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A measurement of the multi-strange Ξ− and Ω− baryons and their antiparticles by the ALICE experiment
at the CERN Large Hadron Collider (LHC) is presented for inelastic proton–proton collisions at a centre-
of-mass energy of 7 TeV. The transverse momentum (pT) distributions were studied at mid-rapidity
(|y| < 0.5) in the range of 0.6 < pT < 8.5 GeV/c for Ξ− and Ξ+ baryons, and in the range of 0.8 <

pT < 5 GeV/c for Ω− and Ω+. Baryons and antibaryons were measured as separate particles and we
find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire
range of the measurement. The statistical precision of the current data has allowed us to measure a
difference between the mean pT of Ξ− (Ξ+) and Ω− (Ω+). Particle yields, mean pT, and the spectra in
the intermediate pT range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event
generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for Ω−
(Ω+). This PYTHIA tune approaches the pT spectra of Ξ− and Ξ+ baryons below pT < 0.85 GeV/c and
describes the Ξ− and Ξ+ spectra above pT > 6.0 GeV/c. We also illustrate the difference between the
experimental data and model by comparing the corresponding ratios of (Ω− + Ω+)/(Ξ− + Ξ+) as a
function of transverse mass.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

The multi-strange baryons, Ω− (sss) and Ξ− (dss), are particu-
larly important in high energy particle and nuclear physics due to
their dominant strange quark (s-quark) content. The initial state
colliding projectiles contain no strange valence quark, therefore
all particles with non-zero strangeness quantum number are cre-
ated in the course of the collision. Moreover, the energy of the
Large Hadron Collider (LHC) and its high luminosity allow for an
abundant production of strange hadrons. These two factors make
multi-strange baryons a valuable probe in understanding particle
production mechanisms in high energy collisions.

We present a measurement of Ω− and Ω+ baryon transverse
momentum (pT) spectra and yields in proton–proton (pp) colli-
sions at a centre-of-mass energy (

√
s) of 7 TeV, a measurement of

Ξ− and Ξ+ yields and spectra at the same energy, and a compar-
ison of these data to a recent pp event generator, PYTHIA Perugia
2011 central tune (P2011). The measurements were obtained using
the ALICE experiment [1] at the LHC.

ALICE is a general purpose detector designed to study both pp
and Pb–Pb collisions at TeV-scale energies. A six-layer silicon inner
tracking system (ITS) and a large-volume time projection cham-
ber (TPC) enable charged particle reconstruction with excellent
momentum and spatial resolution in full azimuth down to pT of
100 MeV/c.

✩ © CERN for the benefit of the ALICE Collaboration.

2. Data sample and cascade reconstruction

Multi-strange baryons are studied in a sample of approximately
130 million minimum bias

√
s = 7 TeV pp events, collected during

the 2010 data taking. The sample is corrected for trigger ineffi-
ciencies and biases to recover a normalized sample of inelastic
(INEL) events, as described in [2]. The events are selected within
10 cm of the detector’s centre along the beam direction, with
vertex resolution in the transverse plane of a few hundred mi-
crometres. The event vertex range is selected to maximize particle
trajectory (track) reconstruction efficiency within the ITS and TPC
volume.

Ξ− and Ξ+ (Ξ±), as well as Ω− and Ω+ (Ω±) candidates
are reconstructed at mid-rapidity (|y| < 0.5) via their charac-
teristic weak decay topology, Ξ−(Ξ+) → Λ(Λ) + π−(π+), and
Ω−(Ω+) → Λ(Λ) + K−(K+), as described in detail in [3]. The
branching ratios for these decay channels are 67.8% for Ω±
baryons and 99.9% for Ξ± . Charged particles, compatible with
kaon, pion and proton hypotheses, are identified using their en-
ergy loss in the TPC. The topology of the Ω− and Ξ− weak decay
is cascade-like and consists of a V-shaped decay of the daugh-
ter Λ baryon (Λ baryon hypothesis is identified as a “V0”) plus
a negatively charged track (h−). The same applies to antibaryons,
however in that case the decay products are the Λ daughter parti-
cles and a positively charged track (h+). In general, the acceptance
and efficiency depend on both y and pT. We chose the y interval
such that our efficiency and acceptance depend only on pT. Can-
didates are selected by placing restrictions on the topology of the
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Table 1
Selection criteria parameters for V0 (Λ) and cascades (Ξ± and Ω±) pre-
sented in this Letter. If a criterion for Ξ± and Ω± finding differs, the
criterion for Ω± hypothesis is in parentheses. DCA stands for “distance of
closest approach,” and PV for “primary event vertex.” The fiducial volume
is defined by the coordinate of the decay vertex position, the transverse
radius, R2D . θ is the angle between the momentum vector of the recon-
structed V0 or cascade, and the line segment bound by the decay and
primary vertices. For cascades, the curvature of the particle’s trajectory is
neglected.

