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Abstract

Recently we have suggested that the microscopic quantum descrip-
tion of a black hole is an overpacked self-sustained Bose-condensate
of N weakly-interacting soft gravitons, which obeys the rules of ’t
Hooft’s large-IN physics. In this note we derive an effective Landau-
Ginzburg Lagrangian for the condensate and show that it becomes
an exact description in a semi-classical limit that serves as the black
hole analog of 't Hooft’s planar limit. The role of a weakly-coupled
Landau-Ginzburg order parameter is played by N. This description
consistently reproduces the known properties of black holes in semi-
classical limit. Hawking radiation, as the quantum depletion of the
condensate, is described by the slow-roll of the field N. In the semi-
classical limit, where black holes of arbitrarily small size are allowed,
the equation of depletion is self similar leading to a scaling law for the
black hole size with critical exponent %
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We have recently composed [1] a quantum portrait of a black hole as a
Bose-condensate of soft weakly-coupled gravitons. The condensate is charac-
terized by a typical wave-length which can assume different values. Neverthe-
less what makes it very special is that the occupation number of gravitons, N,
is always the maximal possible compatible with a given wave-length. Putting
it simply, the black hole is the maximally packed system in nature. This over-
packing makes the quantum theory of the black hole extremely simple. The
black hole is a large-N system in 't Hooft’s sense [2]. To make a concrete
analogy, the quantum nature of black holes is very similar to Witten’s pic-
ture of baryons in SU(N) gauge theories [3]. The crucial difference is that
in a gauge theory N is an input parameter, but for black holes it can take
an arbitrarily large value. The reason is that the graviton coupling depends
on its wave-length and therefore can be self adjusted in order to balance the
kinetic energy of an individual graviton versus the collective binding poten-
tial of N gravitons resulting into a self-sustained condensate for arbitrary
N. This self-sustainability condition requires fulfillment of certain relations
among the parameters of the condensate that turn out to be exactly of the
same kind as those defining large- N in 't "Hooft’s sense.

This is a huge bonus which gravity provides us as compared to gauge
theories. To make this advantage obvious, let us note that the quantum
portrait of a black hole of the earth’s mass is as simple as of the baryon in
SU(10%¢) gauge theory!.

Defining the Planck length (Lp) and the corresponding Planck mass (Mp)
via Newton’s coupling constant Gy as,

Lp= - = J/iGy, (1)

Mp

we can list all the characteristics of the black hole in terms of Lp and N as
follows,

e Occupation number = N

Wave-length = v/ NLp

e Coupling stength = 1/N
_ h

e Mass = VN I

e Temperature = \/T\);Lp



e Entropy = N

The occupation number can be written in several different equivalent ways

as [1.4]
N = M2Gy/h = M?*/M2. 2)

We have shown that this picture gives a fully quantum description of the
known properties of black holes that have been previously obtained only in
the semi-classical limit (see below). For example, Hawking radiation with
its characteristic negative heat capacity can be understood in very simple
terms as the quantum depletion of the Bose-condensate. The products of the
depletion imitate the thermal spectrum despite the fact that the condensate
itself is cold. We are not going to repeat the discussion about the quan-
tum portrait and refer the reader to the original paper [I] for the detailed
discussion of all the aspects.

The question we want to address in this note is the following. If a black
hole is a Bose-condensate it must admit a corresponding Landau-Ginzburg
description. What is this description?

We shall now display this theory. First, we need to identify the correct
Landau-Ginzburg order parameter. We start by making an intelligent guess
that this must be N. This guess turns out to be correct. We need to obtain
an effective Landau-Ginzburg Lagrangian that would correctly account for
the (corse-grained) dynamics of N. The key relies on the leakiness of the
condensate i.e N constantly decreases due to the quantum depletion. In the
language of Landau-Ginzburg theory this depletion should be translated as
a slow-roll of the order parameter N down the slope of an effective potential.
In order to reconstruct this potential, we use the quantum depletion law
derived in [I]. This law reads,

_ 1 —3/2
N = o OV, (3)

where dot stands for the time-derivative. The leading term in this depletion
comes from the two graviton scattering process, which in a certain sense
corresponds to a gravity equivalent of 't Hooft’s planar limit. This process
is a quantum progenitor of what in the semi-classical (planar) limit becomes
the famous Hawking radiation.

The key to reconstruct the Landau-Ginzburg theory is to promote N into
a field and then read-off the Lagrangian from the depletion equation (3]).



This is very easy, and the corresponding Lagrangian has the following simple
form,
72 | —2 2
Lig = (N)*+ NLP + L;"O(1/N7). (4)

The remarkable thing about this Lagrangian is that it fully exploits the power
of large-N physics. Notice, that since the only dimensionfull parameter is
Lp, all the non-derivative terms are multiplied by L. As a result all higher
powers of % vanish in the semi-classical limit in which N — oo, but a
quantity R = /N Lp is kept fixed. Thus the semi-classical limit is analogous
to 't Hooft’s planar limit with R playing a role similar to the QCD length-
scale that is set by t’Hooft’s coupling.

