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Abstract

A search for the production of single top-quarks via flavour-changing neutral-currents is presented. Data collected with the ATLAS
detector at a centre-of-mass energy of

√
s = 7 TeV, corresponding to an integrated luminosity of 2.05 fb−1, are used. Candidate

events with a semileptonic top-quark decay signature are classified as signal or background-like events by using several kinematic
variables as input to a neural network. No signal is observedin the neural network output distribution and a Bayesian upper limit
is placed on the production cross-section. The observed upper limit at 95% confidence level on the cross-section multiplied by the
t → Wb branching fraction is measured to beσqg→t×B(t→ Wb) < 3.9 pb. This upper limit is converted using a model-independent
approach into upper limits on the coupling strengthsκugt/Λ < 6.9 · 10−3 TeV−1 andκcgt/Λ < 1.6 · 10−2 TeV−1, whereΛ is the new
physics scale, and on the branching fractionsB(t→ ug) < 5.7 · 10−5 andB(t→ cg) < 2.7 · 10−4.
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1. Introduction

The top quark is the heaviest elementary particle known, with
a mass ofmtop = 173.2± 0.9 GeV [1] that is close to the elec-
troweak symmetry breaking scale. For this reason it is an excel-
lent object to test the Standard Model (SM) of particle physics.
The properties of the top quark can be studied from proton-
proton (pp) collisions at

√
s = 7 TeV with the Large Hadron

Collider (LHC). Top-quark pair-production via the strong in-
teraction has been measured at the LHC [2, 3], and its cross-
section is in good agreement with the prediction of the SM.
Additionally, top quarks can be singly produced through three
different processes:t-channel,Wt associated production, ands-
channel. Onlyt-channel single top-quark production has been
observed so far [4–6]. According to the SM of particle physics,
flavour-changing neutral-current (FCNC) processes are forbid-
den at tree level and suppressed at higher orders due to the
Glashow-Iliopoulos-Maiani mechanism [7]. Extensions of the
SM with new sources of flavour predict higher rates for FC-
NCs involving the top quark; these extensions include new ex-
otic quarks [8], new scalars [9, 10], supersymmetry [11–14], or
technicolour [15] (for a review see Ref. [16]). If the new parti-
cles are heavy, which is consistent with the non-observation of
low-mass new particles at the Tevatron and LHC, their effects
on top-quark FCNCs can be parameterised in terms of a set
of dimension-six gauge-invariant operators [17]. The predicted
branching fractions for top quarks decaying to a quark and a
photon,Z boson, or gluon can be as large as 10−5 to 10−3 for
certain regions of the parameter space in the models mentioned.
For heavy new particles these branching fractions can be large,
if the new particles couple strongly to the SM particles.

According to the corresponding values of the unitary
Cabibbo-Kobayashi-Maskawa matrix, the top quark decays al-
most exclusively to aW boson and ab quark. FCNC top-

quark decays can be studied directly by searching for final states
with the corresponding decay particles [18, 19]. However, the
t → qg mode, whereq denotes either an up quarku or a
charm quarkc, is almost impossible to separate from generic
multijet-production via quantum chromodynamic (QCD) pro-
cesses, and a much better sensitivity can be achieved in the
search for anomalous single top-quark production. In the pro-
cess studied here, au or c quark and a gluong coming from
the colliding protons interact to produce a single top-quark.
The most general effective LagrangianLeff for this process re-
sulting from dimension-six operators contains only tensorcou-
plings [20] and it can be written as [21, 22]:

Leff = gs

∑

q=u,c

κqgt

Λ
t̄σµνT a( f L

q PL + f R
q PR)qGa

µν + h.c., (1)

where theκugt, κcgt are dimensionless parameters that relate the
strength of the new coupling to the strong coupling constantgs.
Λ is the new physics scale, related to the mass cutoff scale above
which the effective theory breaks down.T a are the Gell-Mann
matrices [23] andσµν = i

2[γµ, γν] transforms as a tensor under
the Lorentz group. Thef L,R

q are chiral parameters normalised
such that:| f L

q |2 + | f R
q |2 = 1. The operatorPL =

1
2(1− γ5) per-

forms a left-handed projection, whilePR =
1
2(1+ γ5) performs

a right-handed projection, whereγ5 represents the chirality op-
erator.Ga

µν is the gauge-field tensor of the gluon andt andq are
the fermion fields of the top and light quark, respectively.

The existence of FCNC operators allows not only the pro-
duction of top quarks viaqg → t, but also the decayst → qg.
In the allowed region of parameter space forκqgt/Λ an experi-
mentally favourable situation occurs when the FCNC produc-
tion cross-section for single top-quarks is several picobarns,
while the branching fraction for FCNC decays is very small,
and top quarks can thus be reconstructed in the SM decay mode
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t → Wb. TheW boson can decay into quark-antiquark pairs
(W → q1q̄2) or a lepton-neutrino pair (W → ℓν). In this anal-
ysis only the decay into a lepton-neutrino pair, the leptonic de-
cay, is considered. Thus the complete process searched for is
qg → t → W(→ ℓν)b. Selected events are characterised by an
isolated high-energy lepton (electron or muon), missing trans-
verse momentum from the neutrino and exactly one jet, pro-
duced by the hadronisation of theb quark. Events with aW
boson decaying into aτ lepton, where theτ decays into an elec-
tron or a muon are also selected. The process studied here can
be differentiated from SM single top-quark production because
the latter is usually accompanied by additional jets.

This analysis is the first search for FCNCs involving quarks
and gluons at the LHC. A search for the 2→ 1 processqg → t
was performed by CDF [24], while D0 set limits onκugt/Λ and
κcgt/Λ by analysing the 2→ 2 processesqq̄→ tū, ug→ tg, and
gg→ tū and theirc quark analogues [25].

