d \to J/\psi K_S$ and $sin(2\beta)$ from $B_d \to \varphi K_S$
- Hadronic penguin b \rightarrow s\bar{s}s decays (eg. B_s \rightarrow $\phi\phi$)

B Mixing phase ϕ_s with $b \rightarrow c\overline{c}s$

- Very small in SM: $\phi_s = -2\lambda^2 \eta = -0.037 \pm 0.002$ rad
- Could be much larger if New Physics contributes to $B_s^0 \overline{B}_s^0$ transitions
- No CP violation observed yet: $\phi_s = -0.79 \pm 0.56_{stat}^{+0.01}_{-0.14 \text{ syst}}$ D0 with 1.1 fb⁻¹

Measure time-dep. asymmetry in decay rates: $A_{CP}(t) = -\frac{\eta_f \sin \phi_S \sin(\Delta m_S t)}{\cosh\left(\frac{\Delta \Gamma_S t}{2}\right) - \eta_f \cos \phi_S \sinh\left(\frac{\Delta \Gamma_S t}{2}\right)}$

Use flavour tagged and untagged events.

Need very good proper time resolution to resolve B_s^0 oscillations.

Non pure CP modes (as $B_s \rightarrow J/\Psi \phi$) need angular analysis to disentangle the mixture of CP-even $(\eta_f = -1, A_0, A_{||})$ and CP odd $(\eta_f = +1, A_{\perp})$

1-angle analysis: θ_{tr}

Increased precision from full 3-angles analysis under study.

$B_s \rightarrow J/\Psi \phi$ and CP eigenstates

 $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ is the golden channel. Can add pure CP modes, but much lower statistics.

Decay Channel	Yield	B/S	Sensitivity
	2fb ⁻¹		$\sigma(\phi_{\rm s})$
$J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$	8.5k	2.0	0.109
$J/\psi(\mu^-\mu^+) \eta(\pi^+\pi^-\pi^0)$	3.0k	3.0	0.142
$J/\psi(\mu^-\mu^+)$ $\eta'(\rho^0\gamma)$	4.2k	<0.42	0.080
$\eta_c(h^{\scriptscriptstyle -}h^{\scriptscriptstyle +}h^{\scriptscriptstyle -}h^{\scriptscriptstyle +})\phi(K^{\scriptscriptstyle +}K^{\scriptscriptstyle -})$	3.0k	0.6	0.108
$D_{s}(K^{+}K^{-}\pi^{-})D_{s}(K^{+}K^{-}\pi^{+})$	4.0k	0.3	0.133
Pure CP modes			0.048
$J/\psi(\mu\mu) \phi$	131k	0.12	0.023
All modes			0.021

Sensitivity to other fit parameters (from $J/\psi\phi$)

Parameter	Sensitivity with 2 fb ⁻¹
$\Delta \Gamma_{\rm s}/\Gamma_{\rm s}$	0.0092
R _T	0.00040

In 0.5 fb⁻¹: $\sigma(\phi_s)$ ~0.046 from B_s \rightarrow J/ $\psi(\mu\mu)\phi$

After 10 fb⁻¹
$$\sigma_{\text{stat}}(\phi_{\text{s}}) = 0.009$$

 $> 3\sigma$ evidence of non-zero ϕ_s , even if only SM

New Physics in B_s mixing

Ligeti, Paucci, Perez, hep-ph/0604112

New Physics in B_s mixing amplitude M₁₂ parameterized with h_s and σ_s :

$$M_{12} = (1 + h_s \exp(2i\sigma_s)) M_{12}^{SM}$$

Additional constraints can come from semileptonic Asymmetry. In SM: $A_{SL}^{s} \sim 10^{-5}$.