V0 finding criteria

DCA (h± to PV) > 0.04 (0.03) cm
DCA (h− to h+) < 1.6 standard deviations
Λ mass (mV0) 1.110 < mV0 < 1.122 GeV/c2

Fiducial volume (R2D ) 1.4 < R2D < 100 cm
V0 pointing angle cos θV0 > 0.97

Cascade finding criteria

DCA (π± (K±) to PV) > 0.05 cm
DCA (V0 to PV) > 0.07 cm
DCA (π± (K±) to V0) < 1.6 (1.0) cm
Fiducial volume (R2D ) 0.8 (0.6) < R2D < 100 cm
Cascade pointing angle cos θcasc > 0.97

decay. These have been optimized to obtain maximum mass signal
significance and are listed in Table 1.

The resulting invariant mass distributions for both species hy-
potheses are shown in Fig. 1. The signal extraction method is de-
scribed in detail in [3]. The signal is extracted using a bin-counting
method and then corrected for detector efficiency and acceptance
using PYTHIA Perugia 0 [4] generated Monte Carlo events propa-
gated through ALICE using GEANT3 [5].

3. Systematic uncertainties

There are two types of systematic uncertainties in the result-
ing particle spectra: pT-dependent systematic uncertainties that
are due to the efficiency determination and the signal quality at
a given pT, and the pT-independent uncertainties due to normal-
ization and other factors explained below.

The point-to-point systematic uncertainties vary between 1–4%
for Ξ± , and 1–9% for Ω± , with minimum uncertainty found at
pT = 1.5–4.0 GeV/c for both species. The pT-independent system-
atic uncertainties stem from several sources and reflect the follow-
ing:

• the uncertainty in determination of the material thickness tra-
versed by the particles (material budget), 4%;

• the use of FLUKA [6,7] to correct [8] the antiproton absorption
cross section in GEANT3 [5], 1%;

• the uncertainty in TPC particle identification via energy loss,
1.5%;

• the uncertainty on the track selection in the TPC, through the
restriction on the number of TPC pad plane clusters used in
particle reconstruction, 3%;

• in the case of Ω± , the removal of cascades that fit the Ξ±
baryon hypothesis, 1%.

The limited pT-coverage and determination of the total number
of inelastic events used for yield normalization lead to an addi-
tional uncertainty in the particle yields and mean pT (〈pT〉) values.
The INEL normalization [2] leads to a +7.0% and −3.5% uncer-
tainty on the yield for all measured particles, while the limited pT
coverage causes a 4.5% uncertainty on the 〈pT〉 of all species, 5.5%
uncertainty on the yield of Ξ± baryons, and 6.5% on the yield
of Ω± . While the systematic uncertainties (both pT-dependent
and pT-independent) associated with each spectrum point affect
the determination of 〈pT〉, the systematic uncertainty on the 〈pT〉
for all species is dominated by the 4.5% error due to the limited
pT coverage. Similarly, the systematic uncertainty on the yields is
dominated by the uncertainties due to low-pT extrapolation and
event normalization.