2. Data sample and simulation

The ATLAS detector [26] is built from a set of cylindrical
subdetectors, which cover almost the full solid angle1 around
the interaction point.

ATLAS is composed of an inner tracking system close to
the interaction point, surrounded by a superconducting solenoid
providing a 2 T axial magnetic field, electromagnetic and
hadronic calorimeters, and a muon spectrometer. The electro-
magnetic calorimeter is a high-granularity liquid-argon (LAr)
sampling calorimeter with lead absorber. An iron-scintillator
tile calorimeter provides hadronic energy measurements inthe
central pseudorapidity range. The endcap and forward regions
are instrumented with LAr calorimeters for both electromag-
netic and hadronic energy measurements. The muon spectrom-
eter consists of three large superconducting toroids, a system of
trigger chambers, and precision tracking chambers.

This analysis is performed using
√

s = 7 TeV pp-collision
data recorded by ATLAS between March 22 and August 22,
2011. Only the periods in which all the subdetectors were op-
erational are considered, resulting in a data sample with a total
integrated luminosity of 2.05± 0.08 fb−1 [27, 28].

Detector and trigger simulations are performed with the stan-
dard simulation of ATLAS within the GEANT4 [29, 30] frame-
work. The same offline reconstruction methods used with data
events are applied to the simulated samples. Minimum bias
events generated by PYTHIA [31] are used to simulate multi-
ple pp interactions, corresponding to the LHC operation with
50 ns bunch separation and an average of six additionalpp in-
teractions per bunch crossing.

For the simulation of FCNC production of single top-quarks,
PROTOS [32] is used. The top quarks decay as expected in the

1In the right-handed ATLAS coordinate system, the pseudorapidity η is de-
fined asη = − ln[tan(θ/2)], where the polar angleθ is measured with respect
to the LHC beamline. The azimuthal angleφ is measured with respect to the
x-axis, which points towards the centre of the LHC ring. Thez-axis is parallel
to the anti-clockwise beam viewed from above. Transverse momentum and en-
ergy are defined aspT = p sinθ andET = E sinθ, respectively. The∆R distance
is defined as∆R =

√

(∆η)2 + (∆φ)2.

SM, and only the leptonic decay of theW boson is considered.
W bosons decaying into aτ lepton, where theτ decays into
an electron or a muon are included in both the signal and all
background samples. The CTEQ6 [33] leading-order (LO) par-
ton distribution functions (PDFs) are used and the hadronisation
of signal events is simulated with PYTHIA using the AMBT1
tunes [34] to the ATLAS collision data. It has been verified that
the kinematics of the signal process are independent of the a
priori unknown FCNC coupling.

Several SM processes are expected to have the same final-
state topology as the signal. Samples of simulated events for
the t-channel andWt single top-quark processes are gener-
ated by the AcerMC program [35] with the CTEQ6 LO PDFs
and hadronised with PYTHIA; for thes-channel process, the
MC@NLO [36] generator with the CTEQ6.6 [37] PDFs inter-
faced to HERWIG [38] and JIMMY [39].

The ALPGEN [40] program with the CTEQ6 LO PDFs is
interfaced to HERWIG and JIMMY to generateW+jets,Wbb̄,
Wcc̄, Wc andZ+jets events with up to five additional partons.
To remove overlaps between then andn + 1 parton samples
the MLM matching scheme [40] is used. The double count-
ing between the inclusiveW + n parton samples and samples
with associated heavy-quark pair-production is removed utilis-
ing an overlap-removal method based on∆R matching. The
parameters of HERWIG, with the MRST LO** [41] PDFs, and
JIMMY are tuned to ATLAS collision data with the correspond-
ing AUET1 tunes [42]. Diboson backgrounds fromWW, WZ
andZZ events are simulated using HERWIG. For the generation
of SM tt̄ events the MC@NLO generator with the CTEQ6.6
PDFs is used. The parton shower and the underlying event are
added using HERWIG and JIMMY.

3. Event selection

Events are considered only if they were accepted by a single-
lepton trigger [43]. The single-muon trigger threshold was
pT = 18 GeV, and the single-electron trigger threshold was
raised from anET of 20 GeV to 22 GeV for higher LHC lu-
minosities.

Electron candidates are defined as clusters of cells in the elec-
tromagnetic calorimeter associated with a well-measured track
fulfilling several quality requirements [44]. Electron candidates
are required to satisfypT > 25 GeV and|ηclus| < 2.47, where
ηclus is the pseudorapidity of the cluster of energy deposits in
the calorimeter. A veto is placed on candidates in the calorime-
ter barrel-endcap transition region, 1.37< |ηclus| < 1.52, where
there is limited calorimeter instrumentation. High-pT elec-
trons associated with theW-boson decay can be mimicked
by hadronic jets reconstructed as electrons, electrons from de-
cays of heavy quarks, and photon conversions. Since signal
electrons from theW-boson decay are typically isolated from
hadronic jet activity, these backgrounds can be suppressedvia
isolation criteria which require minimal calorimeter activity and
only low track pT in an η-φ cone around the electron candi-
date. Calorimeter isolation requires the sum of theET in cells
within a cone of∆R = 0.3 around each electron withpT > 25
GeV to satisfy

∑

ET(∆R < 0.3)/pT < 0.15. Similarly, the
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scalar sum of thepT of tracks around the electron must sat-
isfy
∑

pT(∆R < 0.3)/pT < 0.15. The electron trackpT and
the ET in associated cells are excluded from

∑

pT(∆R < 0.3)
and
∑

ET(∆R < 0.3), respectively. Muon candidates are re-
constructed by matching track segments or complete tracks in
the muon spectrometer with the inner detector tracks. The fi-
nal candidates are required to have a transverse momentum
pT> 25 GeV and to be in the pseudorapidity region of|η| < 2.5.
Isolation criteria are applied to reduce background eventsin
which a high-pT muon is produced in the decay of a heavy
quark. For the transverse energy within a cone of∆R = 0.3
about the muon direction,

∑

ET(∆R < 0.3)/pT < 0.15 is re-
quired, while the scalar sum of transverse momenta of addi-
tional tracks inside a∆R = 0.3 cone around the muon must sat-
isfy
∑

pT(∆R < 0.3)/pT < 0.10. Candidate events are required
to have exactly one isolated lepton (ℓ).