Preliminary results on the LHCb measurement of time dependent charge asymmetry in $B_s \rightarrow D_s \mu \nu$

Expect 10⁹ events/ 2fb⁻¹ $\rightarrow \delta(A_{SL}^{s}) \sim 2x10^{-3}$ in 2fb⁻¹

$B_s \rightarrow \mu\mu$

- Highly suppressed in SM: BR(B_s $\rightarrow \mu\mu$) =(3.55±0.33)x10⁻⁹
- Could be strongly enhanced by SUSY: $BR(B_s{\to}\mu\mu) \propto tan^6\beta/M_H^2$
 - Within Constrained MSSM: current g-2 measurement (which deviates by 3.4 σ from SM) suggest gaugino mass in the range 450-650GeV \rightarrow at tan β ~50 BR(B_s $\rightarrow \mu\mu$) in the range ~10⁻⁸ to10⁻⁷
- Current Limit Tevatron ~2 fb⁻¹: CDF BR < 4.7 x 10⁻⁸ 90% CL D0 BR < 7.5 x 10⁻⁸ 90% CL

$B_s \rightarrow \mu\mu$

LHCb: high efficiency trigger for the signal, but main issue is background rejection. Exploit good mass resolution and vertexing, and good particle ID.

Largest background is $b\to\mu$, $b\to\mu$. Specific background dominated by $B_c^{\pm}\to J/\psi(\mu\mu)~\mu^{\pm}\nu$

Analysis in a Phase Space with 3 axis:

- Geometrical Likelihood (GL) (impact parameters, distance of closest approach between $\mu\mu$, lifetime, vertex isolation)
- Particle-ID Likelihood
- Invariant Mass Window around B_s peak
- Sensitive Region: GL > 0.5
- Divide in N bins
- Evaluate expected number of events for signal/background in each bin.

$B_s \rightarrow \mu\mu$

$b \rightarrow s\ell\ell$

Suppressed loop decay in SM.

NP could contribute at the same levels, could modify BR and angular distributions. Sensitive to SUSY, gravitation exchange, extra-dimensions.

Inclusive decay difficult to access at hadron collider. Good prospects for exclusive decays ($B \rightarrow K\ell\ell$, $K^*\ell\ell$). Hadronic uncertainty reduced in:

- Forward-backward asymmetry A_{FB}
- Position of zero crossing of A_{FB} (s₀)
- Transversal asymmetries
- Ratio of μμ and ee modes

Predicted shift in the zero of the A_{FB} in $B_d \rightarrow K^* \mu^+ \mu$, in ACD model with a single universal **extra dimension**, a MFV model. (Colangelo et al PhysRevD73,115006(2006))

$B_d \rightarrow K^* \mu \mu$

In SM: BR(Bd
$$\rightarrow$$
K* $\mu\mu$)=(1.22 +0.38_-0.32) x10-6 s_0 = s_0 (C₇,C₉)=4.39 +0.38_-0.35 GeV²

$$s_0 = s_0(C_7, C_9) = 4.39^{+0.38}_{-0.35} \text{ GeV}^2$$

Beneke et al hep-ph/0412400

Measure forward-backward Asimmetry as a function of the $\mu\mu$ invariant mass. Determine s_0 , the $m_{\mu\mu}^2$ for which $A_{FB}=0$

LHCb: 7200 signal events/2fb⁻¹

 $B_{hh}/S = 0.2 \pm 0.1$ (ignoring non-resonant $K\pi\mu\mu$ events for the time being).

With $L= 0.5 \text{ fb}^{-1} 1800 \text{ events}$ (B-Factories projected 2ab⁻¹ yield ~450 events.)

L= 2fb⁻¹
$$\sigma(s_0) = \pm 0.46 \text{ GeV}^2$$

L=10 fb⁻¹
$$\sigma(s_0) = \pm 0.27 \text{ GeV}^2 \rightarrow \text{at the level of present theoretical precision}$$

B_d→K*μμ transverse asymmetries

Fit to full angular distributions $(\Theta_{K_{-}}, \Theta_{\mu_{-}}, \Phi)$ expressed in terms of transversity amplitudes $(A_1, A_{//}, A_0)$.

Can measure:

$$A_{T}^{(2)}(q^{2}) = \frac{\left|A_{\perp}\right|^{2} - \left|A_{\parallel}\right|^{2}}{\left|A_{\perp}\right|^{2} + \left|A_{\parallel}\right|^{2}}$$

$$A_{T}^{(2)}(q^{2}) = \frac{\left|A_{\perp}\right|^{2} - \left|A_{\parallel}\right|^{2}}{\left|A_{\perp}\right|^{2} + \left|A_{\parallel}\right|^{2}} \qquad F_{L}(q^{2}) = \frac{\left|A_{0}\right|^{2}}{\left|A_{\perp}\right|^{2} + \left|A_{\parallel}\right|^{2} + \left|A_{0}\right|^{2}}$$

