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Understanding the consequences of the E7ð7Þ duality on the UV properties of N ¼ 8 supergravity

requires unravelling when and how duality-covariant actions can be constructed so as to accommodate

duality-invariant counterterms. For nonsupersymmetric Abelian gauge theories exhibiting Uð1Þ-duality,
with and without derivative couplings, it was shown that such a covariant construction is always possible.

In this paper we describe a similar procedure for the construction of covariant nonlinear deformations of

Uð1Þ-duality invariant theories in the presence of rigid N ¼ 2 supersymmetry. This is a concrete step

towards studying the interplay of duality and extended supersymmetry.
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I. INTRODUCTION

When the equations of motion of a classical field theory
are said to respect a duality invariance, they are invariant
under the rotation of an electric field into its magnetic field
or of a field strength into its dual field strength. Among
the theories exhibiting such properties are Maxwell’s the-
ory, whose duality group is Uð1Þ, and extended N � 2
supergravity theories, whose duality properties were first
discussed in [1]. Of recent interest is the maximally super-
symmetric supergravity theory [2], N ¼ 8 supergravity,
whose duality group is E7ð7Þ. Such dualities could have

rather nontrivial consequences. Indeed, it has been sug-
gested that the UV behavior of N ¼ 8 supergravity,
known through four loops [3], could be explained by the
absence of possible E7ð7Þ-invariant counterterms, as dem-

onstrated through six-loops [4,5].
The requirement that duality invariance be respected is

very constraining, as it relates free and interaction terms.
Perturbatively, the duality symmetry is expected to be
continuous; as such, it has an associated conserved current,
known as the Noether-Guillard-Zumino (NGZ) current [6].
The conservation of the NGZ current leads to nontrivial
constraints on the possible deformations of the theories, as
the addition of duality-invariant terms does not generically
preserve the duality invariance of the equations of motion.
An essential ingredient in these constraints is the fact that
the dual field strengths are determined by the equations of
motion which receive contributions from the deformation
terms and thus modify the NGZ current. In N ¼ 8 super-
gravity, the relation between E7ð7Þ invariants and the con-

servation of the duality current was raised in [7].
A very natural and interesting question is whether and in

what sense classical duality symmetries are preserved at
the quantum level. A direct answer to this question is not
straightforward; for example, it is not clear how duality

symmetries are generically visible in scattering ampli-
tudes. While multisoft scalar limits can probe [8] the coset
structure of supergravity theories, it is not immediately
clear how to similarly probe the transformation properties
of vector fields. Several indirect approaches are possible.
One could construct the (local part of the) effective action
and see if the equations of motion derived from it obey the
same duality symmetry as at the classical level. Another
approach would be to construct rational functions of
momenta obeying the properties of scattering amplitudes
which also obey the multisoft scalar limit constraints. Both
approaches have been explored in [4,5,7], respectively, for
constraining and constructing possible counterterms of
N ¼ 8 supergravity.
There exist examples of duality transformations which

receive modifications at the quantum level. For two-
dimensional sigma models, T-duality parallels electric/
magnetic duality of four dimensional gauge theories. In
addition to replacing a field by its dual, invariance under
duality transformation also requires changes of the pa-
rameters of the theory (i.e. of the target space supergravity
fields). It was shown in [9] that the T-duality transforma-
tion rules [10] which guarantee the duality invariance of
sigma models at one-loop level should be modified at
higher loops. These higher-loop corrections may also be
reinterpreted as higher-loop corrections to the relation
between the sigma model fields and their duals. It is thus
important to keep in mind the possibility of similar cor-
rections in more general duality-satisfying interacting
quantum field theories.
In order for a theory to preserve, at the quantum level,

the duality of its classical equations of motion, while
admitting a duality-invariant counterterm, it is necessary
that it admits higher-order deformations that maintain the
action’s duality covariance. Recently, Bossard and Nicolai
suggested [11] that there exist algorithms to perturbatively
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deform all duality-satisfying theories in a manner consis-
tent with the classical duality transformations. If true,
besides offering a possibility of constraining the finiteness
of N ¼ 8 supergravity [7,11,12], it suggests the possibil-
ity of constructing nontrivial Born-Infeld-type super-
gravity theories the first of which would be N ¼ 2
supergravity, as proposed in [12].

The procedures outlined in [11] involved adding one
nonlinear initial deformation source to the consistency
relations imposed by the tree-level duality transformations
and solving them—resulting in an infinite number of terms
contributing to the effective action. Such consequences are
in line with expectations based on soft scalar limits [5] in
the case ofN ¼ 8 supergravity. The unmodified covariant
procedure of [11], however, does not reproduce known
simpler duality-satisfying effective actions. In [12] three
of the current authors explored the single-deformation-
source approach and found that, in general, an infinite
series of deformations of the consistency relations are
required to reproduce known results. Indeed, obtaining
even the venerable Born-Infeld (BI) model in the absence
of supersymmetry requires an infinite sequence of defor-
mation sources to the consistency relations. A generalized
procedure was therefore proposed and analyzed for bo-
sonic theories with no explicit derivatives. The algorithms
developed in [12] were used in [13] to construct a class of
self-dual models which, in addition to standard BI terms
Fn, include higher derivatives terms @4nF2nþ2.

A necessary step for the extension of this procedure to
supergravity theories (and for showing that it is indeed
possible to preserve the classical duality symmetry in the
presence of quantum corrections) is the construction of
supersymmetric theories of vector multiplets exhibiting
duality symmetries. Such actions have been constructed
previously through different methods: a manifestly super-
symmetric Born-Infeld model was constructed in [14],
nonlinear superfield actions with spontaneously broken
supersymmetry were studied in [15–17], and models with
manifest supersymmetry and nonlinear electromagnetic
duality were developed in [18–21].

In this paper we describe the application of the con-
structions of [11,12] to theories with rigid N ¼ 2 super-
symmetry when the duality is of Uð1Þ type. It is important
to stress that this setup is different from the one of super-
gravity theories exhibiting duality symmetries. Indeed,
here the starting action is free and the deformation may
be tuned as desired; if the tree-level action is interacting,
the deformation is generated by quantum corrections
within this theory and cannot be freely adjusted. While
the former setup is far less constraining than the latter, the
construction of deformations of free actions has proved in
the past not to be straightforward.

After setting up a convenient notation, in Sec. II we
briefly review the generalized procedure of [12], and the
known duality-consistent models in the context ofN ¼ 2

supersymmetry. In Sec. III we describe a new form of the
action in terms of corrections generated by a deformation
source. This allows us to write the action directly in terms
of a recursively solved nonlinear constraint. We provide
examples of specific sources in Sec. IV and discuss how
they can be simply combined to generate a wide variety of
actions, including the BI action found in the literature. We
conclude and comment on the next steps required towards
approaching the construction of a Born-Infeld-type
N ¼ 2 supergravity and potential ramifications for
N ¼ 8 supergravity in Sec. V. In Appendix Awe provide,
for completeness, information on N ¼ 0 and N ¼ 1
duality-invariant models. In Appendix B we argue that
under N ¼ 2 supersymmetry, in contrast with N ¼ 1,
the electromagnetic duality models require the presence of
spacetime derivatives acting on superfields. In Appendix C
we provide a summary of our N ¼ 2 superspace
conventions.