Jets are reconstructed using the anti-kt algorithm [45] with
the distance parameterR set to 0.4. The jets are then corrected
from the raw calorimeter response to the energies of the recon-
structed particles usingpT- and η-dependent factors, derived
from simulated events and validated with data [46]. Since the
signal process gives rise to only one high-pT jet, exactly one
reconstructed jet withpT > 25 GeV is required.

The magnitude of the missing transverse momentumEmiss
T is

defined asEmiss
T = | ~Emiss

T |, where ~Emiss
T is calculated using the

calibrated three-dimensional calorimeter energy clusters asso-
ciated with the jet together with either the calibrated calorimeter
energy cluster associated with an electron or thepT of a muon
track [47]. Transverse energy deposited in calorimeter cells but
not associated with any high-pT object is also included in the
Emiss

T calculation. Due to the presence of a neutrino in the final
state of the signal process,Emiss

T > 25 GeV is required. To fur-
ther reduce the number of multijet background events, which
are characterised by lowEmiss

T and low values of reconstructed

W-boson transverse massmW
T =

√

2
[

plep
T Emiss

T − ~plep
T · ~E

miss
T

]

,

the event selection requiresmW
T + Emiss

T > 60 GeV.
Finally, the selected jet has to be identified (b-tagged) as a

b-quark jet. The tagging algorithm exploits the properties of a
b-quark decay in a jet using neural-network techniques and the
reconstruction of a secondary vertex, and has an identification
efficiency measured to be about 57% intt̄ events [48]. Only
0.2% of light-quark jets and 10% ofc-quark jets are mis-tagged
asb-quark jets. The following samples are defined for this anal-
ysis: a “b-tagged sample” with exactly oneb-tagged jet, and a
“pretagged sample” without anyb-tagging requirement.

Assuming a cross-section of 1 pb for FCNC single top-quark
production, about 113 signal events in 2.05 fb−1 of collision
data are expected in theb-tagged sample.

The normalisations for the various background processes are
estimated either by using the experimental data or by using
Monte Carlo simulation scaled to the theoretical cross-section
predictions. For theW+jets andZ+jets backgrounds the kine-
matic distributions are modelled using simulated events, while
the inclusive cross-sections are calculated to next-to-next-to-
leading order (NNLO) with FEWZ [49]. The dominantW+jets
background process isWc production, whosek-factor is ob-

tained by comparing the NLO and LO cross-sections calculated
using MCFM [50]. TheW+(1 jet) andZ+(1 jet) background
normalisation uncertainties are estimated from the uncertainty
in the cross-section of theW/Z+(0 jet) process and the uncer-
tainty in the cross-section ratio ofW/Z+(1 jet) toW/Z+(0 jet).
A cross-section uncertainty of 4% is assigned for theW/Z+(0
jet) process. Variations consistent with experimental data are
made in ALPGEN to the factorisation and normalisation scale
and to the matching parameters, and yield a 24% uncertainty
on the cross-section ratio. Background contributions fromthe
heavy-quark processesWbb̄, Wcc̄ andWc have relative uncer-
tainties of 50%, estimated using a tag-counting method in con-
trol regions. Thett̄ cross-section is normalised to the approx-
imate NNLO-predicted value obtained using HATHOR [51].
The SM single top-quark production cross-section is also calcu-
lated to approximate NNLO [52–54]. A theoretical uncertainty
of 10% is assigned for SM top-quark production. The normal-
isation of the cross-section for production of diboson events is
obtained using NLO cross-section predictions and has an un-
certainty of 5%.

Multijet events may be selected if a jet is misidentified as an
isolated lepton or if the event has a non-prompt lepton that ap-
pears isolated. A binned maximum-likelihood fit to theEmiss

T
distribution is used to estimate the multijet background normal-
isation. A template of the multijet background is modelled us-
ing electron-like jets selected from jet-triggered collision data
and is referred to as a jet-electron model. Each jet has to ful-
fil the samepT andη requirements as a signal lepton, contain
at least four tracks to reduce the contribution from converted
photons, and deposit 80–95% of its energy in the electromag-
netic calorimeter. The uncertainty in the multijet background
normalisation is estimated to be 50% by fitting the distribution
of mW

T instead ofEmiss
T , and using jet-electron models built from

jet-triggered data samples with different average numbers of in-
elasticpp interactions per event. The shape of the jet-electron
data sample is used to model the multijet background shape in
the electron and muon channels. The validity of the model in
both channels is verified by comparing distributions of multijet-
sensitive variables to observed data.

In the b-tagged sample 26223 events are observed in data
compared to a prediction of 24000± 7000 events from our esti-
mates of SM backgrounds. Table 1 summarises the event yield
for each of the background processes considered. Each event
yield uncertainty in Table 1 combines the statistical uncertainty,
originating from the limited size of the used samples, with the
uncertainty in the cross-section or normalisation.