Stat. precisions in the region $s = m^2_{uu} \in [1, 6] (GeV/c^2)^2$ where theory calculations are most reliable

	Sensitivity with		
	2 fb ⁻¹ 10 fb ⁻¹		
A _T ⁽²⁾	±0.42	±0.16	
F_L	±0.016	±0.007	
A _{FB}	±0.020	±0.008	

Curves from Lunghi & Matias JHEP 0704(2007)058. Points LHCb 2 fb⁻¹

R_K in $B^+ \rightarrow K^+\ell\ell$

$$R_{K} = \frac{\int_{4 m_{\mu}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to K \mu^{+} \mu^{-})}{ds} ds}{\int_{4 m_{\mu}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to K e^{+} e^{-})}{ds} ds} = 1 \pm 0.001 \text{ in SM} \text{ (Hiller,Krüger PRD69 (2004) 074020)}$$

- Large corrections O(10%) possible in models that distinguish between lepton flavours (eg.MSSM at large tan β). Constraints to NP also from R_K and BR(B_s $\rightarrow \mu\mu$) combined.

LHCb 10 fb⁻¹

 $B_u \rightarrow eeK$ 9.2 k events

 $B_{\mu} \rightarrow \mu \mu K$ 19 k events

$$\sigma_{\text{stat}}(R_{\text{K}}) = 0.043$$

 Trigger eff ~70% on ee channel under study - not included.

$$4m_{\mu\mu}^2 < m_{\parallel}^2 < 6$$

 $(GeV/c^2)^2$

- Similar sensitivity expected for $R_{K^*} = B_d \rightarrow \mu \mu K^* / B_d \rightarrow eeK^*$.
- To be compared with ~15% error on $R_K \& R_{K^*}$ combined, expected from B-Factories with $2ab^{-1}$.

Radiative decays

- $B_d \rightarrow K^* \gamma$ $A_{CP} < 1\%$ in SM, up to 40% in SUSY Can measure at <% level.
 - Reference channel for all radiative decays.
- B_s → φγ No mixing-induced CP asymmetry in SM, up to 50% in SUSY.
 Sensitivity for A_{CP}(t) measurement under study.
- $\Lambda_b \rightarrow \Lambda \gamma$ Right-handed component of photon polarization O(10%) in SM. Can be higher BSM.

$$\alpha_{\gamma} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)} \qquad \alpha_{\gamma}^{\text{LO}} = \frac{1 - |r|^2}{1 + |r|^2}$$

Measure photon asymmetry α_{γ} from angular distributions of γ and hadron in $\Lambda_b \rightarrow \Lambda(p\pi,pK)\gamma$ decays.

Decay	Yield 2 fb ⁻¹	B _{bb} /S
$B_d \to K^* \gamma$	68k	0.60
$B_s \rightarrow \phi \gamma$	11.5k	< 0.55
$\Lambda_{\rm b} \rightarrow \Lambda(1116)\gamma$	0.75k	< 42
$\Lambda_{\rm b} \to \Lambda (1670) \gamma$	2.5k	< 18

3σ evidence of right-handed component to 21% with 10 fb⁻¹

M. Calvi

sin(2\beta) from Tree and Penguing

$B^0 \rightarrow J/\psi K_S$

Time dependent CP asymmetry in $B^0 \rightarrow J/\psi K_S$ is expected to be one of the first CP measurements at LHCb.

236k signal events / 2 fb⁻¹ B/S=0.6(bb)+7.7(J/ ψ)

$$\rightarrow \sigma_{\text{stat}}(\sin(2\beta)) = 0.020 \text{ in 2 fb}^{-1}$$

Compare to ~0.019 expected from B-Factories with 2ab⁻¹

After 10 fb⁻¹: $\sigma(\sin(2\beta)) \sim 0.010$

Can also push further the search for direct CP violating term $\propto \cos(\Delta m_d t)$

$\mathsf{B}^0 \to \phi \mathsf{K}_\mathsf{S}$:

- 920 signal events per 2 fb⁻¹, B/S < 1.1 at 90% CL
- After 10 fb⁻¹: $\sigma_{\text{stat}}(\sin(2\beta_{\text{eff}})) = 0.10$ to be compared with ~0.12 expected from B-Factories with 2ab⁻¹

b->sss hadronic penguin decays

$B_s \rightarrow \phi \phi$

CP violation < 1% in SM due to cancellation of the mixing and penguin phase

Combining $B_s \to \phi \phi$ with $B_s \to J/\psi \phi$ measurements can disentangle NP contributions in mixing & decays.

