LHCb Physics prospects Marta Calvi Università Milano-Bicocca and INFN On behalf of the LHCb collaboration Interplay of Collider and Flavour Physics Workshop CERN, 3-4 December 2007 #### LHCb detector in place The cavern is full: construction on schedule. Commissioning ongoing. Will be ready for data-taking at 2008 LHC start-up. ### A possible running scenario #### 2008 Calibration and Trigger commissioning Assume to integrate ~ 0.1 fb⁻¹ #### 2009 Start first significant physics data taking: >~ 0.5 fb⁻¹ #### 2010- Stable running. Expect ~ 2 fb⁻¹/ year If found to be advantageous for physics, push average luminosity from 2×10^{32} to 5×10^{32} cm⁻²s⁻¹ LHCb should collect an integrated luminosity 10 fb⁻¹ for year 2014±1 #### Physics with "first year" data (~0.5 fb⁻¹) Huge $b\overline{b}$ production at $\sqrt{s} = 14 TeV,$ in the forward region ${\sim}230~\mu b$ in ${\sim}300~mrad$ → Corresponding to ~10¹¹ bb events in L=0.5 fb⁻¹ Very interesting B_s results already with first 0.5 fb⁻¹ #### Examples are: - ightharpoonup CP violation in B_s ightharpoonup J/ ψ ϕ (ϕ_s measurement) - \triangleright Search for B_s $\rightarrow \mu\mu$ decays, extending CDF+D0 limit - $ightharpoonup s_0(A_{FB}=0)$ in $B_d \to K^{0^*} \mu \mu$ overtaking B-Factories Before, high statistics channels will be used to calibrate the detector performance and to demonstrate LHCb physics capabilities ### LHCb expected performance #### Results obtained from MC simulation (full Detector simulation): b-decay track resolutions: impact parameter ~ 30 μm momentum resolution ~ 0.36% Reconstructed B resolutions: mass res. ~14-18 MeV/c² proper time res. ~ 40 fs Particle ID performance with RICH kaon ID eff. \sim 88%, pion mis-ID \sim 3% \rightarrow Good K/ π separation in 2-100 GeV/c range Flavour Tagging performance from combination of several methods: $$\varepsilon D^2 = 4-5\%$$ for B_d $$\varepsilon D^2 = 7 - 9 \%$$ for B_s depending on channel # The search strategy for New Physics #### Measurements with New Physics discovery potential FCNC transitions and rare decays, where standard model contributions are suppressed enough to allow potential small NP effects to emerge: - B_s mixing phase (φ_s) - Very rare leptonic decays: eg. $B_s \rightarrow \mu\mu$ - Rare semi-leptonic decays: $b \rightarrow s\ell\ell$ (eg. $B_d \rightarrow K^{0*}\mu\mu$, $B_u \rightarrow Kee/B_u \rightarrow K\mu\mu$) - Radiative decays: $b \to s\gamma$ (eg. $B_d \to K^*\gamma$, $B_s \to \phi\gamma$, $\Lambda_B \to \Lambda\gamma$, ...) - LFV decays (eg. $B_{s,d} \rightarrow e\mu$) - CPV in D⁰ decays and rare D decays.... - \succ Precision measurements of CKM parameters, including γ angle determination from tree level decays. - Compare gamma from $B_{(s)} \to D_{(s)} K$ decays and gamma from $B_d \to \pi\pi$ and $B_s \to KK$ - Compare $sin(2\beta)$ from $B_d \to J/\psi K_S$ and $sin(2\beta)$ from $B_d \to \varphi K_S$ - Hadronic penguin b \rightarrow s\bar{s}s decays (eg. B_s \rightarrow $\phi\phi$) #### B Mixing phase ϕ_s with $b \rightarrow c\overline{c}s$ - Very small in SM: $\phi_s = -2\lambda^2 \eta = -0.037 \pm 