4. Data analysis

Given the large uncertainty in the expected background and
the small number of expected signal events estimated in Sec-
tion 3, multivariate analysis techniques are used to separate sig-
nal events from background events. We use a neural-network
classifier [55] that combines a three-layer feed-forward neural
network with a complex robust preprocessing. In order to im-
prove the performance and to avoid overtraining, Bayesian reg-
ularisation [56] is implemented during the training process. The

3
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Figure 1: Kinematic distributions of the three most significant variables normalised to the number of observed events for the pretagged selection (top) and in the
b-tagged selection (bottom), for the electron and muon channel combined: (a), (d) transverse momentum of theW boson, (b), (e)∆R between the jet and the lepton
and (c), (f) charge of the lepton. In these distributions thesignal contribution is shown stacked on top of the backgrounds, with a normalisation corresponding
to a cross-section of 100 pb. The hatched band indicates the statistical uncertainty from the sizes of the simulated samples and the uncertainty in the background
normalisation.

Table 1: Number of observed data events and expected number of background
events for theb-tagged sample. The uncertainties include the statisticalun-
certainty from the size of the simulated sample and the uncertainties on the
cross-section and the multijet normalisation.

Process Expected events
SM single top 1460 ± 150
tt̄ 660 ± 70
W+light jets 4700 ± 1100
Wbb̄/Wcc̄+jets 2700 ± 1500
Wc + jets 12100 ± 6700
Z+jets/diboson 700 ± 170
Multijet 1600 ± 800
Total background 24000 ± 7000
Observed 26223

network infrastructure consists of one input node for each of the
11 input variables plus one bias node, 13 nodes in the hidden
layer, and one output node which gives a continuous output in
the interval [−1, 1]. The training is done with a mixture of 50%
signal and 50% background events using about 650000 events,
where the different background processes are weighted accord-
ing to their expected numbers of events.

Theqg→ t→ bℓν process is characterised by three main dif-
ferences from SM processes that pass the event selection cuts.
Firstly, in single top-quark production via FCNCs, the top quark
is produced almost without transverse momentum. Therefore

the pT distribution of the top quark is much softer than the
pT distribution of top quarks produced through SM top-quark
production, and theW boson andb quark from the top-quark
decay are almost back-to-back with an opening angle nearπ.
Secondly, unlike in theW/Z+jet and diboson backgrounds, the
W boson from the top-quark decay has a very high momentum
and its highly-boosted decay products have small opening an-
gles. Lastly, the top-quark charge asymmetry differs between
FCNC processes and SM processes. The FCNC processes are
predicted to produce four times more single top quarks than
anti-top quarks, whereas in SM single top-quark productionand
all other SM backgrounds this ratio is at most two. All possi-
ble discriminating variables such as momenta, relative angles,
pseudorapidity, reconstructed particles masses, and lepton elec-
tric charge were explored, including variables obtained from the
reconstructedW boson and the top quark. To reconstruct the
four-momentum of theW boson, the neutrino four-momentum
is derived from the measured~Emiss

T since it cannot be measured
directly. The neutrino longitudinal momentum,pνz , is calculated
by imposing a kinematic constraint on themW invariant mass.
The twofold ambiguity is resolved by choosing the smallest|pνz |
solution, since theW boson is expected to be produced with
small pseudorapidity. The top-quark candidate is reconstructed
by adding the four-momentum of theb-tagged jet to the four-
momentum of the reconstructedW boson.

Eleven variables were selected as input to the neural network
after testing for each variable the agreement between the back-
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Figure 2: (a) Neural network output distribution scaled to the number of observed events in the pretagged sample. (b) Neural network output distribution scaled to
the number of observed events in theb-tagged sample. In these distributions the signal contribution is shown stacked on top of the backgrounds. The hatched band
indicates the statistical uncertainty from the sizes of thesimulated samples and the uncertainty in the background normalisation.

ground model and observed events in both the large sample of
pretagged events and theb-tagged sample. The first ten vari-
ables are the charge and thepT of the lepton, thepT, η and
mass of theb-tagged jet, the∆R between theb-tagged jet and
the charged lepton, the∆R between theb-tagged jet and the
reconstructedW boson, the opening angle∆φ between the di-
rections of theb-tagged jet and the reconstructedW boson, the
pT of theW boson and the reconstructed top-quark mass. The
last variable considered in the neural network is theW-boson
helicity. This is calculated as cosθ∗, the cosine of the angle
between the momentum of the charged lepton in theW-boson
rest-frame and the momentum of theW boson as seen in the top-
quark rest-frame. Table 2 shows a summary of the used vari-
ables ordered by their importance. The importance of the vari-
ables is estimated using an iterative procedure, removing one
variable at a time and recalculating the separation power. The
ordering is done in terms of relevance defined as standard de-
viations of the additional separation power given by each vari-
able. Distributions of the three most important variables in the
pretagged sample and theb-tagged sample, normalised to the
number of observed events, are shown in Figure 1. Since the
neural network benefits from the correlation between variables
and is trained to separate the signal process from all background
processes, the naively expected variables are not the most im-
portant ones, but variables, which are highly correlated tothem.

The resulting neural network output distributions for the var-
ious processes, scaled to the number of observed events in the
pretagged sample are shown in Figure 2(a). Figure 2(b) shows
these distributions in theb-tagged sample. Signal-like events
have output values close to 1, whereas background-like events
are accumulated near−1. We find good agreement between
the neural network output distributions for data and simulated
events in both the pretagged andb-tagged samples.

Table 2: Variables used as input to the neural network ordered by their impor-
tance.