$$\overline{B}_{s} \left\{ \frac{b}{\overline{s}} \right\} \frac{c}{W^{-}} \frac{J/\psi}{s} \phi$$

LHCb expects 3.1k signal events / 2 fb⁻¹ (BR=1.4×10⁻⁵), B/S<0.8 at 90%CL From time dependent angular distribution of flavour tagged events:

$$\sigma_{\rm stat}(\Delta \phi^{\rm NP}) = 0.05$$
 in 10 fb⁻¹

Different ways to γ at LHCb

tree decays only

B mode	D mode	Method
$B_s \rightarrow D_s K$	ΚΚπ	tagged, A(t)
B⁺→D K⁺	Kπ+ K3π+ KK/ππ	counting, ADS+GLW
B+→D*K+	Κπ	counting, ADS+GLW
$B^+ \rightarrow D K^+$	K _s ππ	Dalitz, GGSZ
$B^+ \rightarrow D K^+$	ΚΚππ	4 body Dalitz
B⁺→D K⁺	Κπππ	4 body Dalitz
$B^0 \rightarrow D K^{*0}$	$K\pi + KK + \pi\pi$	counting, ADS+GLW
$B \rightarrow \pi\pi, KK$	_	Tagged, A(t)

γ from $B_s \rightarrow D_s K$

$$B_s^0 \{ \overline{b}_s \} M \{ \overline{c}_s^{\overline{s}} \} M^+$$

$$B_s^0 \{ \overline{b}_s \} K^-$$

Two tree decays which interfere via B_s mixing

Can determine $\gamma + \phi_s$, hence γ in a very clean way

LHCb expects 6.2k signal events in 2 fb⁻¹ $B_{bb}/S < 0.18$ at 90% CL $B_s \rightarrow D_s^-\pi^+$ background 15±5 % after PID cuts

Fit 4 tagged and 2 untagged time-dependent rates.

With 10 fb⁻¹:

(Inputs: γ =60°, strong phase difference Δ =0, amplitude ratio $|\lambda|$ =0.37)

		Tagged & untagged	Tagged only
¢	$\rho_s + \gamma$	± 4.6°	± 5.7°
	Δ	± 4.6°	± 5.4°
	λ	± 0.027	± 0.029

Different ways to γ at LHCb

tree decays only

B mode	D mode	Method	σ(γ) 2fb ⁻¹
$B_s \rightarrow D_s K$	ΚΚπ	tagged, A(t)	10°
B⁺→D K⁺	Kπ+ K3π +KK/ππ	counting, ADS+GLW	5° - 13°
B⁺→D*K⁺	Κπ	counting, ADS+GLW	Under study
$B^+ \rightarrow D K^+$	K _s ππ	Dalitz, GGSZ	7-12°
$B^+ \rightarrow D K^+$	ΚΚππ	4 body Dalitz	18°
$B^+ \rightarrow D K^+$	Κπππ	4 body Dalitz	Under study
$B^0 \rightarrow D K^{*0}$	$K\pi + KK + \pi\pi$	counting, ADS+GLW	9°
$B \rightarrow \pi\pi, KK$	_	Tagged, A(t)	10°

Combined LHCb sensitivity to γ with tree decays only (educated guess):

$$\sigma(\gamma) \sim 5^{\circ}$$
 with 2 fb⁻¹ $\sim 2.5^{\circ}$ with 10 fb⁻¹

Charm physics

- LHCb will collect a large tagged D*→D⁰π sample (also used for PID calibration).
 A dedicated D* trigger is foreseen for this purpose.
 - Tag D⁰ or anti-D⁰ flavour with pion from D* $^{\pm}$ \rightarrow D⁰ π^{\pm}

D*-tagged signal yield in 2 fb ⁻¹ (from b hadrons only)		
$D^0 \rightarrow K^-\pi^+$ right sign	12.4 M	
$D^0 \rightarrow K^+\pi^-$ wrong sign 46.5 k		
$D^0 \rightarrow K^+K^-$	1.6 M	