II. REVIEW

Let us begin by recalling the covariant construction [12]
of duality-satisfying actions in terms of deformation
sources. We will then proceed to summarize the known
N ¼ 2 supersymmetric theories whose equations of
motion are duality invariant.

A. Generalized duality-covariant procedure

To efficiently formulate classical duality relations, and
their corrections, it is useful to organize fields F and dual
fields G such that the classical duality transformations act
as simply as possible. For Maxwell’s theory, as well as
supersymmetric versions, this duality transformation can
be expressed as a simple multiplication by a phase B and
the relevant complex field basis is

T ¼ F� iG; T ¼ Fþ iG (2.1)

or rather their self-dual and anti-self-dual components

T� ¼ 1
2 ðT � ieTÞ and T� ¼ 1

2 ðT � ieTÞ as follows:
�T� ¼ iBT� �T� ¼ �iBT�: (2.2)

Throughout this paper we suppress spacetime indices
whenever possible. However, introducing the tilde opera-
tion, as we do in defining T�, involves normalized con-
traction with the Levi-Civita symbol,

~A�� � 1
2�

����A��: (2.3)

A similar organization of fields holds for supergravity
theories; the main difference is the appearance of scalar
field-dependent matrices in the analogs of the expressions
above [6,22]. In terms of these fields, the undeformed
linear duality constraint on the equations of motion of field
strengths T can be given quite simply by a ‘‘twisted self-
duality’’ constraint:
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Tþ ¼ T� ¼ 0: (2.4)

In these variables, the constraint [6] that the action be self-
dual is

T þTþ � T�T� ¼ 0: (2.5)

The twisted self-duality relation (2.4) may be interpreted as
more fundamental than the action. Indeed, the action can
be determined by its relation to the dual field strength. In
the case of gauge theories this relation is just

G ¼ 2
�S
�F

: (2.6)

For supergravity theories the fieldsF andG (and thereby T)
acquire further indices, specifying their transformation
under the duality group, e.g. T � TAB, etc. In the following
we will not write such indices.

A covariant procedure proposed in [12], generalizing that
of [11], parametrizes the possible deformations of an action
in terms of a function IðT�; Tþ; �Þ where � is a dimen-
sionful coupling constant. We start with a duality conserv-
ing initial action Sinitial, and a duality-invariant counterterm
(or deformation) �S, expressible as a function of the con-
jugate self-dual field strength Tþ. We wish to arrive at an
action Sfinal that incorporates the counterterm yet still con-
serves the duality current. We proceed as follows [12]:

(1) Take the variation of the counterterm with respect to
the field strength, and express as a function of T�,
and Tþ,

��S
�Tþ ! �IðT�; Tþ; �Þ

�Tþ : (2.7)

(2) Introduce an ansatz for the deformation source
IðT�; Tþ; �Þ. In general, this may be taken to de-
pend on all possible duality invariants.

(3) Constrain the self-dual field strength to this variation:

Tþ ¼ �IðT�; Tþ; �Þ
�Tþ : (2.8)

(4) Translate Eq. (2.8) to a differential constraint on
Sfinal.

(5) Introduce an ansatz for Sfinal, which is analytic
around the origin, in terms of Lorentz invariants
constructed from T� and Tþ. For the case of Uð1Þ,
as we will see in Sec. III, this will be straightforward
for N ¼ 2 Abelian gauge theories. In general this
is unknown and can depend on other fields (e.g.
scalars) in nontrivial ways.

(6) Solve for both the I ansatz parameters, as well as
the final action ansatz parameters, order by order in
the coupling constant, enforcing the consistency of
the relevant NGZ consistency equation and any
additional desired symmetries of the target action,
enlarging the ansatz if one runs into inconsistency.

The duality conservation relation (2.5) imposes con-
straints on the possible deformation sources. If the defor-
mation source IðT; T; �Þ is Hermitian, this constraint is
simply that I be invariant under the duality transformation,
Eq. (2.2),

ðTþ �

�Tþ � T� �

�T�ÞIðT�; Tþ; �Þ ¼ 0: (2.9)

This differential operator ‘‘measures’’ the charge of I
under the Uð1Þ duality transformation (2.2) and thus re-
quires that I is invariant. As discussed in [12], an invariant
deformation source does not imply that the deformation of
the action is also invariant; rather, as discussed in [6], the
complete deformed action should transform nontrivially
under duality transformations.
In Secs. III and IV we will see that these steps have

natural counterparts in models with N ¼ 2 rigid super-
symmetry; they will allow us to easily superpose arbitrary
Uð1Þ-invariant deformation sources1 and will lead to a
straightforward generation of new classes of models—as
well as a systematic reconstruction of known ones.

B. N ¼ 2 supersymmetry and duality

The interplay between supersymmetry and duality in-
variance has been studied at length in the literature. A
derivation and a review of the main results are given by
Kuzenko and Theisen in [19]. While it is known how to
promote essentially every duality-satisfying bosonic model
to an N ¼ 1 supersymmetric one, adding further super-
charges proved to be relatively difficult. N ¼ 2 super-
symmetric extensions of the BI theory have been found
[16,17,19–21]; one of their essential features is the pres-
ence of explicit spacetime superfield derivatives in the
action. We will review here these actions; in Appendix B
we will argue that any such action necessarily contains
spacetime derivatives, in addition to spinorial derivatives
of the superfields.
In the absence of hypermultiplets, the standard N ¼ 2

superspace provides an effective framework for organizing
actions and their deformations. It is parametrized by
four bosonic and eight fermionic coordinates ZA ¼
ðxa; �	i ; ��i_	Þ, with a and 	 being a vector and Weyl spinor
Lorentz indices and i ¼ 1, 2 being the SUð2Þ R-symmetry
index. Actions describing the dynamics of N ¼ 2 vector
multiplets are written in terms of the (anti) chiral superfield

strengths W and W which satisfy the Bianchi identities2

D ijW ¼ DijW : (2.10)

1Here Uð1Þ invariance refers to invariance under duality trans-
formations which, in terms of the field variables T and T�, act
as Uð1Þ transformations.