Variable Significance (σ)

pW
T 57
∆R(b-jet,lep) 28
Lepton charge 22
mtop 20
mb-jet 15
ηb-jet 12
∆φ(W,b-jet) 11
plep

T 12

pb-jet
T 6.5

cosθ∗ 5.7
∆R(W,b-jet) 5.0

5. Systematic Uncertainties

Systematic uncertainties affect the signal acceptance, the nor-
malisation of the individual backgrounds, and the shape of the
neural network output distributions. All uncertainties described
below lead to uncertainties in the rate estimation as well asdis-
tortions of the neural network output distribution and are imple-
mented as such in the statistical analysis.

The momentum scale and resolution, as well as the trigger
and identification efficiency for single leptons is measured in
collision data usingZ → ee, Z → µµ, and W → eν de-
cays and corrective scale factors are applied to the simulation.
Uncertainties on these factors as functions of the lepton kine-
matics are around 5%. To evaluate the effect of momentum
scale uncertainties, the event selection is repeated with the lep-
ton momentum varied up and down by the uncertainty. For the
momentum resolution uncertainties, the event selection isre-
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peated with the lepton momentum smeared. The uncertainty in
the jet energy scale, derived using information from test-beam
data, collision data, and simulation varies between 2.5% and
8% (3.5% and 14%) in the central (forward) region, depending
on jet pT andη [46]. This includes uncertainties due to differ-
ent compositions of jets initiated by gluons or light quarksin
the samples and mis-measurements due to close-by jets. Addi-
tional uncertainties due to multiplepp interactions are as large
as 5% (7%) in the central (forward) region. Here, the central
region is defined as|η| < 0.8. An additional jet energy scale
uncertainty of up to 2.5%, depending on thepT of the jet, is
applied forb-quark jets due to differences between jets initi-
ated by gluons or light quarks as opposed to jets containing
b-hadrons. To evaluate the effect of these uncertainties the en-
ergy of each jet is scaled up or down by the uncertainty and the
change is also propagated to the missing transverse momen-
tum calculation. An uncertainty of 2% is assigned for the jet
reconstruction efficiency based on the agreement between effi-
ciencies measured in minimum bias and QCD dijet events and
simulated events [57]. For theb-tagging efficiencies and mis-
tag rates, jetpT- andη-dependent scale factors are applied to
match simulated distributions with observed distributions and
have uncertainties from 8–16% and 23–45%, respectively [48].

Systematic effects from mis-modelling in event generators
are estimated by comparing different generators and varying
parameters for the event generation. The effect of parton
shower and hadronisation modelling uncertainties is evaluated
by comparing two AcerMC samples interfaced to HERWIG
and PYTHIA, respectively. The amount of initial and final state
radiation is varied by modifying parameters in PYTHIA. The
parameters are varied in a range comparable to those used in the
Perugia Soft/Hard tune variations [58]. These uncertainties, the
parton shower modelling and variations of initial and final state
radiation are evaluated for all processes involving top quarks
including the signal. The impact of the choice of PDFs in the
simulation is studied by re-weighting the events accordingto
PDF uncertainty eigenvector sets (CTEQ6.6, MSTW2008 [59])
and estimated following the procedure described in [60]. The
uncertainties for the two PDF sets are added in quadrature. To
account for uncertainties connected with the simulation ofthe
W+jets sample several parameters in the generation of these
samples are varied and event kinematics are compared. The un-
certainty in the measured integrated luminosity is estimated to
be 3.7%.

The dominant uncertainties are the uncertainties in the jet
energy scale, the initial and final state radiation variations, and
uncertainties in theb-tagging efficiencies and mis-tag rates.

6. Results

A Bayesian statistical analysis [61, 62] using a binned likeli-
hood method applied to the neural network output distributions
for the electron and muon channel combined is performed to
measure or set an upper limit on the FCNC single top-quark
production cross-section.

Systematic uncertainties and their correlations among pro-
cesses are included with a direct sampling approach where the
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Figure 3: Distribution of the posterior probability function including all sys-
tematic uncertainties for (a) the expected upper limit and (b) the observed upper
limit at 95% C.L..

same Gaussian shift is applied to each source, process, and bin
for a given uncertainty. The posterior density function (pdf) is
obtained by creating a large number of samples of systematic
shifts. A separate likelihood distribution is obtained foreach
sample, and the final pdf is then the average over all of the in-
dividual likelihoods. This pdf gives the probability of thesig-
nal hypothesis as a function of the signal cross-section. Since
no significant rate of FCNC single top-quark production is ob-
served, an upper limit is set by integrating the pdf. To estimate
the a priori sensitivity, we use a pseudo-dataset corresponding
to the prediction from simulations (Asimov dataset) [63] and
treated in the same way as the observed dataset. The result-
ing expected upper limit at 95% confidence level (C.L.) on the
anomalous FCNC single top-quark production cross-sectionin-
cluding all systematic uncertainties is 2.4 pb, while the cor-
responding observed upper limit is 3.9 pb, as shown in Fig-
ures 3(a) and 3(b), respectively. To visualise the observedupper
limit in the neural network output distribution Figure 4 shows
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the FCNC single top-quark process scaled to observed upper
limit on top of the SM background processes. As a cross-check
we performed the full statistical analysis only for events with
NN output> 0, which yields an observed upper limit at 95%
C.L. of 5.9 pb. Using the NLO predictions for the FCNC sin-
gle top-quark production cross-section [64, 65], the measured
upper limit on the production cross-section is converted into
limits on the coupling constantsκugt/Λ andκcgt/Λ. Assuming
κcgt/Λ = 0 one findsκugt/Λ < 6.9 · 10−3 TeV−1 and assum-
ing κugt/Λ = 0 one findsκcgt/Λ < 1.6 · 10−2 TeV−1. Fig-
ure 5(a) shows the distribution of the upper limit for all pos-
sible combinations. Using the NLO calculation [66], upper
limits on the branching fractionsB(t → ug) < 5.7 · 10−5 as-
sumingB(t → cg) = 0, andB(t → cg) < 2.7 · 10−4 assuming
B(t→ ug) = 0 are derived, as shown in Figure 5(b).
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Figure 4: Distributions of the neural network output: Observed signal and
simulated background output distribution normalised to the mean value of the
marginalised nuisance parameters, zoomed into the signal region. The FCNC
single top quark process is normalised to the observed limitof 3.9 pb. The
hatched band indicates the statistical uncertainty from the sizes of the simu-
lated samples and the uncertainty in the background normalisation.