To see that in the above ”planar” limit our Landau-Ginzburg Lagrangian
indeed recovers the well-known semi-classical black hole physics, let us take
the limit carefully. We thus take,

N = oo, Lp =0, R=+VNLp = finite, h = finite.  (5)

In this limit the Landau-Ginzburg Lagrangian acquires the following exact
form,

: 1
Lie = (N)? + NL;Z. (6)

Notice, that the scale R was introduced simply as a parameter analogous to
the QCD scale that is kept fixed in 't Hooft’s planar limit. However, in the
semiclassical limit it acquires a geometric meaning. To see this, let us rewrite
the depletion law (B)) in this limit,

. 1
N=—=. (7)

Rewriting now N in terms of the black hole mass using (2) we get

. h
The latter expression is nothing but the Hawking’s evaporation law in which
R plays the role of the Schwarzschild radius, and T' = % is the temperature.
A very interesting property of the depletion equation in the semiclassical
limit is that it is self similar with respect to the scaling transformations:

N AN and ¢t — M. (9)



The deep root of this self-similarity lies in the quantum properties of the

portrait. Namely, since we can have black holes with arbitrary value of N

and all of them are characterized by just this single parameter the process

of depletion must be self-similar with respect to changes of N at least for

large N. This self-similarity becomes an exact property in the planar limit
h

[@B). Changing to an energy variable £ = 7 we can rewrite the depletion

equation as a renormalization group flow of N in energy, namely

dN Mp
EP—— = ——. 10
5 (10)
The solution to this equation is (the coefficient 3/2 is dropped)
My 3
N(E) = (c— fp) : (11)

with C' an integration constant. Note that N is growing with E starting
at the critical value E,. = % where N(E,..) = 0. We can think of E., as
the threshold for black hole formation. Therefore we can write the following

scaling law ,
N(E) = (B, — E7)Mp]5. (12)

This scaling law exhibits a striking similarity with well-known scaling laws
in black hole formation. To make the contact clear, let us rewrite the
above equation in terms of parameter R and also introduce a notation p =
R} /MZE. We get,

R = (pcr - p>1/3 : (13>

The above scaling is very similar to the scaling law for black hole formation in
classical general relativity which was discovered by Choptuik [5] in the special
case of a spherical collapse. This result has been further generalized to many
different types of gravitational collapse. The critical Choptuik exponent is
defined by R = (p.- —p)? with p some control parameter and p,, the critical
value. The value of the exponent is with small variations, of the order v =
0.36. Comparing with (I3]) we get as the Landau-Ginzburg prediction for the
critical exponent v =

3

3Incidentally the Landau-Ginzburg exponent can be easily generalized to 4 + d di-
mensions with the result v = 3# In 5 dimensions this is in agreement with the result

+d
in [6].



It is important to stress here that the scaling law as well as the underlying
self similarity are properties that are only exact in the Landau-Ginzburg
planar (semi-classical) limit ([B). In particular this makes at once clear that
the singularity problem is an artifact of this semiclassical limit. Indeed only
in this limit the evaporation law (B]) is exact and says that black holes of
arbitrarily small R can radiate, leading to infinite temperature at R = 0.
It is only in this planar limit that an idealized geometric concept, such as
horizon, becomes exact.

The effective description in terms of a weakly-coupled Landau-Ginzburg
theory is also an important step in closing the circle that connects the black
hole’s large-N portrait with the idea of self-completion [7] by classicaliza-
tion [§]. The key concept is that the deep-UV theory replaces the would-be
strongly coupled degrees of freedom, with the collective ultra-soft weakly
coupled modes of N-particle states [4]. The role of such a mode is played
by the above Landau-Ginzburg field N. The notion of the ordinary Wilso-
nian renormalization flow cannot be defined above Mp due to the absence
of weakly-coupled one-particle states of Compton wavelength < Lp. This
concept gets replaced by a "running” collective parameter N. In a very crude
sense the 1/N dependence of the effective Landau-Ginzburg potential can be
regarded as some sort of UV-fixed point in this non-Wilsonian ”"RG”-flow.

In summary the quantum N-portrait of black holes provides the quantum
basis for a description of gravity in terms of entity that is analogous to a
master field [9]. In the semiclassical (planar) limit (&) this master field is
governed by the Landau-Ginzburg Lagrangian ({l). This naturally leads to
self similarity and to black hole scaling laws. We thus observe that these
scaling laws may be rooted in large- N nature of quantum black hole physics.
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