4. Results

4.1. Corrected pT spectra and Tsallis fits

The corrected multi-strange baryon yields per pT bin per unit
rapidity (1/NINEL × d2N/dy dpT) are shown in Fig. 2(a). They span
from pT = 0.6 to pT = 8.5 GeV/c in the case of Ξ− and Ξ+
baryons and from pT = 0.8 to pT = 5 GeV/c for Ω− and Ω+
baryons. The Tsallis function is used for fitting the spectra, as
the measured pT range covers both soft-physics and fragmentation
particle production regions. The functional form is shown below:

d2N

dy dpT
= (n − 1)(n − 2)

nT [nT + m0(n − 2)] × dN

dy
× pT ×

(
1 + mT − m0

nT

)−n

where T , n, and dN/dy (dN/dy representing the particle yield per

unit rapidity) are fit parameters, mT =
√

m2
0 + p2

T, and m0 denotes

the particle mass.
The function is grounded in Tsallis statistics [9]; it approximates

an exponential component (represented by the T parameter), as
well as a power-law dependence for the high-pT tail. In Table 2,
Fig. 1. The invariant mass distributions of Ξ− (a) and Ω− (b) baryon candidates (solid histograms) and their antiparticles (dashed histograms). Also marked (in shaded
blocks) background sampling regions used in the signal extraction. The entire measured pT range is presented.
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Fig. 2. (a) Ξ− and Ω− baryon (solid circles and squares, respectively) and their
antiparticle (open symbols) spectra, shown with Tsallis fits. (b) Experimental data to
Monte Carlo (PYTHIA Perugia 2011) comparison. The errors are added in quadrature.
The normalization uncertainty is shown as a black band.

we list the fit results for each particle and antiparticle and the
corresponding extrapolated dN/dy and 〈pT〉.

The central values of the fit parameters, listed in Table 2, are
obtained using the statistical error only. The low-pT extrapolation
of the yield from the Tsallis fit is ∼ 23% for Ξ± and ∼ 26% for Ω± .
The value of 〈pT〉 for each particle was computed using the fit over
the entire pT range including the extrapolation. The antiparticle to
particle ratios were found to be compatible with unity at all pT.

4.2. Excitation functions

Our measurements of multi-strange baryons can be placed
within the broader context of existing pp collision data. We com-
pare to multi-strange baryon yields in pp collisions measured by
the STAR Collaboration at

√
s = 0.2 TeV [10], and also to the data

obtained by ALICE and CMS at
√

s = 0.9 TeV [3,11]. There are also
data from pp̄ collisions, obtained by the CDF [12] and UA5 [13]
Collaborations. We omit the comparison to these data due to a sig-
nificantly different kinematic range of the experiments. For STAR,
ALICE, and CMS data, an increase in dN/dy as a function of col-
lision energy is observed, presented in Fig. 3(a). We note that the
CMS Collaboration used non-single-diffractive events (NSD) to nor-
malize the yield, while in ALICE a normalization to the inelastic
events (INEL) was used. For a direct comparison at LHC energies,
the INEL Ξ± yield has to be scaled up by 26% to get the yield nor-
malized to NSD events [2]. After scaling, the Ξ± yields per unit
of rapidity obtained by ALICE agree with those published by CMS
[11]. For Ξ− baryons and antibaryons, we also observe a slight
rise in mean pT with collision energy, as seen in Fig. 3(b). The

Fig. 3. (a) dN/dy and (b) 〈pT〉 of Ξ± and Ω± as a function of collision energy. The
STAR and CMS data are normalized to NSD (see text) events, STAR Ξ± and Ω± are
represented by open rhombuses and stars, respectively. CMS Ξ± measurements are
shown as open triangles, and ALICE Ξ± and Ω± as filled circles and squares. Multi-
strange baryons produced using PYTHIA Perugia 2011 simulation (Ξ± baryons as a
long-dashed curve and Ω± baryons as a dashed curve) are plotted for reference.
The uncertainties are added in quadrature.

〈pT〉 of Ω± baryons at
√

s = 7 TeV is consistent with 0.2 TeV data,
where Ω± and Ξ± 〈pT〉 were consistent within large experimental
error. Due to the precision of the current measurements, a signif-
icant separation between the 〈pT〉 of Ω± and Ξ± is observed in√

s = 7 TeV pp collisions.