7. Conclusion

In summary, a data sample selected to consist of events with
an isolated electron or muon, missing transverse momentum
and ab-quark jet has been used to search for FCNC produc-
tion of single top-quarks at the LHC. No evidence for such
processes is found and the upper limit at 95% C.L. on the
production cross-section is 3.9 pb. The limits set on the cou-
pling constantsκugt/Λ andκcgt/Λ and the branching fractions
B(t → ug) < 5.7 · 10−5 assumingB(t → cg) = 0, and
B(t → cg) < 2.7 · 10−4 assumingB(t → ug) = 0 are the
most stringent to date on FCNC single top-quark production
processes forqg → t and improve on the previous best lim-
its [25] by factors of 4 and 15, respectively.

]-1 [TeVΛ
ugtκ0 1 2 3 4 5 6 7

-310×

]
-1

 [T
eV

Λcg
t

κ

0

2

4

6

8

10

12

14

16

18

20

-310×

Observed
Expected

ATLAS

 Excluded region

-1
 L dt = 2.05 fb∫
 = 7 TeVs

(a)

ug)→B(t
0.00 0.01 0.02 0.03 0.04 0.05 0.06

-310×

cg
)

→
B

(t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-310×

Observed
Expected

ATLAS

 Excluded region

-1
 L dt = 2.05 fb∫
 = 7 TeVs

(b)

Figure 5: Upper limit (a) on the coupling constantsκugt/Λ andκcgt/Λ and (b)
on the branching fractionst → ug andt → cg.

8. Acknowledgements

We thank CERN for the very successful operation of the
LHC, as well as the support staff from our institutions without
whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; Yer-
PhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azer-
baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC,
NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST
and NSFC, China; COLCIENCIAS, Colombia; MSMT CR,
MPO CR and VSC CR, Czech Republic; DNRF, DNSRC
and Lundbeck Foundation, Denmark; EPLANET and ERC,
European Union; IN2P3-CNRS, CEA-DSM/IRFU, France;
GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Founda-
tion, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and
Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; FOM and NWO, Netherlands; RCN, Nor-
way; MNiSW, Poland; GRICES and FCT, Portugal; MERYS
(MECTS), Romania; MES of Russia and ROSATOM, Russian

7



Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and
MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain;
SRC and Wallenberg Foundation, Sweden; SER, SNSF and
Cantons of Bern and Geneva, Switzerland; NSC, Taiwan;
TAEK, Turkey; STFC, the Royal Society and Leverhulme
Trust, United Kingdom; DOE and NSF, United States of Amer-
ica.

The crucial computing support from all WLCG partners is
acknowledged gratefully, in particular from CERN and the
ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Den-
mark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA
(Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC
(Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in
the Tier-2 facilities worldwide.

References

[1] Tevatron Electroweak Working Group, arXiv:hep-ex/1107.5255 (2011).
[2] ATLAS Collaboration, Phys. Lett. B 707 (2012) 459–477.
[3] CMS Collaboration, Phys. Rev. D 84 (2011) 092004.
[4] T. Aaltonen,et al., Phys. Rev. Lett. 103 (2009) 092002.
[5] D0 Collaboration, Phys. Lett. B 705 (2011) 313–319.
[6] CMS Collaboration, Phys. Rev. Lett. 107 (2011) 091802.
[7] S. L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2 (1970) 1285–1292.
[8] J. A. Aguilar-Saavedra, Phys. Rev. D 67 (2003) 035003. Erratum-ibid. D

69 (2004) 099901.
[9] M. E. Luke, M. J. Savage, Phys. Lett. B 307 (1993) 387–393.

[10] S. Bejar, J. Guasch, J. Sola, Nucl. Phys. B 600 (2001) 21–38.
[11] D. Delepine, S. Khalil, Phys. Lett. B 599 (2004) 62–74.
[12] J. J. Liu,et al., Phys. Lett. B 599 (2004) 92–101.
[13] J. J. Cao,et al., Phys. Rev. D 75 (2007) 075021.
[14] J. M. Yang, B.-L. Young, X. Zhang, Phys. Rev. D 58 (1998) 055001.
[15] G. Lu, et al., Phys. Rev. D 68 (2003) 015002.
[16] J. A. Aguilar-Saavedra, Acta Phys. Polon. B 35 (2004) 2695–2710.
[17] R. Coimbra, P. Ferreira, R. Guedes, O. Oliveira, A. Onofre, et al., Phys.