2The derivatives Dij and �Dij are defined as Dij ¼ Di	Dj
	

and Dij ¼ Di
	D

j _	. See also Appendix C.
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For an Abelian gauge symmetry they can be solved by
expressing the superfield strength in terms of an uncon-
strained prepotential Vij:

W ¼ D4DijVij; W ¼ D4DijVij: (2.11)

The overall factors of D4 and D4 guarantee that W

and W are chiral and antichiral, respectively, since

Di
	D

4U ¼ 0 for any superfield U.
Similarly to the N ¼ 0 and N ¼ 1 theories, duality

transformations for N ¼ 2 theories may be implemented
[19] in the path integral as a Legendre transform. One starts
with the action

S inv ¼ S½W ;W � � i

8

Z
d8ZWMþ i

8

Z
d8ZW M;

(2.12)

treating W and W are unconstrained superfields (i.e. not
obeying the Bianchi identity). M and its conjugate are

determined by varying S with respect to W and W

iM � 4
�

�W
S½W ;W �;

�iM � 4
�

�W
S½W ;W �: (2.13)

Their equations of motion

D ijM ¼ DijM (2.14)

have the same functional form as the Bianchi identities
(2.10).

The infinitesimal duality transformations are therefore
very similar to the N ¼ 0 and N ¼ 1 ones:

�W ¼ BM; �M ¼ �BW : (2.15)

The requirement that Sinv in Eq. (2.12) is invariant under
this transformation leads to the N ¼ 2 analog of the
duality conservation (NGZ) relation (2.5)Z

d8ZðW 2 þM2Þ ¼
Z

d8ZðW 2 þM2Þ; (2.16)

originally proven in [18], where it was called the ‘‘N ¼ 2
self-duality equation’’. This is the direct analog of the
N ¼ 1 NGZ relation and reduces to it upon truncation
of N ¼ 1 chiral multiplet from the N ¼ 2 vector multi-
plet and integration over two fermionic coordinates.
One could in fact reconstruct the N ¼ 2 constraint by
starting from its N ¼ 1 limit and requiring that it is
manifestly supersymmetric and that it remains bilinear in
superfields [12].

Solutions of this equation have proven fairly elusive.
The free N ¼ 2 supersymmetric Maxwell action

S free ¼ 1

8

Z
d8ZW 2 þ 1

8

Z
d8ZW 2

(2.17)

satisfies this constraint. An interacting action

S ¼ 1

4

Z
d8ZX þ 1

4

Z
d8ZX; (2.18)

where the chiral superfieldX is a functional ofW andW
and is a solution of the constraint

X ¼ XD4 X þ 1
2W

2; (2.19)

was proposed in [16,17]; this action was proven in [18] to
obey theN ¼ 2 self-duality constraint (2.16). This system
may be solved perturbatively in the number of fields
[17,19–21] and leads to an action of the form

SN¼2 ¼ Sfree þ
Z

d12ZW 2 W 2YðD4W 2;D4W 2Þ
þOð@�W Þ; (2.20)

where Y is a Born-Infeld-type functional. The extra terms
with spacetime derivatives @�W are required for N > 1

actions, see Appendix B. The system (2.18) and (2.19) was
introduced in [16,17] as the N ¼ 2 generalization of the
Born-Infeld action.
An action exhibiting D3 brane type shift symmetry,

exposing the spontaneous breaking of translational invari-
ance in the directions transverse to the brane, was proposed
in [19]. It simultaneously solves the N ¼ 2 NGZ con-
straint (2.16).

S BI ¼ Sfree þ Sint (2.21)

Sint¼1

8

Z
d12Z

�
W 2W 2

�
�þ�2

2
ðD4W 2þD4W 2Þ

þ�3

4
ððD4W 2Þ2þðD4W 2Þ2þ3ðD4W 2ÞðD4W 2ÞÞ

�

þ1

3

�
�2

3
W 3hW 3þ�3

2

�
ðW 3W 3ÞD4W 2

þðW 3
hW 3ÞD4W 2þ 1

24
WW 4

��
þOðW 10Þ

�
;

(2.22)

where we have introduced a dimensionful coupling �,
usually set to unity in the literature. The unique term

with no fermionic or spacetime derivatives, W 2W 2
,

yields the known F4 term of the Born-Infeld action,
c.f. Appendix A. The sixth-order terms, apart from the

W 3hW 3
terms with spacetime derivatives, also corre-

spond to a straightforward generalization of the bosonic BI
model. This action was confirmed3 in [20,21]; moreover, it
belongs to the class of actions constructed in [20] which
also exhibit another nonlinearly realized N ¼ 2 super-
symmetry algebra.

3Reference [20] assigns to h a factor of � 1
2 relative to the

convention of [19].
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The construction we will detail in later sections will
allow us to recover the action (2.22) among infinitely
many other actions. While all of these actions are expres-
sible in the form of Eq. (2.18), i.e. given by the sum of a
chiral and antichiral actions, they will not generically
satisfy Eq. (2.19). Relaxing the requirement that the action
has the form (2.19) leads, as we will see, to a variety of
actions with different properties.

III. CONSTRUCTION OF
DUALITY-SATISFYING ACTIONS

An important lesson from the construction of bosonic
gauge theory duality-covariant actions was that the twisted
self-duality constraint can be seen as more fundamental
than the action. Indeed, the twisted self-duality constraint
determines the action through the definition of the dual
field G, see Eq. (2.6). The supersymmetric generalization
of this feature is that an N ¼ 2 twisted self-duality con-
straint should determine the action through the definition
(2.13) of the dual field M. We will discuss the N ¼ 2
case in the same language as the generalized procedure
[12] and so begin by describing the suitable twisted self-
duality constraint and its deformation sources. We will
then proceed, for a generic deformation source I , to con-
struct an action with the desired properties.

A. Twisted self-duality

As we saw in Sec. II B, W and M are interchanged by
infinitesimal duality transformations. Similarly to the
N ¼ 0 case, they may be combined into T variables
which are simply rescaled by such transformations: there
are two chiral

Tþ ¼ W � iM; Tþ ¼ W þ iM (3.1)

and two antichiral fields

T� ¼ W � iM; T� ¼ W þ iM; (3.2)

each pair having one positive and one negative charge
under the Uð1Þ duality transformation:

�Tþ
�Tþ

� �
¼ iB 0

0 �iB

� �
Tþ
Tþ

� �
;

�T�
�T�

� �
¼ iB 0

0 �iB

� �
T�
T�

� �
:

(3.3)

The behavior of these fields are summarized in Table I,
which allows us to identify immediately the kind of super-
space integral that is needed to turn some product of super-
fields into a supersymmetric action as well as identify its
properties under duality transformations. The twisted self-
duality constraint is the same as (2.4)

Tþ ¼ T� ¼ 0; (3.4)

while the supersymmetric NGZ constraint (2.16) becomes

Z
d8ZTþTþ �

Z
d8ZT �

T� ¼ 0; (3.5)

whose solutions we would like to construct.
As in the bosonic case, we begin with an ‘‘initial

source of deformation’’ IðT�; TþÞ which is a function
of the superfields not set to zero by (3.4). On dimen-
sional grounds, any such I will depend on a dimen-
sionful coupling �. Moreover, since both chiral and
antichiral superfields can appear as arguments, I is
naturally a full superspace integral. We will further
assume that I is Hermitian, which will lead to a simple
characterization of the solutions to (3.5). The deforma-
tion of the linear twisted self-duality constraint (3.4) will
be given by