- Performance studies not as detailed as for B physics.
- Interesting (sensitive to NP) & promising searches/measurements:
 - − Time-dependent D⁰ mixing with wrong-sign D⁰→K⁺ π [−] decays
 - Direct CP violation in D⁰→K⁺K⁻
 - $A_{CP} \le 10^{-3}$ in SM, up to 1% (~current limit) with New Physics
 - Expect $\sigma_{\text{stat}}(A_{CP}) \sim O(10^{-3})$ with 2 fb⁻¹
 - $D^0 \rightarrow \mu^+ \mu^-$
 - BR $\leq 10^{-12}$ in SM, up to 10^{-6} (~current limit) with New Physics
 - Expect to reach down to ~5×10⁻⁸ with 2 fb⁻¹

LHCb physics performance summary

• "DC04" full MC simulation datasets (2004-2006) used for extensive studies of LHCb Physics performance reported in more than 30 public notes (CERN-LHCb-2007-xxx) available on LHCb web page

Can easly found from LHCb page of Physics performance: http://lhcb-phys.web.cern.ch/lhcb-phys/DC04_physics_performance/

Eg. Some of the measurements which I have not mentioned:

• New set of analysis starting with "DC06" full MC simulation datasets (2006-2007) (close-to-final detector and trigger description). Additional channels under study (eg. $B_s \to \phi \mu \mu$, $\Lambda_b \to \Lambda \mu \mu$, $B^+ \to K^+ \phi \gamma$, $B^+ \to K^+ \pi^- \pi^+ \gamma$, $B_u \to D \tau \nu \ldots$)

LHCb upgrade?

- LHCb is designed to run at average luminosity of 2×10^{32} and be able to handle 5×10^{32} cm⁻²s⁻¹.
 - Main physics goals expressed in terms of the reach for 10 fb⁻¹ (i.e. 5 nominal years).
- Investigating upgrade of detector to handle higher luminosity: few 10³³ cm⁻²s⁻¹
 - Not directly coupled to SLHC machine upgrade since luminosity already available, but may well overlap in time with upgrades of ATLAS and CMS.
- Working group set up to identify the R&D required to make an upgrade of LHCb feasible (increase trigger efficiency for hadronic modes by a factor two, fast vertex detection, electronics, radiation dose, pile-up, higher occupancy etc.) and to make the physics case.
- Input welcome from theorists on:
 - → What is the effective relevance of a statistical increase from 10 to 100 fb⁻¹ on the constraints to Physics BSM which could be derived?
 - → Which are the measurements which we should push to highest possible precision?
 - → Where do we clash against theoretical uncertainties at (or before) 100 fb⁻¹?

LHCb beyond 10 fb-1?

Several measurements limited by statistical precision after 10 fb⁻¹:

- CPV in B_s mixing, in particular in $b \to s\overline{s}s$ penguins
 - \Rightarrow aim for 0.01 (0.002) precision on $B_s \to \phi \phi$ (B $_s \to J \psi/\phi)$ CP asymmetry
- γ angle with theoretically clean methods, e.g. $B_s \rightarrow D_s K$, $B \rightarrow D(K_S \pi \pi) K$, $B \rightarrow D(hh) K$ • \rightarrow aim for < 1° precision on angle γ
- Chiral structure of b \rightarrow s γ (b \rightarrow sl $^+$ l $^-$) using polarization of real (virtual) photon
 - \rightarrow more detailed and precise analysis of exclusive modes, e.g. $A_T^{(2)}$ in $B^0 \rightarrow K^* \mu \mu$

Conclusions

- LHCb is ready for data taking at 2008 LHC start-up.
- Very interesting results will come already with first 0.1-0.5 fb⁻¹ of data:

--
$$B_s$$
 → J/ψ ϕ , B_s → $\mu\mu$, B_d → K 0* μ μ but also: B_s → $\phi\gamma$, B_d → DK, $B_{d,s}$ → $\pi\pi$,KK,K π

- Actively preparing for analysis of several channels with high potential for indirect NP discovery and for elucidating its flavour structure.
- LHCb results will provide in particular a strong improvement to the knowledge of all B_s sector. Welcome all suggestions from theory side for new interesting channels to explore.

BACK-UP

γ from B[±] \rightarrow D⁰K [±] (ADS)

Atwood, Dunietz and Soni, Phys. Rev. Lett. 78, 3257 (1997).