0.002$ rad - Could be much larger if New Physics contributes to $B_s^0 \overline{B}_s^0$ transitions - No CP violation observed yet: $\phi_s = -0.79 \pm 0.56_{stat}^{+0.01}_{-0.14 \text{ syst}}$ D0 with 1.1 fb⁻¹ Measure time-dep. asymmetry in decay rates: $A_{CP}(t) = -\frac{\eta_f \sin \phi_S \sin(\Delta m_S t)}{\cosh\left(\frac{\Delta \Gamma_S t}{2}\right) - \eta_f \cos \phi_S \sinh\left(\frac{\Delta \Gamma_S t}{2}\right)}$ Use flavour tagged and untagged events. Need very good proper time resolution to resolve B_s^0 oscillations. Non pure CP modes (as $B_s \rightarrow J/\Psi \phi$) need angular analysis to disentangle the mixture of CP-even $(\eta_f = -1, A_0, A_{||})$ and CP odd $(\eta_f = +1, A_{\perp})$ 1-angle analysis: θ_{tr} Increased precision from full 3-angles analysis under study. #### $B_s \rightarrow J/\Psi \phi$ and CP eigenstates $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ is the golden channel. Can add pure CP modes, but much lower statistics. | Decay Channel | Yield | B/S | Sensitivity | |--|-------------------|-------|------------------------| | | 2fb ⁻¹ | | $\sigma(\phi_{\rm s})$ | | $J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$ | 8.5k | 2.0 | 0.109 | | $J/\psi(\mu^-\mu^+) \eta(\pi^+\pi^-\pi^0)$ | 3.0k | 3.0 | 0.142 | | $J/\psi(\mu^-\mu^+)$ $\eta'(\rho^0\gamma)$ | 4.2k | <0.42 | 0.080 | | $\eta_c(h^{\scriptscriptstyle -}h^{\scriptscriptstyle +}h^{\scriptscriptstyle -}h^{\scriptscriptstyle +})\phi(K^{\scriptscriptstyle +}K^{\scriptscriptstyle -})$ | 3.0k | 0.6 | 0.108 | | $D_{s}(K^{+}K^{-}\pi^{-})D_{s}(K^{+}K^{-}\pi^{+})$ | 4.0k | 0.3 | 0.133 | | Pure CP modes | | | 0.048 | | $J/\psi(\mu\mu) \phi$ | 131k | 0.12 | 0.023 | | All modes | | | 0.021 | Sensitivity to other fit parameters (from $J/\psi\phi$) | Parameter | Sensitivity with 2 fb ⁻¹ | |--|-------------------------------------| | $\Delta \Gamma_{\rm s}/\Gamma_{\rm s}$ | 0.0092 | | R _T | 0.00040 | In 0.5 fb⁻¹: $\sigma(\phi_s)$ ~0.046 from B_s \rightarrow J/ $\psi(\mu\mu)\phi$ After 10 fb⁻¹ $$\sigma_{\text{stat}}(\phi_{\text{s}}) = 0.009$$ $> 3\sigma$ evidence of non-zero ϕ_s , even if only SM ### New Physics in B_s mixing Ligeti, Paucci, Perez, hep-ph/0604112 New Physics in B_s mixing amplitude M₁₂ parameterized with h_s and σ_s : $$M_{12} = (1 + h_s \exp(2i\sigma_s)) M_{12}^{SM}$$ Additional constraints can come from semileptonic Asymmetry. In SM: $A_{SL}^{s} \sim 10^{-5}$. Preliminary results on the LHCb measurement of time dependent charge asymmetry in $B_s \rightarrow D_s \mu \nu$ Expect 10⁹ events/ 2fb⁻¹ $\rightarrow \delta(A_{SL}^{s}) \sim 2x10^{-3}$ in 2fb⁻¹ ### $B_s \rightarrow \mu\mu$ - Highly suppressed in SM: BR(B_s $\rightarrow \mu\mu$) =(3.55±0.33)x10⁻⁹ - Could be strongly enhanced by SUSY: $BR(B_s{\to}\mu\mu) \propto tan^6\beta/M_H^2$ - Within Constrained MSSM: current g-2 measurement (which deviates by 3.4 σ from SM) suggest gaugino mass in the range 450-650GeV \rightarrow at tan β ~50 BR(B_s $\rightarrow \mu\mu$) in the range ~10⁻⁸ to10⁻⁷ - Current Limit Tevatron ~2 fb⁻¹: CDF BR < 4.7 x 10⁻⁸ 90% CL D0 BR < 7.5 x 10⁻⁸ 90% CL ### $B_s \rightarrow \mu\mu$ LHCb: high efficiency trigger for the signal, but main issue is background rejection. Exploit good mass resolution and vertexing, and good particle ID. Largest background is $b\to\mu$, $b\to\mu$. Specific background dominated by $B_c^{\pm}\to J/\psi(\mu\mu)~\mu^{\pm}\nu$ #### Analysis in a Phase Space with 3 axis: - Geometrical Likelihood (GL) (impact parameters, distance of closest approach between $\mu\mu$, lifetime, vertex isolation) - Particle-ID Likelihood - Invariant Mass Window around B_s peak - Sensitive Region: GL > 0.5 - Divide in N bins - Evaluate expected number of events for signal/background in each bin. ## $B_s \rightarrow \mu\mu$ #### $b \rightarrow s\ell\ell$ Suppressed loop decay in SM. NP could contribute at the same levels, could modify BR and angular distributions. Sensitive to SUSY, gravitation exchange, extra-dimensions. Inclusive decay difficult to access at hadron collider. Good prospects for exclusive decays ($B \rightarrow K\ell\ell$, $K^*\ell\ell$). Hadronic uncertainty reduced in: - Forward-backward asymmetry A_{FB} - Position of zero crossing of A_{FB} (s₀) - Transversal asymmetries - Ratio of μμ and ee modes Predicted shift in the zero of the A_{FB} in $B_d \rightarrow K^* \mu^+ \mu$, in ACD model with a single universal **extra dimension**, a MFV model. (Colangelo et al PhysRevD73,115006(2006)) ## $B_d \rightarrow K^* \mu \mu$ In SM: BR(Bd $$\rightarrow$$ K* $\mu\mu$)=(1.22 +0.38_-0.32) x10-6 s_0 = s_0 (C₇,C₉)=4.39 +0.38_-0.35 GeV² $$s_0 = s_0(C_7, C_9) = 4.39^{+0.38}_{-0.35} \text{ GeV}^2$$ Beneke et al hep-ph/0412400 Measure forward-backward Asimmetry as a function of the $\mu\mu$ invariant mass. Determine s_0 , the $m_{\mu\mu}^2$ for which $A_{FB}=0$ LHCb: 7200 signal events/2fb⁻¹ $B_{hh}/S = 0.2 \pm 0.1$ (ignoring non-resonant $K\pi\mu\mu$ events for the time being). With $L= 0.5 \text{ fb}^{-1} 1800 \text{ events}$ (B-Factories projected 2ab⁻¹ yield ~450 events.) L= 2fb⁻¹ $$\sigma(s_0) = \pm 0.46 \text{ GeV}^2$$ L=10 fb⁻¹ $$\sigma(s_0) = \pm 0.27 \text{ GeV}^2 \rightarrow \text{at the level of present theoretical precision}$$ ### B_d→K*μμ transverse asymmetries Fit to full angular distributions $(\Theta_{K_{-}}, \Theta_{\mu_{-}}, \Phi)$ expressed in terms of transversity amplitudes $(A_1, A_{//}, A_0)$. Can measure: $$A_{T}^{(2)}(q^{2}) = \frac{\left|A_{\perp}\right|^{2} - \left|A_{\parallel}\right|^{2}}{\left|A_{\perp}\right|^{2} + \left|A_{\parallel}\right|^{2}}$$ $$A_{T}^{(2)}(q^{2}) = \frac{\left|A_{\perp}\right|^{2} - \left|A_{\parallel}\right|^{2}}{\left|A_{\perp}\right|^{2} + \left|A_{\parallel}\right|^{2}} \qquad F_{L}(q^{2}) = \frac{\left|A_{0}\right|^{2}}{\left|A_{\perp}\right|^{2} + \left|A_{\parallel}\right|^{2} + \left|A_{0}\right|^{2}}$$ Stat. precisions in the region $s = m^2_{uu} \in [1, 6] (GeV/c^2)^2$ where theory calculations are most reliable | | Sensitivity with | | | |--------------------------------------|--|--------|--| | | 2 fb ⁻¹ 10 fb ⁻¹ | | | | A _T ⁽²⁾ | ±0.42 | ±0.16 | | | F_L | ±0.016 | ±0.007 | | | A _{FB} | ±0.020 | ±0.008 | | Curves from Lunghi & Matias JHEP 