Tþ¼�IðT�;TþÞ
�Tþ ; ðTþÞ� ¼T�¼�IðT�;TþÞ

�T� ; (3.6)

where, in the second equality, we used the assumption

that IðT�;T þÞ ¼ IðT�;T þÞ. Any deformation source
yields an action; the NGZ identity (3.5) identifies the
deformation sources leading to actions with duality-
invariant equations of motion. Indeed, by replacing
(3.6) into (3.5) we find a differential equation for I :

0 ¼
Z

d8ZTþ �

�Tþ IðT�; TþÞ

�
Z

d8ZT� �

�T� IðT�; TþÞ: (3.7)

It is worth noting that, since I is a full superspace
integral, each of the two superficially chiral integrals
above is, in fact, also an integral over the full super-
space. A notable difference from the N ¼ 0 case is that
the supersymmetric NGZ constraint involves a spacetime
integral, which projects out possible total derivatives in
its integrand. A solution to Eq. (3.7) is that I is invari-
ant under the Uð1Þ duality transformation (3.3). Indeed,
as in the bosonic case, the operator�

Tþ �

�Tþ � T� �

�T�

�
(3.8)

measures the charge under such transformations. A
slightly more general solution to Eq. (3.7) allows I to
be invariant up to total derivatives.

TABLE I. The four combinations of superfields have � chi-
rality and � duality charge.

Combinations of superfields Chirality Charge

Tþ ¼ W � iM þ þ
Tþ ¼ W þ iM þ �
T� ¼ W � iM � þ
T� ¼ W � iM � �
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The twisted self-duality equations (3.6) can be solved
recursively and yield M as a series in � with coefficients

which are functions of W and �W of appropriate degrees
of homogeneity:

M ¼ Mð0Þ þ X
n�1

�nMðnÞðW ; WÞ: (3.9)

Taking into account the fact that I is Oð�Þ, the recursive
solution for Eqs. (3.6) is

MðnÞ � ��n

�
�

�Tþ I½T�ðW ;Mðn�1ÞÞ; �TþðW ;Mðn�1Þ�

� Xn�1

j¼1

�jMðjÞ
�

with �m>n ! 0; (3.10)

with Mð0Þ being the solution to the linear twisted self-

duality constraint, Mð0Þ ¼ �iW .
With a solution in hand, the action may then be found by

integrating Eqs. (2.13). This can be done directly on a case
by case basis. We will show that it is in fact straightforward
to carry out this integration for a general I . The resulting
action has a simple form as demonstrated by the examples
detailed in the next section.

As reviewed in Sec. II B, the NGZ consistency condition
(2.16) and (3.5) is simply the requirement that the right-
hand side of Eq. (2.12)—withW ,M and their conjugates
treated as independent fields—remains invariant under
duality transformations. While in general there exist

many duality invariants, given an action S½W ;W ; ��,
it is possible to construct a natural duality-invariant
expression4:

S inv ¼ ��
d

d�
S½W ;W ; ��: (3.11)

This construction is a particular example of the general fact
(see e.g. [6,19]) that the derivative of a duality-satisfying
action with respect to a duality-invariant parameter is
duality invariant. To see that this is indeed the case let us
carry out an infinitesimal duality transformation of this
relation:

�Sinv ¼ ��
d

d�

�Z
d8Z�W

�S

�W
þ

Z
d8Z�W

�S

�W

�
(3.12)

with �W and �W given by (2.15). The variation of the

action with respect to W and W can then be expressed,
using (2.13), in terms of M and its conjugate; thus, �Sinv

becomes

�Sinv ¼ � i

4
B�

d

d�

�Z
d8ZM2 �

Z
d8ZM2

�
: (3.13)

SinceW andW are independent of the coupling constant
�, we may freely add them to the parenthesis above:

�Sinv ¼ � i

4
B�

d

d�

�Z
d8ZðW 2 þM2Þ

�
Z

d8ZðW 2 þM2Þ
�
: (3.14)

This expression vanishes identically for M and M sat-
isfying the NGZ duality constraint (2.16), implying that
(3.11) indeed represents a valid choice of Sinv, though of
course not the only possible one.5

Clearly this choice of Sinv allows us, through Eq. (2.12),
to reconstruct the action in terms of W , M and their
conjugates. It is indeed easy to see that, upon use of
(3.11) and (2.12), becomes a first-order differential equa-

tion for S½W ;W ; ��

� �
d

d�
S½W ;W ; ��

¼ S½W ;W ; �� � i

8

Z
d8ZWM½W ;W ; ��

þ i

8

Z
d8ZW M½W ;W ; �� (3.15)

with the condition that at � ¼ 0 its solution should be the
free action. Its solution provides a form of the reconstruc-
tive identity for the action

S ¼ i

8�

Z
d�

�Z
d8ZWM½W ;W ; ��

�
Z

d8ZW M½W ;W ; ��
�
; (3.16)

where M½W ;W ; �� and M½W ;W ; �� are simulta-
neous solutions of the NGZ duality constraint (2.16) and
of the deformed twisted self-duality equation. The latter
introduces the dependence on the dimensionful coupling �
through the initial deformation source. Given such a solu-
tion (3.9) and (3.10), the action we are looking for is

S ¼ i
Z

d8ZW
X
n¼0

�n

8ðnþ 1ÞM
ðnÞ½W ;W � þ H:c::

(3.17)

One may then check, on a case by case basis, that both the
dual field M and its conjugate [also constructed from this
action as in Eq. (2.13)] reproduce the dual field that was
used to construct the action through Eq. (3.16).
This class of actions encompasses both the free action

(obtained for I ¼ 0) as well as the interacting actions

4The overall sign is chosen for later convenience.

5For example, any function of � and dS=d� will lead to a
possible candidate for the action. It is possible that all such
choices are in fact equivalent through a change of initial defor-
mation source, perhaps through a field redefinition.
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reviewed in the previous section. The relevant X function
is just

X � i

2�

Z
d�WM: (3.18)

This requires a very specific IBI—one that involves a
superposition of an infinite number of initial source terms,
much like the N ¼ 0 Born-Infeld models discussed in
[12,13]. We will present this aggregate deformation source
through order �3 in Sec. IV. It is not difficult to construct
higher-order terms which reproduce the action (2.18) and
(2.19).

B. Covariant construction of N ¼ 2-supersymmetric
duality-satisfying actions

Let us summarize here theN ¼ 2 generalization of the
bosonic covariant construction [12,13] reviewed in
Sec. II A beginning with some initial deformation or coun-
terterm �S. While some of the steps are very similar,
others depart from the bosonic ones due mainly to the
compact action introduced in Eq. (3.16).

