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On p. 1, the last two lines sghould be replaced by:

of the factorization hypothesisl) with the renormalization group. We
work with one flavour and at the one loop level; a generalization of

our results to several flavours is straightforward.
On p. 2, Eq. (5¢) should read
CVARQF> = 2, <AL O T v 2, 2 <ot 0,757
t2, < ¢ Ax Use ??12

On p. &4, the end of the 6th line should read:

.. the quark mass m equal to zero,

On p. 6, the lst line after Eq. (13f) should start with:

- =1
where ZA Zu

In Fig. 3, the first Feynman rule ghould read:

_ 3. Auv _ v AU
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ABSTRACT

The renormalization of the five- and six-dimensional scalar gauge
invariant composite operators is performed. The corresponding re-
normalization group invariant wvacuum condensates are studied, Qur
main results are that the six-~dimensional gluon condensate does not
mix with the quartic quark condensates nor the other way round, We
also show that the factorization hypothesis of the four-quark operator
does not lead to a renormalization group invariant quark vacuum con-
densates. So, one has to be careful when keeping the six-dimensional
operators in the QCD sum rule analysis,
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The vacuum condensates are the main input in the quantum chromodynamics (QCD)
sum rule approachl) for the understanding of low energy hadron physics. The
vacuum condensates of lowest dimensions dominate the sum rules at intermediate

values of q* (v 1 to 2 GeV2). They are, up to dimension six:
<r§; V’)’ (1la)
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where { is the quark field, v = 9¥sY - 3VBH . g f B'BY is the gluenic field
a a a abc b ¢
strength, B: is the gluon field, oMV = T4H(yHyV — y¥yl), Fi is any combination of

Dirac matrices, A? is the SU(3)_ Gell-Mann matrices and fa the structure con-

be
stants of the SU(3)c algebra. These vacuum condensates, once renormalized, depend
on the renormalijzation point Y and are, therefore, not a convenient way of charac-
terizing the vacuum. Instead, one can build with them, renormalization group in-

variant quantitiesz), once a choice of a renormalization scheme prescription has
been dones), which are p-independent and lead thus to a more meaningful descrip-
tion of the physical vauum. For the two lowest dimensional vacuum condensates,

. 4
these expressions are well known ’5):

Q = m <~‘PVJ>) (2a)
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where we consider only one flavour; 7Y and B are respectively the quark mass
anomalous dimension and the Callan-Symanzik B function. The quantities ¢; and ¢z
given in Eq. (2) are known to be u-independent to all orders in perturbation
theory. For the five- and six—dimensional vacuum condensates, the equivalent
expressions to Eq. (2} are not known, even to lowest order. The aim of this note
is to present a complete study of the five-dimensional vacuum condensate and a
partial study of the six-dimensional ones, analysing critically the compatibility
of the factorization hypothesisl) with one flavour and at the one loop level; a

generalization of our results to several flavours is straightforward.



1. RENORMALIZATION OF THE FIVE-DIMENSIONAL VACUUM CONDENSATES

There are five independent gauge invariant scalar operators which, in prin-

ciple, mix under renormalization. They are:

01 = 4m ¥y
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>
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where Du = Bu - ig (Ag/2) B: is the covariant derivative. 03 and Qs vanigh if one

uses the classical equations of motion. We are interested in the renormalization

of 0, using the background field methods) which has been very convenient for the

renormalization of the four-dimenmsional operators in Eq. (2) to two-loopss). The

relation between the renormalized operator 0, to the bare composite operators ODB,

written in terms of bare fields and parameters is introduced via the renormaliza-—

tion constants Z i as:
¥

O, = 2, U,
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The study of the following three zero-momentum insertion Green's functions allows
the determination of the Z

YO ¥ = Z <P ¥, 24,3<7455‘_’>M
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where Az is the gluon background field, ZF is the quark wave function renormaliza-

tion constants, 0., means the bare composite operator written in terms of renor-—

malized fields aninarameters, the indices (0) and (2) mean lowest order and

second order comtributions. The Feynman rules needed for the computation of the
above expressions are given in Fig. 1. The diagrams which contribute at the one-
loop level to Eq. (5) are given in Fig. 2. We find in the t'Hooft minimal renor-

malization scheme®’ for the dimension of the space—-time n = 4 + 2¢ and for SU(N)C:
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The results in Eq. (6) together with the ones shown in Eq. (2) allow us to write

a new vacuum condensate which renormalizes multiplicatively:
o

<0, + 10_1,700 = 24,4<04;*143 ,70,23> %

and from which a renormalization group invariant condensate can be obtained as:

@’0(5}<C)4+z@+;@>. (8)

The values of %, y, and z to one-loop are:
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where the lowest—order expressions of B and Y have been used, i.e.