0704(2007)058. Points LHCb 2 fb⁻¹ ### R_K in $B^+ \rightarrow K^+\ell\ell$ $$R_{K} = \frac{\int_{4 m_{\mu}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to K \mu^{+} \mu^{-})}{ds} ds}{\int_{4 m_{\mu}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to K e^{+} e^{-})}{ds} ds} = 1 \pm 0.001 \text{ in SM} \text{ (Hiller,Krüger PRD69 (2004) 074020)}$$ - Large corrections O(10%) possible in models that distinguish between lepton flavours (eg.MSSM at large tan β). Constraints to NP also from R_K and BR(B_s $\rightarrow \mu\mu$) combined. #### LHCb 10 fb⁻¹ $B_u \rightarrow eeK$ 9.2 k events $B_{\mu} \rightarrow \mu \mu K$ 19 k events $$\sigma_{\text{stat}}(R_{\text{K}}) = 0.043$$ Trigger eff ~70% on ee channel under study - not included. $$4m_{\mu\mu}^2 < m_{\parallel}^2 < 6$$ $(GeV/c^2)^2$ - Similar sensitivity expected for $R_{K^*} = B_d \rightarrow \mu \mu K^* / B_d \rightarrow eeK^*$. - To be compared with ~15% error on $R_K \& R_{K^*}$ combined, expected from B-Factories with $2ab^{-1}$. ### Radiative decays - $B_d \rightarrow K^* \gamma$ $A_{CP} < 1\%$ in SM, up to 40% in SUSY Can measure at <% level. - Reference channel for all radiative decays. - B_s → φγ No mixing-induced CP asymmetry in SM, up to 50% in SUSY. Sensitivity for A_{CP}(t) measurement under study. - $\Lambda_b \rightarrow \Lambda \gamma$ Right-handed component of photon polarization O(10%) in SM. Can be higher BSM. $$\alpha_{\gamma} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)} \qquad \alpha_{\gamma}^{\text{LO}} = \frac{1 - |r|^2}{1 + |r|^2}$$ Measure photon asymmetry α_{γ} from angular distributions of γ and hadron in $\Lambda_b \rightarrow \Lambda(p\pi,pK)\gamma$ decays. | Decay | Yield
2 fb ⁻¹ | B _{bb} /S | |---|-----------------------------|--------------------| | $B_d \to K^* \gamma$ | 68k | 0.60 | | $B_s \rightarrow \phi \gamma$ | 11.5k | < 0.55 | | $\Lambda_{\rm b} \rightarrow \Lambda(1116)\gamma$ | 0.75k | < 42 | | $\Lambda_{\rm b} \to \Lambda (1670) \gamma$ | 2.5k | < 18 | 3σ evidence of right-handed component to 21% with 10 fb⁻¹ M. Calvi ### sin(2\beta) from Tree and Penguing #### $B^0 \rightarrow J/\psi K_S$ Time dependent CP asymmetry in $B^0 \rightarrow J/\psi K_S$ is expected to be one of the first CP measurements at LHCb. 236k signal events / 2 fb⁻¹ B/S=0.6(bb)+7.7(J/ ψ) $$\rightarrow \sigma_{\text{stat}}(\sin(2\beta)) = 0.020 \text{ in 2 fb}^{-1}$$ Compare to ~0.019 expected from B-Factories with 2ab⁻¹ #### After 10 fb⁻¹: $\sigma(\sin(2\beta)) \sim 0.010$ Can also push further the search for direct CP violating term $\propto \cos(\Delta m_d t)$ #### $\mathsf{B}^0 \to \phi \mathsf{K}_\mathsf{S}$: - 920 signal events per 2 fb⁻¹, B/S < 1.1 at 90% CL - After 10 fb⁻¹: $\sigma_{\text{stat}}(\sin(2\beta_{\text{eff}})) = 0.10$ to be compared with ~0.12 expected from B-Factories with 2ab⁻¹ ### b->sss hadronic penguin decays #### $B_s \rightarrow \phi \phi$ CP violation < 1% in SM due to cancellation of the mixing and penguin phase Combining $B_s \to \phi \phi$ with $B_s \to J/\psi \phi$ measurements can disentangle NP contributions in mixing & decays. $$\overline{B}_{s} \left\{ \frac{b}{\overline{s}} \right\} \frac{c}{W^{-}} \frac{J/\psi}{s} \phi$$ LHCb expects 3.1k signal events / 2 fb⁻¹ (BR=1.4×10⁻⁵), B/S<0.8 at 90%CL From time dependent angular distribution of flavour tagged events: $$\sigma_{\rm stat}(\Delta \phi^{\rm NP}) = 0.05$$ in 10 fb⁻¹ ### Different ways to γ at LHCb tree decays only | B mode | D mode | Method | |----------------------------|----------------------|-------------------| | $B_s \rightarrow D_s K$ | ΚΚπ | tagged, A(t) | | B⁺→D K⁺ | Kπ+ K3π+ KK/ππ | counting, ADS+GLW | | B+→D*K+ | Κπ | counting, ADS+GLW | | $B^+ \rightarrow D K^+$ | K _s ππ | Dalitz, GGSZ | | $B^+ \rightarrow D K^+$ | ΚΚππ | 4 body Dalitz | | B⁺→D K⁺ | Κπππ | 4 body Dalitz | | $B^0 \rightarrow D K^{*0}$ | $K\pi + KK + \pi\pi$ | counting, ADS+GLW | | $B \rightarrow \pi\pi, KK$ | _ | Tagged, A(t) | ### γ from $B_s \rightarrow D_s K$ $$B_s^0 \{ \overline{b}_s \} M \{ \overline{c}_s^{\overline{s}} \} M^+$$ $$B_s^0 \{ \overline{b}_s \} K^-$$ Two tree decays which interfere via B_s mixing Can determine $\gamma + \phi_s$, hence γ in a very clean way LHCb expects 6.2k signal events in 2 fb⁻¹ $B_{bb}/S < 0.18$ at 90% CL $B_s \rightarrow D_s^-\pi^+$ background 15±5 % after PID cuts Fit 4 tagged and 2 untagged time-dependent rates. #### With 10 fb⁻¹: (Inputs: γ =60°, strong phase difference Δ =0, amplitude ratio $|\lambda|$ =0.37) | | | Tagged & untagged | Tagged only | |---|-------------------|-------------------|-------------| | ¢ | $\rho_s + \gamma$ | ± 4.6° | ± 5.7° | | | Δ | ± 4.6° | ± 5.4° | | | λ | ± 0.027 | ± 0.029 | ### Different ways to γ at LHCb tree decays only | B mode | D mode | Method | σ(γ) 2fb ⁻¹ | |----------------------------|----------------------|-------------------|------------------------| | $B_s \rightarrow D_s K$ | ΚΚπ | tagged, A(t) | 10° | | B⁺→D K⁺ | Kπ+ K3π +KK/ππ | counting, ADS+GLW | 5° - 13° | | B⁺→D*K⁺ | Κπ | counting, ADS+GLW | Under study | | $B^+ \rightarrow D K^+$ | K _s ππ | Dalitz, GGSZ | 7-12° | | $B^+ \rightarrow D K^+$ | ΚΚππ | 4 body Dalitz | 18° | | $B^+ \rightarrow D K^+$ | Κπππ | 4 body Dalitz | Under study | | $B^0 \rightarrow D K^{*0}$ | $K\pi + KK + \pi\pi$ | counting, ADS+GLW | 9° | | $B \rightarrow \pi\pi, KK$ | _ | Tagged, A(t) | 10° | Combined LHCb sensitivity to γ with tree decays only (educated guess): $$\sigma(\gamma) \sim 5^{\circ}$$ with 2 fb⁻¹ $\sim 2.5^{\circ}$ with 10 fb⁻¹ ### Charm physics - LHCb will collect a large tagged D*→D⁰π sample (also used for PID calibration). A dedicated D* trigger is foreseen for this purpose. - Tag D⁰ or anti-D⁰ flavour with pion from D* $^{\pm}$ \rightarrow D⁰ π^{\pm} | D*-tagged signal yield in 2 fb ⁻¹ (from b hadrons only) | | | |--|--------|--| | $D^0 \rightarrow K^-\pi^+$ right sign | 12.4 M | | | $D^0 \rightarrow K^+\pi^-$ wrong sign 46.5 k | | | | $D^0 \rightarrow K^+K^-$ | 1.6 M | | - Performance studies not as detailed as for B physics. - Interesting (sensitive to NP) & promising searches/measurements: - − Time-dependent D⁰ mixing with wrong-sign D⁰→K⁺ π [−] decays - Direct CP violation in D⁰→K⁺K⁻ - $A_{CP} \le 10^{-3}$ in SM, up