4.3. (Ω− + Ω+)/(Ξ− + Ξ+) ratio

The composition of Ξ− and Ω− baryons differs only by one va-
lence quark flavour: the d-quark in Ξ− is replaced by the s-quark
in Ω− . To investigate possible differences in the production mech-
anism of multi-strange baryons with and without the non-strange
quark, we study the ratio of (Ω− + Ω+) to (Ξ− + Ξ+) baryons as
a function of pT. The dependence on particle mass is reduced by
constructing spectra as a function of (mT − m0) for each baryon
species. To increase the statistical significance of the measure-
ment, for this ratio, the particle and antiparticle spectra are com-
bined. The ratio of the combined spectra, (Ω− +Ω+)/(Ξ− +Ξ+),
is shown in Fig. 4. We observe an increase in the ratio up to
(mT −m0) ∼ 1.5 GeV (which corresponds roughly to pT of 3 GeV/c
for either of the baryons), with a possible slope change at a higher
(mT − m0). The ratio was composed to investigate the possible sat-
Table 2
Tsallis fit parameters, yields, and 〈pT〉 for each particle species at |y| < 0.5, as well as yields and 〈pT〉 extracted from PYTHIA Perugia 2011 [4] simulations. Statistical and
then systematic uncertainties for the experimental values are listed. Sufficient statistics were generated to have less than 1% error on all model values.

Particle T (MeV) n χ2/NDF dN/dy ×103 data 〈pT〉 (GeV/c) data dN/dy ×103

P2011
〈pT〉 (GeV/c)
P2011

Ξ− 344 ± 5 ± 10 10.8 ± 0.4 ± 0.8 17.4/15 8.0 ± 0.1+0.7
−0.5 1.21±0.01±0.06 5.38 1.02

Ξ+ 339 ± 5 ± 9 10.4 ± 0.4 ± 0.5 14.4/15 7.8 ± 0.1+0.7
−0.5 1.21±0.01±0.06 5.21 1.02

Ω− 460 ± 40 ± 60 20 ± 9 ± 8 8.8/5 0.67 ± 0.03+0.08
−0.07 1.47±0.03±0.09 0.276 1.14

Ω+ 430 ± 30 ± 40 14 ± 5 ± 6 7.0/5 0.68 ± 0.03+0.08
−0.06 1.44±0.03±0.08 0.266 1.16
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Fig. 4. (Ω− + Ω+) to (Ξ− + Ξ+) ratio in
√

s = 7 TeV pp events as a function of
(mT − m0). Experimental data (closed symbols: data points; dashed curve: ratio of
Tsallis fits), and PYTHIA Perugia 2011 simulation (solid curve). Errors on experimen-
tal points were added in quadrature.

uration of the s-quark production with respect to production of the
non-strange quarks, which would be indicated by the flattening of
the (Ω− + Ω+)/(Ξ− + Ξ+) ratio. We found that the currently
available data does not allow for a firm conclusion.

4.4. Comparisons to PYTHIA Perugia 2011

The production of strangeness in pp collisions is not well de-
scribed by the currently available models. In particular, we com-
pare the obtained data to particle spectra from PYTHIA [14],
an event generator based on the leading order (LO) perturbative
Quantum Chromo-Dynamics (pQCD). PYTHIA is available in differ-
ent tunes, for example those listed in [4], each reflecting a distinct
aspect of particle production inferred from experimental data. Sev-
eral tunes were tested, among them PYTHIA Z1, Z2 [15], and Pe-
rugia 0 [4] tunes. These tunes were several times to an order of
magnitude below the measured multi-strange spectra and yields
(up to a factor 4 for Ξ± , 15 for Ω±) and thus were abandoned.

In this Letter, we use the central PYTHIA Perugia 2011 (P2011),
one of the more recent PYTHIA 6.4 tunes, which describes the
7 TeV pp charged particle spectra reasonably well. P2011 is tuned
to the multiplicity and charged particle pT distributions from 2010
LHC data (as were other tunes tested), utilizes the CTEQ5L parton
distribution function, and differs from other PYTHIA tunes by a sig-
nificant increase in multi-strange baryon yields. This is achieved
mainly by removing the baryon suppression inherently present
in the built-in “pop corn” meson creation mechanism, but also
by tuning the relative u and d vs. s-quark production rates, and
adjusting the suppression of the diquark–antiquark hadron pro-
duction scale [4]. The “pop corn” mechanism, used to describe
the hadron production in e+e− collisions via chromoelectric flux
tubes [16], suppresses baryon production by favouring soft quark–
antiquark pairing into mesons [17]. The mechanism was removed
in order to approximate more closely the multi-strange yields from
LEP experiments [4].