(1) Take the variation of the counterterm with respect to
the field-strength superfield, and express as a func-
tion of T� and Tþ,

��S
�Tþ ! �IðT�; Tþ; �Þ

�Tþ : (3.19)

(2) Introduce an ansatz for the deformation source
IðT�; Tþ; �Þ. In general, this may be taken to de-
pend on all possible duality invariants.

(3) Constrain the dual field strength to this variation:

Tþ ¼ �IðT�; Tþ; �Þ
�Tþ (3.20)

(4) Solve Eq. (3.20) iteratively for the dual field M ¼
M½W ;W ; �� and its conjugate while checking
that the NGZ duality constraint is satisfied. Any
Uð1Þ-invariant Hermitian deformation source will
automatically lead to solutions which pass this
test.

(5) UseM and its conjugate found at step 4 to construct
the action

S ¼ i

8�

Z
d�

�Z
d8ZWM½W ;W ; ��

�
Z

d8ZW M½W ;W ; ��
�

(3.21)

while checking for additional desired properties and
enlarging the ansatz for I if necessary.

(6) Verify that M and its conjugate used at step 5 are
reproduced as

iM½W ;W ; �� � 4
�

�W
S½W ;W �;

�iM½W ;W ; �� � 4
�

�W
S½W ;W �:

(3.22)

It is important to point out that the last step above is not a
substitute for any of the earlier steps. For example, it is
possible to construct deformation sources I which, while
not solving the NGZ constraint lead nevertheless through
Eq. (3.20) to dual fieldsM and an action which reproduces
them.
We will proceed in the next section to apply this con-

struction to recover the actions reviewed in Sec. II B as
well as duality-covariant actions with manifest N ¼ 2
supersymmetry and quite novel structure.

IV. DUALITY EXAMPLES

In this section we will follow the steps outlined above
and discuss four examples of deformation sources and their
corresponding duality-covariant actions. We present each
source with an arbitrary scalar prefactor ða; b; c; dÞ. In each
subsection we will mention the relevant value necessary to
match terms present in the BI action given in Eq. (2.22). At
higher orders in the number of fields, the nested super-
derivatives can become quite lengthy. To shorten the ex-
pressions we introduce the notation

H ðnÞ ¼ D4ðW 2 �H ðn�1ÞÞ (4.1)

H ðnÞ ¼ D4ðW 2H ðn�1ÞÞ; (4.2)

with H ð0Þ � D4ðW 2Þ and H ð0Þ � D4ðW 2Þ. This nota-
tion will also eliminate the explicit spacetime derivatives,
unless they appear already in the deformation source.

A. ðT�Þ2ðTþÞ2
The lowest dimension ‘‘initial source of deformation’’

which is manifestly invariant under duality transformations
is

I 1 ¼ a�
Z

d12ZðT�Þ2ðTþÞ2; (4.3)

it also has a direct counterpart in the bosonic theory. Upon
use of the definition of T� and its conjugate in terms ofW
and M, Eq. (3.6) can be written as

M ¼ �iW þ 2a�iðD4ðW � iMÞ2ÞðW þ iMÞ:
(4.4)

This equation, and its conjugate involving M, can be
solved recursively order by order in �. The solution is

relatively compact6 with the coefficients of M ¼P
n�

nMðnÞ being given by
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M ð0Þ ¼ �iW ; (4.5)

MðnÞjn>0 ¼ ð�2Þ5�na
Xn�1

l¼0

Xn�ð1þlÞ

q¼0

	ðl; q; nÞD4

� ½Mðn�ð1þqþlÞÞMðqÞMðlÞ� (4.6)

with

	ðq; l;nÞ � 
2ðqÞ
2ðlÞ
2ðn� l� q� 1Þ: (4.7)


2ðxÞjx>0 � ð�2Þx=2; (4.8)


2ðxÞjx¼0 � 1: (4.9)

With the notation introduced in Eq. (4.2), the first few
terms in the expansion of M are

M ¼ �iW þ 16ai�WH ð0Þ

� i

2
ð16aÞ2�2W ððH ð0ÞÞ2 þ 2H ð1ÞÞ þ � � � : (4.10)

The action is then given directly by Eq. (3.17); since it is
linear inM, that a recursive solution forM automatically
translates into a recursive expression for the action. Here
we choose to solve the recursion and express it through �4

in the form of a Hermitian action:

Sint
1 ¼

Z
d12ZW 2W 2f�2a�þ 16a2�2ðH ð0Þ þH ð0ÞÞ � 128a3�3ðH ð0Þ2 þ 2H ð1Þ þH ð0Þ2 þ 2H ð1ÞÞ

þ 1024a4�4ð6ðH ð0ÞH ð1Þ þH ð0ÞH ð1ÞÞ þ 4ðH ð2Þ þH ð2ÞÞ þH ð0Þ3 þH ð0Þ3Þ
� 8192a5�5ð6ðH ð0Þ2H ð0Þ2 þ 2ðH ð0ÞH ð2Þ þH ð0ÞH ð2ÞÞ þ 2H ð1Þ2 þ 2H ð1Þ2Þ
þ 8ðH ð1ÞH ð0Þ2 þH ð3Þ þH ð0Þ2 þH ð1Þ �H ð3ÞÞ þH ð0Þ4 þH ð0Þ4Þ þOð�6Þg: (4.11)

Note that setting a ¼ �2�4 recovers the terms in the BI
action, Eq. (2.22) through �2 which do not contain the
spacetime Laplacian, as well as relevant contributions at
higher orders. While some sequences of terms—such as

those depending only on powers of H ð0Þ—can be re-
summed, it does not appear that this action has a closed-
form expression.

B. ðT�Þ3hðTþÞ3
As reviewed in Sec. II B, the term (W 3hW 3

) in the BI
action (2.22) is required if that action is to be interpreted as
the supersymmetric D3-brane action. Such a term will not
appear in an action of the type (3.17) unless we add a term
like ðT�Þ3hðTþÞ3 to the initial deformation source. Such

terms may be obtained from those discussed in [12] by
dressing them with spacetime derivatives. Let us therefore
consider the duality invariant

I 2 ¼ b�2
Z

d12zðT�Þ3hðTþÞ3: (4.12)

The twisted self-duality equation Eq. (3.6) can be written
as

M ¼ �iW þ 3ib�2ðW þ iMÞ2ðD4hðW � iMÞ3Þ
(4.13)

and, together with its conjugate, can be solved for M and

M. The first few terms in their solution are

M ¼ �iW þ 25 � 3ib�2W 2ðD4hW 3Þ � 29 � 32ib2�4W 2½2W ðD4hW 3Þ2 þ 3D4ðhðW 4D4W 3Þ�
þ 213 � 33ib3�6W 2½12WD4ðhðW 4D4ðhðW 3ÞÞÞÞD4ðhðW 3ÞÞ þ 9ðD4ðhð �W 5D4ðhðW 3ÞÞ2ÞÞ
þD4ðhð �W 4D4ðhðW 4D4ðhðW 3ÞÞÞÞÞÞÞ þ 5W 2D4ðhðW 3ÞÞ3� þ � � � : (4.14)