B (tw e l) Do) Hoe
J = s)(3/(ﬂ’21 e @(ﬂ@l) . (10b)

.  RENORMALIZATICN OF THE SIX-DIMENSIONAL VACUUM CONDENSATES

The study of the renormalization of the six—dimensiomal vacuum condensates
is technically much more involved. Even, putting the quark mass one equal to zero,
and for only one flavour, there are ten independent scalar gauge invariant opera-

tors. We will choose them as:
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Operators which do not contribute at zero momentum have not been included. Bianchi
and Fierz identities have been repeatedly used. The colour indices in the quartic
quark terms are summed according to arw@rw = @aFwQ@BTwB. The operators O, to Qg
are written in such a way that they lead to zero value of vacuum condensates if

the vacuum saturatiom hypothesis (factorizatiom) is used'?:
_ — / - _f? R
LT YL ¢> = 54/75{;7»:; - BORE)IPR° (12)

where the normalization factor N is defined as (ﬁawe) = (6QB/N)(@w) and the sub-
scripts o,B include spin, colour and flavour. The operators 0, to 0,4 vanish if
the classical equations of motion are used. In the following, we would like to
address ourselves to two questions. First, how the operators of the first group
(0, and 0,) in Eq. (11) get renormalized and second, is the factorization hypo-
thesis compatible with the renormalization group invariance or not? Indeed, if
the operators of the second group (03 to 0g) do not mix under remormalization with
the ones of the first group, then four renormalization group invariant vacuum con-—
densates involving only operators of the second group can be written down; the
factorization hypothesis just implies that these constants are zero. If this is
not the case, the factorization hypothesis means putting a non-trivial function

of W equal to zero, which certainly cannot be a good approximation for all wvalues

of U.

The study of the remormalization of 0, and 0, requires the calculation of the

following Green's functions {with 0 z Z1 ¥ 33)

<A ;47.01> = Z, Z, 4’4:’% ’qc Ooa >&-)+
2y <ALA, /9: Cra >
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where Z, = Z7! is the background field renormalization constant. The needed

A

Feynman rules are given in Fig. 3. The diagrams which have to be computed are

shown in Fig. 4. The calculation is done in the Feynman gauge; this is no limi-

tation since only the renormalization constants which mix with the operators of

the third group (0; to 0;4) can be gauge dependent but these give vanishing con-

densates. The result is:
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Zé’,ﬁ‘ = _(%[E _;%J p; (14h)
2.2,6 = "‘/i:f/(g) §§ 2 (144)

Z/m - _(%;)/g);g_ . (143)

Notice that 0, [Eq. (lla)] does not mix with any other operators of the first
[Eq. (11b) ] and second [Eqs. (1lc) to (11f)] groups. Thus, at the one-loop level

<@>: Zz,‘{ < 0_{5 P o (15)

and it is easy to build a renormalization group invariant condensate proportional

to 1it:

LEIN

b - @) U= 0> .

0, [Eq. (11b)] however mixes with the operators of the second group [Eqs. (11c¢)
to (llf)], and one can easily check that the operators of the second group also
mix with 0, under renormalization. This means that the factorization hypothesis
is incompatible with the renormalization group and that putting all the second
group condensates eﬁual to zero leads to a u-dependence of (0;) inconsistent with
the renormalization group. If among all the quartic quark condensates (0,) is
only retained, then there is absolutely no meaning in any renmormalization group

improvement of the result obtained.

Thus, we conclude from the analysis of six—dimensional vacuum condensates,
that the gluon condensate {(0;} in Eq. (lla) does not mix with the quartic quark
condensate nor the other way round. We also show that the four-fermion vacuum
condensate (0,) [Eq. (115)] mixes under renormalization with other four-fermion
condensates [ Eqs. (llc) to (11£)] which vanish under the factorization hypothesis
introduced by svz!), So, the only four fermion vacuum condensate, {0;}, retained
in the QCD sum rules analysis, cannot be made renormalization group invariant with-
in the factorization hypothesis; its value is U-dependent and the factorization

hypothesis prevents any renormalization group improvement.
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Figure captions

Fig. 1 : Feynman rules for the operators of dimension five in the background

field gauge. i denotes the operator 0i and m is the quark mass.

Fig. 2 : Contributing diagrams for the renormalization of the dimensional

five operators to lowest order of QCD.

Fig. 3 : Feynman rules for the operators of dimension six in the background

field gauge and for massless quarks.

Fig. 4 : Contributing diagrams for the renormalization of the dimensiocnal six

operators to lowest order of QCD in the case of massless quarks,
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five other terms required by Bose statistics}

2 -
x ¥ g [‘Ski%j‘swésa 6kj62i6YB6a6J

and the analogues for 03 to Og and O

a
-g _%g [(p- q)zerl ~4v"p + 2P“P_l

ji
a

}\Ba M H
—22 5 [ﬂY P q P]ji

agd 2, M M
-g—"z"[q\f —qﬂ]ji
. v A vV PR VA Y A uv A
ig fabc{pz[q ghh s 2rVgMh - MV o AV gtV 4 Mt ]

v A v oA Y AV VA VA

+pu[pr +2pyg —pAq - 2pr - pqg  + prg ]

+ two other terms required by Bose statistics}

Fig. 3
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