Charged B decay

$$B^{+} \xrightarrow{\overline{b}} \overline{u}_{c} D^{0}$$

$$u \xrightarrow{\overline{s}} K^{+}$$

$$colour suppressed$$

• $\underline{D^0}$ and $\overline{D^0}$ can both decay into $K^-\pi^+$ (or $K^+\pi^-$)

$$\overline{D}^0 \overline{c}$$
 \overline{d} π^+ doubly Cabibbo suppressed

$$D^{0} \stackrel{c}{\stackrel{u}{u}} \longrightarrow \stackrel{s}{\stackrel{u}{u}} K^{-}$$
Cabibbo favoured

Weak phase difference $-\gamma$ Strong phase difference $\delta_{\rm R}$ Amplitude ratio $r_{\rm R}\sim$

Strong phase difference $\delta_{\rm D}^{\rm K\pi}$ Amplitude ratio $r_{\rm D}^{\rm K\pi}$ =0.060±0.003

0.08

$$\Gamma(B^{-} \to (K^{-}\pi^{+})_{D}K^{-}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} - \gamma),$$

$$\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma),$$

$$\Gamma(B^{+} \to (K^{+}\pi^{-})_{D}K^{+}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} + \gamma),$$

$$\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma),$$
wrong sign, high sensitivity to γ

$$\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$$

5 parameters $(r_B, r_D, \delta_B, \delta_D, \gamma)$, but only 3 relative decay rates. r_D well-measured, but δ_D poorly constrained by CLEO-c (expect $\Delta\cos\delta_D$ ~20%)

γ from B[±] \rightarrow DK[±] (ADS+GLW)

Gronau, London, Wyler, PLB. 253, 483 (1991)

ADS+GLW strategy:

Measure the relative rates of B⁻ \rightarrow DK⁻ and B⁺ \rightarrow DK⁺ decays with neutral D's observed in final states K⁻ π ⁺ and K⁺ π ⁻, and also:

- D⁰ \rightarrow K⁻ π ⁺ π ⁻ π ⁺ and K⁺ π ⁻ π ⁺ π ⁻: add 3 observables,1 unknown strong phase $\delta^{K3\pi}$, 1 well measured rel. decay rate $r_D^{K3\pi}$
- CP eigenstate decays $D^0 \rightarrow K^+K^-/\pi^+\pi^-$: add 1 observable and 0 unknown
- \rightarrow Can solve for all unknowns, including the weak phase γ

$$\sigma(\gamma) = 5-13^{\circ} \text{ with 2 fb}^{-1}$$

depending on D strong phases

(Inputs:
$$\gamma$$
=60°, r_B =0.077, δ_B =130°, $\delta^{K\pi}$ = -8.3°, $\delta^{K3\pi}$ = -60°)

Decay	2 fb ⁻¹ yield	B _{bb} /S
$B^{-,+} o D(K\pi)K^{-,+}$ favoured	28k, 28k	0.6
$B^{-,+} o D(K\pi\pi\pi) K^{-,+}$ favoured	28k, 28k	0.6
$B^{-,+} o D(K\pi)K^{-,+}$ suppr.	393, 8	2.0, 98
$B^{\text{-,+}} o D(K\pi\pi\pi)K^{\text{-,+}}$ suppr.	516, 99	1.5, 8
$B^{-,+} o D(hh)K^{-,+}$	4.3k, 3.5k	1.7, 2.1

Use of B[±] \rightarrow D^{*} (D π^0 ,D γ) K[±] under study

γ from B[±] \rightarrow D⁰K[±] (GGSZ)

D⁰ decays into a 3- body CP eigenmode: D⁰ $\rightarrow K_S^0 \pi^+ \pi^-$

Giri, Grossman, Soffer, Zupan, PRD 68, 050418 (2003).

Large strong phases between the intermediate resonances allow the extraction of r_R , δ_R , and γ

by studying the D-Dalitz plots from B⁺ and B⁻ decays

Assume no CP violation in D⁰ decays

B decay amplitudes:

$$\begin{split} &A(B^-\!\!\to\!\!DK^-) \propto\!\! A_D(m_{Ks\pi^-}^2,\!m_{Ks\pi^+}^2)\!+\,r_B e^{i(\delta_B^{}-\gamma_{})} A_D(m_{Ks\pi^+}^2,\!m_{Ks\pi^-}^2) \\ &A(B^+\!\!\to\!\!DK^+) \propto\!\! A_D(m_{Ks\pi^+}^2,\!m_{Ks\pi^-}^2)\!+\,r_B e^{i(\delta_B^{}+\gamma_{})} A_D(m_{Ks\pi^-}^2,\!m_{Ks\pi^+}^2) \end{split}$$

Need to assume a D⁰ decay model.