Because of the presence of the Laplacian, it is inconvenient to use the notation (4.2) for this deformation; we will instead
express the action in terms of W and its conjugate. Through order �4 it is

6It reflects the fact that when the source of deformation is a single quartic term, we have a cubic deformation of the linear constraint,
as was also noticed in the ‘‘Model A’’ explored in [13].
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S int
2 ¼

Z
d12Z

�
�4b�2ðW 3hðW 3Þ þW 3

hðW 3ÞÞ þ 26
9

5
b2�4ð3W 3hðW 4D4ðhðW 3ÞÞÞ

þ 2W 4
hðW 3ÞD4ðhðW 3ÞÞ þ 2W 4hðW 3ÞD4ðhðW 3ÞÞ þ 3 �W 3

hðW 4D4ðhðW 3ÞÞÞÞ þ � � �
�
: (4.15)

Here we chose the interaction terms in the action as a full superspace integral, making use of the fact that the nonlinear
terms in M contain the appropriate chiral projector. It is not difficult to see that, by choosing b ¼ � 1

576 ¼ �2�63�2 we
recover theh-dependent term in the �2 contribution to the BI action Eq. (2.22) as well as relevant contributions at higher
orders.

C. ðT�Þ4h2ðTþÞ4
Invariants of type Eq. (4.3) naturally generalize to higher orders—for example

I 3 ¼ c�3
Z

d12zðT�Þ4h2ðTþÞ4: (4.16)

With this deformation source, the twisted self-duality equation Eq. (3.6) is

M ¼ �iW þ 4ic�3ðW þ iMÞ3ðD4h2ðW � iMÞ4Þ: (4.17)

As in the previous two cases, this equation and its conjugate can be solved recursively for M and M, leading to

M ¼ �iW þ 29ic�3W 3D4ðh2ð �W 4ÞÞ � 217ic2�6W 3ð4D4ðh2ðW 6D4ðh2ðW 4ÞÞÞÞ þ 3W 2D4ðh2ð �W 4ÞÞ2Þ
þ 226ic3�9W 3ð12W 2D4ðh2ðW 4ÞÞÞD4ðh2ðW 6D4ðh2ðW 4ÞÞÞÞ þ 9D4ðh2ðW 8D4ðh2ðW 4ÞÞ2ÞÞ
þ 8D4ðh2ðW 6D4ðh2ðW 6D4ðh2ðW 4ÞÞÞ þ 6W 4D4ðh2ðW 4ÞÞ3Þ � � � : (4.18)

Absorbing the overall chiral projector in the nonlinear terms into the integration measure and thus expressing the action as
a Hermitian full superspace integral we find, through Oð�6Þ that

Sint
3 ¼

Z
d12Z

�
�16c�3ðW 4hðhðW 4ÞÞþW 4

hðhðW 4ÞÞÞþ214
1

7
c2�6ð4W 4hðhðW 6D4ðhðhðW 4ÞÞÞÞÞ

þ3W 6
hðhðW 4ÞÞD4ðhðhðW 4ÞÞÞþ3W 6hðhðW 4ÞÞD4ðhðhðW 4ÞÞÞ

þ4W 4
hðhðW 6D4ðhðhðW 4ÞÞÞÞÞÞþ���

�
: (4.19)

To recover the h2 term in the �3 contribution to the BI
action Eq. (2.22), as well as relevant terms at higher orders,
we can set c ¼ �2�123�2.

D. ðT�Þ2ðTþÞ2D4ððT�Þ2ÞD4ððTþÞ2Þ
Another interesting invariant constructed out of four T�

and four Tþ factors and a number of superderivatives is

I4¼�3d
Z
d12ZðT�Þ2ðTþÞ2D4ððT�Þ2ÞD4ððTþÞ2Þ: (4.20)

The resulting constraint equation is

M ¼ �iW þ 2id�3ðW þ iMÞfD4ððW � i �MÞ2Þ
�D4ððW � iMÞ2D4ððW þ iMÞ2ÞÞ
þD4ððW � iMÞ2D4ððW þ iMÞ2

�D4ððW � iMÞ2ÞÞÞg: (4.21)

Solving it recursively leads, order by order in �, to the
following interaction terms in the action:

Sint
4 ¼

Z
d12ZW 2W 2f�16d�3ðH ð1ÞþH ð1ÞÞ

þ4096d2�6ð2ðH ð1ÞH ð2ÞþH ð1ÞH ð2ÞÞ
þH ð0ÞH ð1Þ2þH ð4ÞþH ð0ÞH ð1Þ2þH ð4ÞÞ
þOð�9Þg: (4.22)

The leading �3 term recovers the final �3 terms in the BI
action (2.22) with d chosen to be d ¼ 2�10.

E. BI action through �3

By suitably combining the deformation sources dis-
cussed above with the mentioned relative coefficients

IBI¼�
Z
d12Zð�2�4ðT�Þ2ðTþÞ2

þ�22�63�2ðT�Þ3hðTþÞ3
þ�32�123�2ðT�Þ4h2ðTþÞ4
��32�10ðT�Þ2ðTþÞ2 �D4ððT�Þ2ÞD4ððTþÞ2ÞþOð�4ÞÞ

(4.23)
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and carrying out the procedure of Sec. III B we recover the
Born-Infeld action from the literature given above in
Eq. (2.22). While the solution to the twisted self-duality
constraint is inherently nonlinear in the initial deformation
source, to this order only a small number of cross terms are
actually relevant. At higher orders in � more such terms
will become important together with the appearance of
new invariants that may be added to the initial deformation
source. However, not all cross terms can be modified by
adding higher-order invariants. For example, at �4 the only
new source should likely be ðT�Þ5h3ðTþÞ5 which clearly
cannot modify the majority of Oð�4Þ terms in the action.

