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Abstract

Recently we have suggested that the microscopic quantum descrip-
tion of a black hole is an overpacked self-sustained Bose-condensate
of N weakly-interacting soft gravitons, which obeys the rules of ’t
Hooft’s large-N physics. In this note we derive an effective Landau-
Ginzburg Lagrangian for the condensate and show that it becomes
an exact description in a semi-classical limit that serves as the black
hole analog of ’t Hooft’s planar limit. The role of a weakly-coupled
Landau-Ginzburg order parameter is played by N . This description
consistently reproduces the known properties of black holes in semi-
classical limit. Hawking radiation, as the quantum depletion of the
condensate, is described by the slow-roll of the field N . In the semi-
classical limit, where black holes of arbitrarily small size are allowed,
the equation of depletion is self similar leading to a scaling law for the
black hole size with critical exponent 1

3
.
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We have recently composed [1] a quantum portrait of a black hole as a
Bose-condensate of soft weakly-coupled gravitons. The condensate is charac-
terized by a typical wave-length which can assume different values. Neverthe-
less what makes it very special is that the occupation number of gravitons, N ,
is always the maximal possible compatible with a given wave-length. Putting
it simply, the black hole is the maximally packed system in nature. This over-
packing makes the quantum theory of the black hole extremely simple. The
black hole is a large-N system in ’t Hooft’s sense [2]. To make a concrete
analogy, the quantum nature of black holes is very similar to Witten’s pic-
ture of baryons in SU(N) gauge theories [3]. The crucial difference is that
in a gauge theory N is an input parameter, but for black holes it can take
an arbitrarily large value. The reason is that the graviton coupling depends
on its wave-length and therefore can be self adjusted in order to balance the
kinetic energy of an individual graviton versus the collective binding poten-
tial of N gravitons resulting into a self-sustained condensate for arbitrary
N . This self-sustainability condition requires fulfillment of certain relations
among the parameters of the condensate that turn out to be exactly of the
same kind as those defining large-N in ’t ’Hooft’s sense.

This is a huge bonus which gravity provides us as compared to gauge
theories. To make this advantage obvious, let us note that the quantum
portrait of a black hole of the earth’s mass is as simple as of the baryon in
SU(1066) gauge theory!.

Defining the Planck length (LP ) and the corresponding Planck mass (MP )
via Newton’s coupling constant GN as,

LP ≡ ~

MP
≡

√

~GN , (1)

we can list all the characteristics of the black hole in terms of LP and N as
follows,

• Occupation number = N

• Wave-length =
√
NLP

• Coupling stength = 1/N

• Mass =
√
N ~

LP

• Temperature = ~
√

NLP
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• Entropy = N

The occupation number can be written in several different equivalent ways
as [1, 4]

N = M2GN/~ = M2/M2

P . (2)

We have shown that this picture gives a fully quantum description of the
known properties of black holes that have been previously obtained only in
the semi-classical limit (see below). For example, Hawking radiation with
its characteristic negative heat capacity can be understood in very simple
terms as the quantum depletion of the Bose-condensate. The products of the
depletion imitate the thermal spectrum despite the fact that the condensate
itself is cold. We are not going to repeat the discussion about the quan-
tum portrait and refer the reader to the original paper [1] for the detailed
discussion of all the aspects.

The question we want to address in this note is the following. If a black
hole is a Bose-condensate it must admit a corresponding Landau-Ginzburg
description. What is this description?

We shall now display this theory. First, we need to identify the correct
Landau-Ginzburg order parameter. We start by making an intelligent guess
that this must be N . This guess turns out to be correct. We need to obtain
an effective Landau-Ginzburg Lagrangian that would correctly account for
the (corse-grained) dynamics of N . The key relies on the leakiness of the
condensate i.e N constantly decreases due to the quantum depletion. In the
language of Landau-Ginzburg theory this depletion should be translated as
a slow-roll of the order parameter N down the slope of an effective potential.
In order to reconstruct this potential, we use the quantum depletion law
derived in [1]. This law reads,

Ṅ = − 1√
NLP

+ O(N−3/2) , (3)

where dot stands for the time-derivative. The leading term in this depletion
comes from the two graviton scattering process, which in a certain sense
corresponds to a gravity equivalent of ’t Hooft’s planar limit. This process
is a quantum progenitor of what in the semi-classical (planar) limit becomes
the famous Hawking radiation.

The key to reconstruct the Landau-Ginzburg theory is to promote N into
a field and then read-off the Lagrangian from the depletion equation (3).
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This is very easy, and the corresponding Lagrangian has the following simple
form,

LLG = (Ṅ)2 +
1

N
L−2

P + L−2

P O(1/N2) . (4)

The remarkable thing about this Lagrangian is that it fully exploits the power
of large-N physics. Notice, that since the only dimensionfull parameter is
LP , all the non-derivative terms are multiplied by L−2

P . As a result all higher
powers of 1

N
vanish in the semi-classical limit in which N → ∞, but a

quantity R ≡
√
N LP is kept fixed. Thus the semi-classical limit is analogous

to ’t Hooft’s planar limit with R playing a role similar to the QCD length-
scale that is set by t’Hooft’s coupling.