Rev. D 79 (2009) 014006.
[18] CDF Collaboration, Phys. Rev. Lett. 101 (2008) 192002.
[19] D0 Collaboration, Phys. Lett. B 701 (2011) 313–320.
[20] J. A. Aguilar-Saavedra, Nucl. Phys. B 812 (2009) 181–204.
[21] M. Hosch, K. Whisnant, B. Young, Phys. Rev. D 56 (1997) 5725–5730.
[22] E. Malkawi, T. M. Tait, Phys. Rev. D 54 (1996) 5758–5762.
[23] F. Halzen, A. D. Martin, Quarks and Leptons: An Introductory Course in

Modern Particle Physics, 1984.
[24] T. Aaltonen,et al., Phys. Rev. Lett. 102 (2009) 151801.
[25] V. M. Abazov,et al., Phys. Lett. B 693 (2010) 81–87.
[26] ATLAS Collaboration, JINST 3 (2008) S08003.
[27] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630.
[28] ATLAS Collaboration, ATLAS-CONF-2011-116 (2011).

http://cdsweb.cern.ch/record/1376384.
[29] S. Agostinelli,et al., Nucl. Instrum. Meth. A 506 (2003) 250–303.
[30] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823–874.
[31] T. Sjostrand, S. Mrenna, P. Z. Skands, JHEP 05 (2006) 026.
[32] J. A. Aguilar-Saavedra, Nucl. Phys. B 837 (2010) 122–136.
[33] J. Pumplin,et al., JHEP 0207 (2002) 012.
[34] ATLAS Collaboration, ATLAS-CONF-2010-031 (2010).

http://cdsweb.cern.ch/record/1277665.
[35] B. P. Kersevan, E. Richter-Was, arXiv:hep-ph/0405247 (2004).
[36] S. Frixione and B.R. Webber, JHEP 0206 (2002) 029.
[37] P. M. Nadolsky,et al., Phys. Rev. D 78 (2008) 013004.
[38] G. Corcella,et al., JHEP 0101 (2001) 010.
[39] J. M. Butterworth, J. R. Forshaw, M. H. Seymour, Z. Phys.C 72 (1996)

637–646.
[40] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. D.Polosa, JHEP

07 (2003) 001.
[41] A. Sherstnev, R. Thorne, Eur. Phys. J. C 55 (2008) 553–575.
[42] ATLAS Collaboration, ATL-PHYS-PUB-2010-014 (2010).

https://cdsweb.cern.ch/record/1303025.

[43] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1849.
[44] ATLAS Collaboration, arXiv:hep-ex/1110.3174 (2011).
[45] G. P. Salam, G. Soyez, JHEP 05 (2007) 086.
[46] ATLAS Collaboration, hep-ex/arXiv:1112.6426 (2011).
[47] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844.
[48] ATLAS Collaboration, ATLAS-CONF-2011-102 (2011).

http://cdsweb.cern.ch/record/1369219.
[49] C. Anastasiou, L. J. Dixon, K. Melnikov, F. Petriello, Phys. Rev. D 69

(2004) 094008.
[50] J. Campbell, R. Ellis, Phys. Rev. D 60 (1999) 113006.
[51] M. Aliev, et al., arXiv:hep-ph/1007.1327 (2010).
[52] N. Kidonakis, Phys. Rev. D 83 (2011) 091503.
[53] N. Kidonakis, Phys. Rev. D 82 (2010) 054018.
[54] N. Kidonakis, Phys. Rev. D 81 (2010) 054028.
[55] M. Feindt, U. Kerzel, Nucl. Instrum. Meth. A 559 (2006) 190–194.
[56] D. MacKay, Neural Computation 4 (1992) 448–472.
[57] ATLAS Collaboration, ATLAS-CONF-2010-054 (2010).

http://cdsweb.cern.ch/record/1281311.
[58] P. Z. Skands, Phys. Rev. D 82 (2010) 074018.
[59] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63

(2009) 189–285.
[60] J. M. Campbell, J. Huston, W. Stirling, Rept. Prog. Phys. 70 (2007) 89.
[61] I. Bertram, et al., A Recipe for the construction of confidence limits,

Technical Report FERMILAB-TM-2104, 2000.
[62] E. T. Jaynes, Probability Theory: The Logic of Science,Cambridge Uni-

versity Press, 2003.
[63] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J.C 71 (2011)

1554.
[64] J. Gao, C. S. Li, L. L. Yang, H. Zhang, Phys. Rev. Lett. 107(2011)

092002.
[65] J. J. Liu, C. S. Li, L. L. Yang, L. G. Jin, Phys. Rev. D 72 (2005) 074018.
[66] J. J. Zhang, C. S. Li, J. Gao, H. Zhang, Z. Li,et al., Phys. Rev. Lett. 102

(2009) 072001.