F. More general models

Any Uð1Þ duality-invariant source can be used in this
procedure, and the new form of the action makes it rather
trivial to combine various sources to tailor craft duality-
consistent N ¼ 2 actions incorporating such sources—
such as recovering Eq. (2.22). Consider for example:

I ðn;mÞ
gen A ¼ �ðn;mÞðhnTðþÞ2ÞhmðhnTð�Þ2Þ; (4.24)

I ðn;mÞ
gen A0 ¼ �ðn;mÞðhnD4TðþÞ2ÞhmðhnD4Tð�Þ2Þ; (4.25)

I ðn;mÞ
gen A00 ¼ �ðn;mÞðhn@�TðþÞ@�TðþÞÞhmðhn@�T

ð�Þ@�Tð�ÞÞ;
(4.26)

I ðn;mÞ
gen B ¼ �2

ðn;mÞðhnTðþÞ3ÞhmðhnTð�Þ3Þ; (4.27)

I ðn;mÞ
gen B0 ¼ �2

ðn;mÞðhnD4TðþÞ3ÞhmðhnD4Tð�Þ3Þ; (4.28)

I ðn1;n2;mÞ
gen C ¼ �3

ðn1;n2;mÞðhn1TðþÞ2Þðhn2TðþÞ2Þhmðhn1Tð�Þ2Þ
� ðhn2Tð�Þ2Þ; (4.29)

for ni, m � 0. It is important to note that the �ni;m above

will have different dimensions based upon the value of ni,
m. Each of these is a duality-invariant initial source, and
generates novel duality-covariant actions through the pro-
cedure specified above. It is not difficult to see how these
patterns generalize to an infinite set of other initial sources.

The BI action is nonrenormalizable by power counting.
As a test of the preservation of duality symmetries at the
quantum level one may construct counterterms in the BI
model and check whether they preserve the classical Uð1Þ
duality symmetry as well as whether the higher-order terms
generated by our procedure reproduce those obtained by
direct calculation. Compared to supergravity theories, the
simplicity of the BI model provides a clear advantage as a
testing ground for such questions. One-loop calculations in
the N ¼ 2 BI theory have been already carried out in
[23,24] where it was found that the relevant momentum
space on-shell counterterm is

�div
1 ¼ cð�Þ

Z
dp1dp2dp3dp4�

4

�X
pi

�

�
Z

d8�

�
s2 þ 4

3
t2
�
W ðp1ÞW ðp2ÞW ðp3ÞW ðp4Þ:

(4.30)

Here cð�Þ is a divergent coefficient. This counterterm may
be written in position space in several ways, related by use
of on-shell conditions p2

i ¼ 0. One way, chosen in [24]
places one derivative on each superfield factor:

�div
1 ¼ cð�Þ

Z
d4xd8�

�
@�W @�W @�W @�W

þ 4

3
@�W @�W @�W @�W

�
: (4.31)

Using the on-shell conditions, p2
i ¼ 0, the first term may

also be written as

Z
d4xd8�hðW 2ÞðW 2Þ; (4.32)

which identifies it as arising from I ð1;0Þ
genA. The second term,

which is similar to bosonic terms considered in [13], arises

from I ð0;0Þ
genA00 . Through our procedure, these deformation

sources make definite predictions about some of the
higher-order terms that should appear in perturbative
higher-loop calculations. In particular, these terms will
necessarily be accompanied by higher powers of the coef-
ficient cð�Þ in Eq. (4.30) thus implying, apart from the field
dependence, also a definite strength of the corresponding
divergence. It should be interesting to check explicitly
whether these predicted higher-order terms correspond to
the results of multiloop and multileg perturbative calcula-
tions and, if they do not, whether the deformation source
may be suitably modified to accommodate the difference.
New deformation sources will, however, always be neces-
sary at each loop order. Indeed, the nonlinearity of
Eq. (3.20) implies that all higher-order terms which are
generated will contain more fields than the deformation
source. Consequently, new deformation sources will be
required to all orders in perturbation theory at least for
the four-superfield counterterm.
As we explained above, as long as the action depends

only on a chiral and antichiral superfieldsW ,W and their
spinorial and spacetime derivatives, one is free to make any
choice of I . When one such choice is made Eq. (3.6)
supplies a recursive procedure for obtaining M. While it
may not always be as simple as the quartic deformation
given in Eq. (4.3) the method described above, generalized
from [12], and as demonstrated also in [13], allows one to
recursively produce the action to any desired level. At each
order the number of invariants that can be used is limited,
given a fixed engineering dimension of the coupling con-
stant. We see, therefore, choices made at lower orders

BROEDEL et al. PHYSICAL REVIEW D 85, 125036 (2012)

125036-10



typically have definite consequences at higher orders in the
dimensional coupling.

It is in principle possible to impose additional require-
ments of our construction, in particular, the existence of
additional symmetries beyond duality. In general however,
it is not immediately clear how to encode such require-
ments in the choice of initial deformation source. It may be

possible to first identify the properties of M½W ;W ; ��
from the action (3.16) and then require that the twisted self-
duality equation is also invariant under the same trans-
formations. This could prove too strong a requirement, as
many algebraic equations can have the same solution.
Alternatively, one may start with the most general defor-
mation source with arbitrary coefficients and determine
them by requiring that the resulting action is invariant
under the desired symmetries. An important example in
this direction is the construction of the action in [19]—
which we have reproduced with our method—where in
addition to duality symmetry the action has to satisfy a
certain constant shift symmetry,7 associated with the D3
brane action:

�W ¼ �þOðW ;W Þ: (4.54)

Similarly, in [20] the N ¼ 2 supersymmetric Born-Infeld
action was required, apart from duality invariance, to also
have a partially broken N ¼ 4 supersymmetry. It is,
however, not obvious that the construction of the action
is algorithmic and whether actions of a different structure
may be obtained by relaxing any one of these properties.

Given any self-dual Hermitian function I of W , W and
their derivatives, our construction directly constructs, order
by order, an action which is self-dual and covariant, thus
showing that there exist infinitely many solutions to the
self-duality constraints. Further symmetry requirements
may also be imposed by a suitable choice of deformation
source I .

V. DISCUSSION

In this article we explore the space of Uð1Þ-duality-
invariant actions with rigid N ¼ 2 supersymmetry
employing and extending the methods developed and ex-
plored by three of the current authors in the previous
publication [12]. For these models we identify a useful
presentation of the action and the Uð1Þ duality constraint
such that—when the latter is solved perturbatively—the
construction of the former follows immediately. Namely,
when a certain choice of the manifestly duality-invariant
source of the deformation of the linear twisted self-duality
constraint is made, IðT; �T; �Þ, its derivative provides a dual
superfield M ¼ MðW ;W ; �Þ as the function of the

original superfields W , �W and as a power series in the
coupling �, as one can see from Eqs. (3.6) and (3.9).
The chiral part of the action is reconstructed by the inte-

gration over � of the product WMðW ;W ; �Þ, and the
conjugate to it provides the antichiral part of the action, as
shown in Eq. (3.16).
Employing this approach, we have identified several