to 1% (~current limit) with New Physics - Expect $\sigma_{\text{stat}}(A_{CP}) \sim O(10^{-3})$ with 2 fb⁻¹ - $D^0 \rightarrow \mu^+ \mu^-$ - BR $\leq 10^{-12}$ in SM, up to 10^{-6} (~current limit) with New Physics - Expect to reach down to ~5×10⁻⁸ with 2 fb⁻¹ #### LHCb physics performance summary • "DC04" full MC simulation datasets (2004-2006) used for extensive studies of LHCb Physics performance reported in more than 30 public notes (CERN-LHCb-2007-xxx) available on LHCb web page Can easly found from LHCb page of Physics performance: http://lhcb-phys.web.cern.ch/lhcb-phys/DC04_physics_performance/ #### Eg. Some of the measurements which I have not mentioned: • New set of analysis starting with "DC06" full MC simulation datasets (2006-2007) (close-to-final detector and trigger description). Additional channels under study (eg. $B_s \to \phi \mu \mu$, $\Lambda_b \to \Lambda \mu \mu$, $B^+ \to K^+ \phi \gamma$, $B^+ \to K^+ \pi^- \pi^+ \gamma$, $B_u \to D \tau \nu \ldots$) ### LHCb upgrade? - LHCb is designed to run at average luminosity of 2×10^{32} and be able to handle 5×10^{32} cm⁻²s⁻¹. - Main physics goals expressed in terms of the reach for 10 fb⁻¹ (i.e. 5 nominal years). - Investigating upgrade of detector to handle higher luminosity: few 10³³ cm⁻²s⁻¹ - Not directly coupled to SLHC machine upgrade since luminosity already available, but may well overlap in time with upgrades of ATLAS and CMS. - Working group set up to identify the R&D required to make an upgrade of LHCb feasible (increase trigger efficiency for hadronic modes by a factor two, fast vertex detection, electronics, radiation dose, pile-up, higher occupancy etc.) and to make the physics case. - Input welcome from theorists on: - → What is the effective relevance of a statistical increase from 10 to 100 fb⁻¹ on the constraints to Physics BSM which could be derived? - → Which are the measurements which we should push to highest possible precision? - → Where do we clash against theoretical uncertainties at (or before) 100 fb⁻¹? ### LHCb beyond 10 fb-1? #### Several measurements limited by statistical precision after 10 fb⁻¹: - CPV in B_s mixing, in particular in $b \to s\overline{s}s$ penguins - \Rightarrow aim for 0.01 (0.002) precision on $B_s \to \phi \phi$ (B $_s \to J \psi/\phi)$ CP asymmetry - γ angle with theoretically clean methods, e.g. $B_s \rightarrow D_s K$, $B \rightarrow D(K_S \pi \pi) K$, $B \rightarrow D(hh) K$ • \rightarrow aim for < 1° precision on angle γ - Chiral structure of b \rightarrow s γ (b \rightarrow sl $^+$ l $^-$) using polarization of real (virtual) photon - \rightarrow more detailed and precise analysis of exclusive modes, e.g. $A_T^{(2)}$ in $B^0 \rightarrow K^* \mu \mu$ #### Conclusions - LHCb is ready for data taking at 2008 LHC start-up. - Very interesting results will come already with first 0.1-0.5 fb⁻¹ of data: -- $$B_s$$ → J/ψ ϕ , B_s → $\mu\mu$, B_d → K 0* μ μ but also: B_s → $\phi\gamma$, B_d → DK, $B_{d,s}$ → $\pi\pi$,KK,K π - Actively preparing for analysis of several channels with high potential for indirect NP discovery and for