Current isobar model used at B factories $\Rightarrow \sigma_{\text{syst}}(\gamma) = 10^{\circ}$

At LHCb:

5k signal events in 2 fb⁻¹
B/S = 0.24 (D⁰
$$\pi$$
[±]), B_{bb}/S < 0.7

B/S = 0.24 (D⁰
$$\pi^{\pm}$$
), B_{bb}/S < 0.7 $\sigma_{\text{stat}}(\gamma) = 7-12^{\circ}$ with 2 fb⁻

Depending on bkg assumptions

With more statistics plan to do a model-independent analysis and control model systematics using CLEO-c data at $\psi(3770)$

$$\sigma_{\text{stat}}(\gamma) = 4-6^{\circ} (10 \text{ fb}^{-1})$$

1.5

 $\overline{\mathsf{D}}_0$

(770)

 $m^2(K_S\pi^+)$

γ from B⁰ \rightarrow D⁰K*⁰

$$B^0 \begin{cases} \frac{\overline{b}}{d} & \text{where} \quad \frac{\overline{c}}{s} \\ \frac{\overline{b}}{s} \\ \text{colour-suppressed} \end{cases} B^0 \begin{cases} \frac{\overline{b}}{d} & \text{where} \quad \frac{\overline{u}}{s} \\ \frac{\overline{c}}{s} \\ \text{colour-suppressed} \end{cases} B^0 \begin{cases} \frac{\overline{b}}{d} \\ \text{colour-suppressed} \end{cases}$$

Weak phase difference = γ Magnitude ratio = $r_B \sim 0.4$

- Treat with same ADS+GLW method as charged case:
 - So far used only D decays to $K^-\pi^+$, $K^+\pi^-$, K^+K^- and $\pi^+\pi^-$ final states

$$\sigma(\gamma) = 9^{\circ}$$
 with 2 fb⁻¹

Envisage also GGSZ analysis

Decay mode (+cc)	2 fb ⁻¹ yield	B _{bb} /S
$B^0 o (K^+\pi^-)_DK^{*0}$	3400	0.4-2.0
$B^0 \rightarrow (K^-\pi^+)_D K^{*0}$	540	2.2–13
$B^0 \rightarrow (K^+K^-)_D K^{*0}$	470	< 4.1
$B^0 o (\pi^-\pi^+)_DK^{*0}$	130	< 14

γ from B $^0 \rightarrow \pi^+\pi^-$ and B $_s \rightarrow K^+K^-$

Measure CP asymmetry in each mode:

$$A_{CP}(t) = \frac{A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)}{\cosh(\Delta \Gamma t / 2) - A_{\Delta \Gamma} \sinh(\Delta \Gamma t / 2)}$$

LHCb 2 fb⁻¹ 36k B $^{0} \rightarrow \pi^{+}\pi^{-}$, B $_{bb}$ /S ~0.5, B $_{hh}$ /S =0.07 36k B $_{s} \rightarrow$ K $^{+}$ K $^{-}$, B $_{bb}$ /S<0.06, B $_{hh}$ /S =0.07

		· (*KK)	0.042
$\sigma(\mathcal{A}_{\pi\pi}^{mix})$	0.037	$\sigma(\mathcal{A}_{KK}^{mix})$	0.044

~ 2x better than current $B\rightarrow\pi\pi$ world average

 A_{dir} and A_{mix} depend on mixing phase, angle γ , and Penguin/Tree amplitude ratio $de^{i\theta}$

Exploit U-spin symmetry (Fleischer):

If assume: $d_{\pi\pi}=d_{KK}$ and $\theta_{\pi\pi}=\theta_{KK}$ 4 measurements and 3 unknowns \rightarrow can solve for γ (taking 2β and ϕ_s from other modes) Assume only 0.8< $d_{KK}/d_{\pi\pi}$ <1.2 and let $\theta_{\pi\pi}$, θ_{KK} free