To see that in the above ”planar” limit our Landau-Ginzburg Lagrangian
indeed recovers the well-known semi-classical black hole physics, let us take
the limit carefully. We thus take,

N → ∞, LP → 0 , R ≡
√
NLP = finite, ~ = finite . (5)

In this limit the Landau-Ginzburg Lagrangian acquires the following exact
form,

LLG = (Ṅ)2 +
1

N
L−2

P . (6)

Notice, that the scale R was introduced simply as a parameter analogous to
the QCD scale that is kept fixed in ’t Hooft’s planar limit. However, in the
semiclassical limit it acquires a geometric meaning. To see this, let us rewrite
the depletion law (3) in this limit,

Ṅ = − 1

R
. (7)

Rewriting now N in terms of the black hole mass using (2) we get

Ṁ = − ~

R2
. (8)

The latter expression is nothing but the Hawking’s evaporation law in which
R plays the role of the Schwarzschild radius, and T = ~

R
is the temperature.

A very interesting property of the depletion equation in the semiclassical
limit is that it is self similar with respect to the scaling transformations:

N → λ
2

3N and t → λt . (9)
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The deep root of this self-similarity lies in the quantum properties of the
portrait. Namely, since we can have black holes with arbitrary value of N
and all of them are characterized by just this single parameter the process
of depletion must be self-similar with respect to changes of N at least for
large N . This self-similarity becomes an exact property in the planar limit
(5). Changing to an energy variable E ≡ ~

t
we can rewrite the depletion

equation as a renormalization group flow of N in energy, namely

E2
dN

dE
=

MP√
N

. (10)

The solution to this equation is (the coefficient 3/2 is dropped)

N(E) =

(

C − MP

E

)
2

3

, (11)

with C an integration constant. Note that N is growing with E starting
at the critical value Ecr = MP

C
where N(Ecr) = 0. We can think of Ecr as

the threshold for black hole formation. Therefore we can write the following
scaling law

N(E) = [(E−1

cr −E−1)MP ]
2

3 . (12)

This scaling law exhibits a striking similarity with well-known scaling laws
in black hole formation. To make the contact clear, let us rewrite the
above equation in terms of parameter R and also introduce a notation p ≡
~
3/M2

PE. We get,
R = (pcr − p)1/3 . (13)

The above scaling is very similar to the scaling law for black hole formation in
classical general relativity which was discovered by Choptuik [5] in the special
case of a spherical collapse. This result has been further generalized to many
different types of gravitational collapse. The critical Choptuik exponent is
defined by R = (pcr−p)γ with p some control parameter and pcr the critical
value. The value of the exponent is with small variations, of the order γ =
0.36. Comparing with (13) we get as the Landau-Ginzburg prediction for the
critical exponent γ = 1

3
. 3

3Incidentally the Landau-Ginzburg exponent can be easily generalized to 4 + d di-
mensions with the result γ = 1

3+d
. In 5 dimensions this is in agreement with the result

in [6].
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It is important to stress here that the scaling law as well as the underlying
self similarity are properties that are only exact in the Landau-Ginzburg
planar (semi-classical) limit (5). In particular this makes at once clear that
the singularity problem is an artifact of this semiclassical limit. Indeed only
in this limit the evaporation law (3) is exact and says that black holes of
arbitrarily small R can radiate, leading to infinite temperature at R = 0.
It is only in this planar limit that an idealized geometric concept, such as
horizon, becomes exact.

The effective description in terms of a weakly-coupled Landau-Ginzburg
theory is also an important step in closing the circle that connects the black
hole’s large-N portrait with the idea of self-completion [7] by classicaliza-
tion [8]. The key concept is that the deep-UV theory replaces the would-be
strongly coupled degrees of freedom, with the collective ultra-soft weakly
coupled modes of N -particle states [4]. The role of such a mode is played
by the above Landau-Ginzburg field N . The notion of the ordinary Wilso-
nian renormalization flow cannot be defined above MP due to the absence
of weakly-coupled one-particle states of Compton wavelength ≪ LP . This
concept gets replaced by a ”running” collective parameter N . In a very crude
sense the 1/N dependence of the effective Landau-Ginzburg potential can be
regarded as some sort of UV-fixed point in this non-Wilsonian ”RG”-flow.

In summary the quantum N -portrait of black holes provides the quantum
basis for a description of gravity in terms of entity that is analogous to a
master field [9]. In the semiclassical (planar) limit (5) this master field is
governed by the Landau-Ginzburg Lagrangian (4). This naturally leads to
self similarity and to black hole scaling laws. We thus observe that these
scaling laws may be rooted in large-N nature of quantum black hole physics.
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