elucidating its flavour structure. - LHCb results will provide in particular a strong improvement to the knowledge of all B_s sector. Welcome all suggestions from theory side for new interesting channels to explore. #### **BACK-UP** ## γ from B[±] \rightarrow D⁰K [±] (ADS) Atwood, Dunietz and Soni, Phys. Rev. Lett. 78, 3257 (1997). Charged B decay $$B^{+} \xrightarrow{\overline{b}} \overline{u}_{c} D^{0}$$ $$u \xrightarrow{\overline{s}} K^{+}$$ $$colour suppressed$$ • $\underline{D^0}$ and $\overline{D^0}$ can both decay into $K^-\pi^+$ (or $K^+\pi^-$) $$\overline{D}^0 \overline{c}$$ \overline{d} π^+ doubly Cabibbo suppressed $$D^{0} \stackrel{c}{\stackrel{u}{u}} \longrightarrow \stackrel{s}{\stackrel{u}{u}} K^{-}$$ Cabibbo favoured Weak phase difference $-\gamma$ Strong phase difference $\delta_{\rm R}$ Amplitude ratio $r_{\rm R}\sim$ Strong phase difference $\delta_{\rm D}^{\rm K\pi}$ Amplitude ratio $r_{\rm D}^{\rm K\pi}$ =0.060±0.003 0.08 $$\Gamma(B^{-} \to (K^{-}\pi^{+})_{D}K^{-}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} - \gamma),$$ $$\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma),$$ $$\Gamma(B^{+} \to (K^{+}\pi^{-})_{D}K^{+}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} + \gamma),$$ $$\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma),$$ wrong sign, high sensitivity to γ $$\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$$ 5 parameters $(r_B, r_D, \delta_B, \delta_D, \gamma)$, but only 3 relative decay rates. r_D well-measured, but δ_D poorly constrained by CLEO-c (expect $\Delta\cos\delta_D$ ~20%) ### γ from B[±] \rightarrow DK[±] (ADS+GLW) Gronau, London, Wyler, PLB. 253, 483 (1991) #### ADS+GLW strategy: Measure the relative rates of B⁻ \rightarrow DK⁻ and B⁺ \rightarrow DK⁺ decays with neutral D's observed in final states K⁻ π ⁺ and K⁺ π ⁻, and also: - D⁰ \rightarrow K⁻ π ⁺ π ⁻ π ⁺ and K⁺ π ⁻ π ⁺ π ⁻: add 3 observables,1 unknown strong phase $\delta^{K3\pi}$, 1 well measured rel. decay rate $r_D^{K3\pi}$ - CP eigenstate decays $D^0 \rightarrow K^+K^-/\pi^+\pi^-$: add 1 observable and 0 unknown - \rightarrow Can solve for all unknowns, including the weak phase γ $$\sigma(\gamma) = 5-13^{\circ} \text{ with 2 fb}^{-1}$$ depending on D strong phases (Inputs: $$\gamma$$ =60°, r_B =0.077, δ_B =130°, $\delta^{K\pi}$ = -8.3°, $\delta^{K3\pi}$ = -60°) | Decay | 2 fb ⁻¹ yield | B _{bb} /S | |--|--------------------------|--------------------| | $B^{-,+} o D(K\pi)K^{-,+}$ favoured | 28k, 28k | 0.6 | | $B^{-,+} o D(K\pi\pi\pi) K^{-,+}$ favoured | 28k, 28k | 0.6 | | $B^{-,+} o D(K\pi)K^{-,+}$ suppr. | 393, 8 | 2.0, 98 | | $B^{\text{-,+}} o D(K\pi\pi\pi)K^{\text{-,+}}$ suppr. | 516, 99 | 1.5, 8 | | $B^{-,+} o D(hh)K^{-,+}$ | 4.3k, 3.5k | 1.7, 2.1 | Use of B[±] \rightarrow D^{*} (D π^0 ,D γ) K[±] under study ## γ from B[±] \rightarrow D⁰K[±] (GGSZ) D⁰ decays into a 3- body CP eigenmode: D⁰ $\rightarrow K_S^0 \pi^+ \pi^-$ Giri, Grossman, Soffer, Zupan, PRD 68, 050418 (2003). Large strong phases between the intermediate resonances allow the extraction of r_R , δ_R , and γ by studying the D-Dalitz plots from B⁺ and B⁻ decays Assume no CP violation in D⁰ decays #### B decay amplitudes: $$\begin{split} &A(B^-\!