Although the charged-particle multiplicities are reasonably de-
scribed, as mentioned above, PYTHIA tunes tend to be several
times to an order of magnitude below measured multi-strange
values. P2011 significantly underestimates multi-strange particle
yields, as seen in Table 2, and does not reproduce the spectral
shapes of either Ξ− or Ω− baryons, with two exceptions. The

model describes the high pT tail of the Ξ± distribution and ap-
proaches the Ξ± distribution below pT < 0.85 GeV/c, as shown in
Fig. 2(b).

P2011 also underpredicts 〈pT〉 of multi-strange baryons at all
energies (Fig. 3(b)), and incorrectly models the increase in dN/dy
as a function of centre-of-mass energy (Fig. 3(a)). Indeed, in ex-
perimental data dN/dy increases by nearly a factor of three from√

s = 0.2 TeV collisions to those at
√

s = 7 TeV (factor 35 increase
in energy), while P2011 predicts a more modest gain. In both ex-
perimental data and P2011, a power-law increase of Ξ− baryon
yield is seen as a function of

√
s. Moreover, P2011 does not repro-

duce the relative Ω±/Ξ± spectral shape, nor the absolute value,
although the ratio does increase with increased pT, as shown in
Fig. 4.

5. Conclusions

Our precise measurements of Ξ− , Ξ+ , Ω− , and Ω+ in
√

s =
7 TeV pp collisions are a benchmark for improving future mod-
elling efforts, including valuable checks on possible hadron pro-
duction mechanisms, such as the flux-tube mechanism. In addi-
tion, the pT reach of the data to model comparison is the highest
ever achieved for multi-strange baryons. The relative production of
doubly-strange vs. triply-strange baryons introduces a further con-
straint on the pT dependence of particle production from flavour-
differentiated quarks. These considerations may enable a better
insight into pp collision dynamics, which in turn will serve as a
reference for better understanding of fundamental interactions un-
derlying particle creation mechanisms in pp collisions.
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P. Antonioli 97, L. Aphecetche 102, H. Appelshäuser 52, N. Arbor 64, S. Arcelli 21, A. Arend 52,
N. Armesto 12, R. Arnaldi 94, T. Aronsson 120, I.C. Arsene 85, M. Arslandok 52, A. Asryan 117,
A. Augustinus 29, R. Averbeck 85, T.C. Awes 74, J. Äystö 37, M.D. Azmi 13, M. Bach 35, A. Badalà 99,
Y.W. Baek 63,36, R. Bailhache 52, R. Bala 94, R. Baldini Ferroli 9, A. Baldisseri 11, A. Baldit 63,
F. Baltasar Dos Santos Pedrosa 29, J. Bán 47, R.C. Baral 48, R. Barbera 23, F. Barile 27, G.G. Barnaföldi 60,
L.S. Barnby 90, V. Barret 63, J. Bartke 104, M. Basile 21, N. Bastid 63, S. Basu 116, B. Bathen 54, G. Batigne 102,
B. Batyunya 59, C. Baumann 52, I.G. Bearden 71, H. Beck 52, I. Belikov 58, F. Bellini 21, R. Bellwied 110,
E. Belmont-Moreno 56, G. Bencedi 60, S. Beole 25, I. Berceanu 70, A. Bercuci 70, Y. Berdnikov 75,
D. Berenyi 60, D. Berzano 94, L. Betev 29, A. Bhasin 80, A.K. Bhati 77, J. Bhom 114, N. Bianchi 65, L. Bianchi 25,
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A. Kalweit 53, K. Kanaki 14, J.H. Kang 123, V. Kaplin 69, A. Karasu Uysal 29,122, O. Karavichev 44,
T. Karavicheva 44, E. Karpechev 44, A. Kazantsev 88, U. Kebschull 51, R. Keidel 124, P. Khan 89, M.M. Khan 13,
S.A. Khan 116, A. Khanzadeev 75, Y. Kharlov 43, B. Kileng 31, T. Kim 123, D.J. Kim 37, D.W. Kim 36, J.H. Kim 16,
J.S. Kim 36, M. Kim 36, M. Kim 123, S.H. Kim 36, S. Kim 16, B. Kim 123, S. Kirsch 35, I. Kisel 35, S. Kiselev 46,
A. Kisiel 29,118, J.L. Klay 4, J. Klein 82, C. Klein-Bösing 54, M. Kliemant 52, A. Kluge 29, M.L. Knichel 85,
A.G. Knospe 105, K. Koch 82, M.K. Köhler 85, A. Kolojvari 117, V. Kondratiev 117, N. Kondratyeva 69,
A. Konevskikh 44, A. Korneev 87, R. Kour 90, M. Kowalski 104, S. Kox 64, G. Koyithatta Meethaleveedu 40,
J. Kral 37, I. Králik 47, F. Kramer 52, I. Kraus 85, T. Krawutschke 82,30, M. Krelina 33, M. Kretz 35,
M. Krivda 90,47, F. Krizek 37, M. Krus 33, E. Kryshen 75, M. Krzewicki 85, Y. Kucheriaev 88, C. Kuhn 58,
P.G. Kuijer 72, I. Kulakov 52, P. Kurashvili 100, A. Kurepin 44, A.B. Kurepin 44, A. Kuryakin 87, S. Kushpil 73,
V. Kushpil 73, H. Kvaerno 17, M.J. Kweon 82, Y. Kwon 123, P. Ladrón de Guevara 55, I. Lakomov 42,
R. Langoy 14, S.L. La Pointe 45, C. Lara 51, A. Lardeux 102, P. La Rocca 23, C. Lazzeroni 90, R. Lea 20,
Y. Le Bornec 42, M. Lechman 29, S.C. Lee 36, G.R. Lee 90, K.S. Lee 36, F. Lefèvre 102, J. Lehnert 52,