8



The ATLAS Collaboration

G. Aad48, B. Abbott110, J. Abdallah11, A.A. Abdelalim49, A. Abdesselam117, O. Abdinov10, B. Abi111, M. Abolins87,
O.S. AbouZeid157, H. Abramowicz152, H. Abreu114, E. Acerbi88a,88b, B.S. Acharya163a,163b, L. Adamczyk37, D.L. Adams24,
T.N. Addy56, J. Adelman174, M. Aderholz98, S. Adomeit97, P. Adragna74, T. Adye128, S. Aefsky22, J.A. Aguilar-Saavedra123b,a,
M. Aharrouche80, S.P. Ahlen21, F. Ahles48, A. Ahmad147, M. Ahsan40, G. Aielli132a,132b, T. Akdogan18a, T.P.A. Åkesson78,
G. Akimoto154, A.V. Akimov 93, A. Akiyama66, M.S. Alam1, M.A. Alam75, J. Albert168, S. Albrand55, M. Aleksa29,
I.N. Aleksandrov64, F. Alessandria88a, C. Alexa25a, G. Alexander152, G. Alexandre49, T. Alexopoulos9, M. Alhroob20, M. Aliev15,
G. Alimonti88a, J. Alison119, M. Aliyev10, B.M.M. Allbrooke17, P.P. Allport72, S.E. Allwood-Spiers53, J. Almond81,
A. Aloisio101a,101b, R. Alon170, A. Alonso78, B. Alvarez Gonzalez87, M.G. Alviggi101a,101b, K. Amako65, P. Amaral29,
C. Amelung22, V.V. Ammosov127, A. Amorim123a,b, G. Amorós166, N. Amram152, C. Anastopoulos29, L.S. Ancu16, N. Andari114,
T. Andeen34, C.F. Anders20, G. Anders58a, K.J. Anderson30, A. Andreazza88a,88b, V. Andrei58a, M-L. Andrieux55, X.S. Anduaga69,
A. Angerami34, F. Anghinolfi29, A. Anisenkov106, N. Anjos123a, A. Annovi47, A. Antonaki8, M. Antonelli47, A. Antonov95,
J. Antos143b, F. Anulli131a, S. Aoun82, L. Aperio Bella4, R. Apolle117,c, G. Arabidze87, I. Aracena142, Y. Arai65, A.T.H. Arce44,
S. Arfaoui147, J-F. Arguin14, E. Arik18a,∗, M. Arik 18a, A.J. Armbruster86, O. Arnaez80, C. Arnault114, A. Artamonov94,
G. Artoni131a,131b, D. Arutinov20, S. Asai154, R. Asfandiyarov171, S. Ask27, B. Åsman145a,145b, L. Asquith5, K. Assamagan24,
A. Astbury168, A. Astvatsatourov52, B. Aubert4, E. Auge114, K. Augsten126, M. Aurousseau144a, G. Avolio162, R. Avramidou9,
D. Axen167, C. Ay54, G. Azuelos92,d, Y. Azuma154, M.A. Baak29, G. Baccaglioni88a, C. Bacci133a,133b, A.M. Bach14,
H. Bachacou135, K. Bachas29, M. Backes49, M. Backhaus20, E. Badescu25a, P. Bagnaia131a,131b, S. Bahinipati2, Y. Bai32a,
D.C. Bailey157, T. Bain157, J.T. Baines128, O.K. Baker174, M.D. Baker24, S. Baker76, E. Banas38, P. Banerjee92, Sw. Banerjee171,
D. Banfi29, A. Bangert149, V. Bansal168, H.S. Bansil17, L. Barak170, S.P. Baranov93, A. Barashkou64, A. Barbaro Galtieri14,
T. Barber48, E.L. Barberio85, D. Barberis50a,50b, M. Barbero20, D.Y. Bardin64, T. Barillari98, M. Barisonzi173, T. Barklow142,
N. Barlow27, B.M. Barnett128, R.M. Barnett14, A. Baroncelli133a, G. Barone49, A.J. Barr117, F. Barreiro79, J. Barreiro Guimarães da
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R. Stroynowski39, J. Strube128, B. Stugu13, I. Stumer24,∗, J. Stupak147, P. Sturm173, N.A. Styles41, D.A. Soh150,u, D. Su142,
HS. Subramania2, A. Succurro11, Y. Sugaya115, T. Sugimoto100, C. Suhr105, K. Suita66, M. Suk125, V.V. Sulin93, S. Sultansoy3d,
T. Sumida67, X. Sun55, J.E. Sundermann48, K. Suruliz138, S. Sushkov11, G. Susinno36a,36b, M.R. Sutton148, Y. Suzuki65,
Y. Suzuki66, M. Svatos124, Yu.M. Sviridov127, S. Swedish167, I. Sykora143a, T. Sykora125, B. Szeless29, J. Sánchez166, D. Ta104,
K. Tackmann41, A. Taffard162, R. Tafirout158a, N. Taiblum152, Y. Takahashi100, H. Takai24, R. Takashima68, H. Takeda66,
T. Takeshita139, Y. Takubo65, M. Talby82, A. Talyshev106, f , M.C. Tamsett24, J. Tanaka154, R. Tanaka114, S. Tanaka130, S. Tanaka65,
Y. Tanaka99, A.J. Tanasijczuk141, K. Tani66, N. Tannoury82, G.P. Tappern29, S. Tapprogge80, D. Tardif157, S. Tarem151, F. Tarrade28,
G.F. Tartarelli88a, P. Tas125, M. Tasevsky124, E. Tassi36a,36b, M. Tatarkhanov14, Y. Tayalati134d, C. Taylor76, F.E. Taylor91,
G.N. Taylor85, W. Taylor158b, M. Teinturier114, M. Teixeira Dias Castanheira74, P. Teixeira-Dias75, K.K. Temming48,
H. Ten Kate29, P.K. Teng150, S. Terada65, K. Terashi154, J. Terron79, M. Testa47, R.J. Teuscher157, j, J. Thadome173, J. Therhaag20,
T. Theveneaux-Pelzer77, M. Thioye174, S. Thoma48, J.P. Thomas17, E.N. Thompson34, P.D. Thompson17, P.D. Thompson157,
A.S. Thompson53, L.A. Thomsen35, E. Thomson119, M. Thomson27, R.P. Thun86, F. Tian34, M.J. Tibbetts14, T. Tic124,
V.O. Tikhomirov93, Y.A. Tikhonov106, f , S Timoshenko95, P. Tipton174, F.J. Tique Aires Viegas29, S. Tisserant82, B. Toczek37,
T. Todorov4, S. Todorova-Nova160, B. Toggerson162, J. Tojo65, S. Tokár143a, K. Tokunaga66, K. Tokushuku65, K. Tollefson87,
M. Tomoto100, L. Tompkins30, K. Toms102, G. Tong32a, A. Tonoyan13, C. Topfel16, N.D. Topilin64, I. Torchiani29, E. Torrence113,
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119 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
120 Petersburg Nuclear Physics Institute, Gatchina, Russia
121 (a)INFN Sezione di Pisa;(b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa,Italy
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