\!\to\!\!DK^-) \propto\!\! A_D(m_{Ks\pi^-}^2,\!m_{Ks\pi^+}^2)\!+\,r_B e^{i(\delta_B^{}-\gamma_{})} A_D(m_{Ks\pi^+}^2,\!m_{Ks\pi^-}^2) \\ &A(B^+\!\!\to\!\!DK^+) \propto\!\! A_D(m_{Ks\pi^+}^2,\!m_{Ks\pi^-}^2)\!+\,r_B e^{i(\delta_B^{}+\gamma_{})} A_D(m_{Ks\pi^-}^2,\!m_{Ks\pi^+}^2) \end{split}$$ Need to assume a D⁰ decay model. Current isobar model used at B factories $\Rightarrow \sigma_{\text{syst}}(\gamma) = 10^{\circ}$ #### At LHCb: 5k signal events in 2 fb⁻¹ B/S = 0.24 (D⁰ $$\pi$$ [±]), B_{bb}/S < 0.7 B/S = 0.24 (D⁰ $$\pi^{\pm}$$), B_{bb}/S < 0.7 $\sigma_{\text{stat}}(\gamma) = 7-12^{\circ}$ with 2 fb⁻ Depending on bkg assumptions With more statistics plan to do a model-independent analysis and control model systematics using CLEO-c data at $\psi(3770)$ $$\sigma_{\text{stat}}(\gamma) = 4-6^{\circ} (10 \text{ fb}^{-1})$$ 1.5 $\overline{\mathsf{D}}_0$ (770) $m^2(K_S\pi^+)$ ### γ from B⁰ \rightarrow D⁰K*⁰ $$B^0 \begin{cases} \frac{\overline{b}}{d} & \text{where} \quad \frac{\overline{c}}{s} \\ \frac{\overline{b}}{s} \\ \text{colour-suppressed} \end{cases} B^0 \begin{cases} \frac{\overline{b}}{d} & \text{where} \quad \frac{\overline{u}}{s} \\ \frac{\overline{c}}{s} \\ \text{colour-suppressed} \end{cases} B^0 \begin{cases} \frac{\overline{b}}{d} \\ \text{colour-suppressed} \end{cases}$$ Weak phase difference = γ Magnitude ratio = $r_B \sim 0.4$ - Treat with same ADS+GLW method as charged case: - So far used only D decays to $K^-\pi^+$, $K^+\pi^-$, K^+K^- and $\pi^+\pi^-$ final states $$\sigma(\gamma) = 9^{\circ}$$ with 2 fb⁻¹ Envisage also GGSZ analysis | Decay mode (+cc) | 2 fb ⁻¹ yield | B _{bb} /S | |---------------------------------------|--------------------------|--------------------| | $B^0 o (K^+\pi^-)_DK^{*0}$ | 3400 | 0.4-2.0 | | $B^0 \rightarrow (K^-\pi^+)_D K^{*0}$ | 540 | 2.2–13 | | $B^0 \rightarrow (K^+K^-)_D K^{*0}$ | 470 | < 4.1 | | $B^0 o (\pi^-\pi^+)_DK^{*0}$ | 130 | < 14 | ## γ from B $^0 \rightarrow \pi^+\pi^-$ and B $_s \rightarrow K^+K^-$ #### Measure CP asymmetry in each mode: $$A_{CP}(t) = \frac{A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)}{\cosh(\Delta \Gamma t / 2) - A_{\Delta \Gamma} \sinh(\Delta \Gamma t / 2)}$$ LHCb 2 fb⁻¹ 36k B $^{0} \rightarrow \pi^{+}\pi^{-}$, B $_{bb}$ /S ~0.5, B $_{hh}$ /S =0.07 36k B $_{s} \rightarrow$ K $^{+}$ K $^{-}$, B $_{bb}$ /S<0.06, B $_{hh}$ /S =0.07 | | | · (*KK) | 0.042 | |--------------------------------------|-------|----------------------------------|-------| | $\sigma(\mathcal{A}_{\pi\pi}^{mix})$ | 0.037 | $\sigma(\mathcal{A}_{KK}^{mix})$ | 0.044 | ~ 2x better than current $B\rightarrow\pi\pi$ world average A_{dir} and A_{mix} depend on mixing phase, angle γ , and Penguin/Tree amplitude ratio $de^{i\theta}$ #### Exploit U-spin symmetry (Fleischer): If assume: $d_{\pi\pi}=d_{KK}$ and $\theta_{\pi\pi}=\theta_{KK}$ 4 measurements and 3 unknowns \rightarrow can solve for γ (taking 2β and ϕ_s from other modes) Assume only 0.8< $d_{KK}/d_{\pi\pi}$ <1.2 and let $\theta_{\pi\pi}$, θ_{KK} free