ALICE Collaboration / Physics Letters B 712 (2012) 309–318 315

L. Leistam 29, M. Lenhardt 102, V. Lenti 98, H. León 56, I. León Monzón 106, H. León Vargas 52, P. Lévai 60,
J. Lien 14, R. Lietava 90, S. Lindal 17, V. Lindenstruth 35, C. Lippmann 85,29, M.A. Lisa 15, L. Liu 14,
P.I. Loenne 14, V.R. Loggins 119, V. Loginov 69, S. Lohn 29, D. Lohner 82, C. Loizides 67, K.K. Loo 37,
X. Lopez 63, E. López Torres 6, G. Løvhøiden 17, X.-G. Lu 82, P. Luettig 52, M. Lunardon 19, J. Luo 39,
G. Luparello 45, L. Luquin 102, C. Luzzi 29, K. Ma 39, R. Ma 120, D.M. Madagodahettige-Don 110,
A. Maevskaya 44, M. Mager 53,29, D.P. Mahapatra 48, A. Maire 58,82, M. Malaev 75,
I. Maldonado Cervantes 55, L. Malinina 59,i,ii, D. Mal’Kevich 46, P. Malzacher 85, A. Mamonov 87,
L. Manceau 94, L. Mangotra 80, V. Manko 88, F. Manso 63, V. Manzari 98, Y. Mao 39, M. Marchisone 63,25,
J. Mareš 49, G.V. Margagliotti 20,92, A. Margotti 97, A. Marín 85, C.A. Marin Tobon 29, C. Markert 105,
I. Martashvili 112, P. Martinengo 29, M.I. Martínez 1, A. Martínez Davalos 56, G. Martínez García 102,
Y. Martynov 2, A. Mas 102, S. Masciocchi 85, M. Masera 25, A. Masoni 96, L. Massacrier 109,102,
M. Mastromarco 98, A. Mastroserio 27,29, Z.L. Matthews 90, A. Matyja 104,102, D. Mayani 55, C. Mayer 104,
J. Mazer 112, M.A. Mazzoni 95, F. Meddi 22, A. Menchaca-Rocha 56, J. Mercado Pérez 82, M. Meres 32,
Y. Miake 114, L. Milano 25, J. Milosevic 17,i,iii, A. Mischke 45, A.N. Mishra 81, D. Miśkowiec 85,29, C. Mitu 50,
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V. Petráček 33, M. Petran 33, M. Petris 70, P. Petrov 90, M. Petrovici 70, C. Petta 23, S. Piano 92, A. Piccotti 94,
M. Pikna 32, P. Pillot 102, O. Pinazza 29, L. Pinsky 110, N. Pitz 52, D.B. Piyarathna 110, M. Płoskoń 67,
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