initial deformations, which, after applying the recursive
method, collectively reproduce the actions found in
[16–19]. Beyond those, there are further classes of defor-
mations, which lead to a rich variety of duality-invariant
models with N ¼ 2 supersymmetry. One important
observation has been described in [12] for the nonsuper-
symmetric andN ¼ 1 supersymmetric theories: when the
initial source of deformation is quartic in F, the deforma-
tion of the linear twisted self-duality condition leads to a
Born-Infeld type action, that is an action containing all
powers of F up to infinity. The higher-order terms are
necessary to maintain the duality invariance of the equa-
tions of motion order by order. Using the corresponding
construction for N ¼ 2 supersymmetric models detailed
in this paper leads to the same conclusion.
The next natural step towards understanding the impli-

cations of E7ð7Þ duality for the UV behavior of N ¼ 8

supergravity is the construction of simpler examples, such
as U(1) duality-consistent deformed N ¼ 2 supergravity
theories. While the jump from rigid supersymmetry to
supergravity is nontrivial, we expect N ¼ 2 supergravity
to be an excellent proving ground. It is possible that a
suitable covariantization of the twisted self-duality con-
straint (3.20) coupled with an appropriate choice of defor-
mation source will allow us to construct the analog of the
actions discussed in this paper in the presence of local
N ¼ 2 supersymmetry.
We expect [25] that a suitable covariantization of the

twisted self-duality constraint (3.20) coupled with an
appropriate choice of deformation source will allow us to
construct the analog of the actions discussed in this paper
in the presence of local N ¼ 2 supersymmetry.
Let us briefly comment on the possible consequences

of such covariant constructions for UV divergences in
N ¼ 8 supergravity. If existent, the first UV divergence
for a four-point amplitude (which is sufficient to consider)
will be the N ¼ 8 supersymmetric completion of a term
of the form fðs; t; uÞR4, which necessarily contains a local
quartic term of the form fðs; t; uÞðdFÞ4 in momentum
space. Here f is a polynomial of the usual Mandelstam
variables whose degree depends on the loop order at which
the divergence arises.
Assuming E7ð7Þ symmetry to persist unmodified at the

quantum level, there exist E7ð7Þ-invariant counterterms at

sufficiently high loop order, as originally shown in [26]
and more recently reinforced in [5]. The sufficiency of
this reasoning was questioned in [7]: as E7ð7Þ is a continu-
ous global symmetry, it requires the conservation of the

7The shift symmetry of this type is reminiscent of the shift
symmetry part of the E7ð7Þ in N ¼ 8 supergravity, acting on
scalar fields.
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corresponding NGZ current [6] in addition to the E7ð7Þ
invariance of the counterterm candidates. It was, however,
subsequently suggested in [11] that there exists a procedure
of perturbative deformation of the linear self-duality con-
straint which always allows the addition to the action of the
candidate counterterm along with all other higher terms
required for the conservation of the NGZ current.

The covariant procedure introduced in [11] required
generalization to recover the venerable bosonic Born-
Infeld action [12]. This class of generalizations has been
applied to consider higher derivative terms [13] and in this
paper we have presented an application to N ¼ 2 global
supersymmetry. Discovering the way to meaningfully ap-
ply such generalizations to N ¼ 8 supergravity could
shed light on the UV-finiteness question. In principle, one
would start from the classical N ¼ 8 theory, in which the
supersymmetrization of the Ricci scalar contains terms
quadratic in vector fields:

SN¼8ðg��; F��; . . . ;�
2Þ ¼

Z 1

2�2
ðR� FN ð�ÞFþ . . .Þ:

(5.1)

One could imagine that attempting to construct a Born-
Infeld type N ¼ 8 supergravity, by adding suitable
deformation sources and applying the covariant duality
construction, results in two possible scenarios:

(i) construction of an N ¼ 8 Born-Infeld type super-
gravity is possible, either for a general value g of the
four-vector terms

SBI
N¼8ðg��; F��; . . . ;�

2; g2Þ
¼

Z �
1

2�2
ðR� FN ð�ÞFþ � � �Þ

þ g2F4f4ðs; t; uÞ þ � � �
þ g2mFnfnðs; t; u; . . .Þ þ � � �

�
(5.2)

or only for specific coefficients gnð�Þ of the n-vector
terms

SBI0
N¼8ðg��; F��; . . . ;�

2; g2Þ
¼

Z �
1

2�2
ðR� FN ð�ÞFþ � � �Þ

þ g4ð�2ÞF4f4ðs; t; uÞ þ � � �
þ gmð�2ÞFnfnðs; t; u; . . .Þ þ � � �

�
(5.3)

It is however only this second option which has the
possibility of being consistent with perturbation
theory of the undeformed N ¼ 8 supergravity.8

Superficially, the existence of such an action may
suggest that the E7ð7Þ duality symmetry is consistent

with the existence of UV divergences in this theory
(5.1). One must however make sure that the higher-
order terms predicted by the covariant duality con-
struction are the same as those obtained from direct
calculations. Not being able to render them consis-
tent (e.g. by adjusting the deformation source) would
imply that some of the assumptions of the construc-
tion (e.g. that the tree-level duality transformations
are unmodified) may need to be relaxed.

(ii) construction of a Born-Infeld type N ¼ 8
supergravity is not possible. If it is possible to
simultaneously prove that the classical E7ð7Þ trans-
formations do not receive modifications at the quan-
tum level, then E7ð7Þ would predict UV finiteness of

N ¼ 8 supergravity in four dimensions.
Either outcome would expose more of the quantum

properties of N ¼ 8 supergravity and the consequence
classical duality symmetries have on them. Similar scenar-
ios exist in all theories exhibiting duality-invariant equa-
tions of motion. Along the way to N ¼ 8 supergravity,
consideration of such symmetries may lead to the identi-
fication of other supergravity theories with unexpectedly
good ultraviolet properties or may point to a mechanism
that makes duality symmetries consistent with the exis-
tence of counterterms/UV divergences.
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APPENDIX A: REVIEW OF N ¼ 0
AND N ¼ 1 DUALITY

A manifestly N ¼ 1 supersymmetric NGZ-type iden-
tity derived by Kuzenko and Theisen in [18], where it was
called ‘‘N ¼ 1 self-duality equation,’’ is

8While the � dependence of n-vector couplings is fixed by
dimensional analysis, their precise numerical coefficients may
only be fixed by direct calculations.
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Z
d6zðW	W	 þM	M	Þ ¼

Z
d6 �zð �W _	

�W _	 þ �M _	
�M _	Þ;
(A1)

where the chiral and antichiralN ¼ 1 superfield strengths
are defined as

W	 ¼ � 1

4
�D2D	V and �W _	 ¼ 1

4
D2 �D _	V (A2)

in terms of a real unconstrained prepotential V. In analogy
to Eq. (2.13) one defines

iM	 � 2
�

�W	 S½W; �W�; �i �M _	 � 2
�

� �W _	

S½W; �W�:
(A3)

N ¼ 1 duality-invariant models can be obtained by
considering a general action of the form

S ¼ 1

4

Z
d6zW2 þ 1

4

Z
d6 �z �W2

þ 1

4

Z
d8zW2 �W2L

�
1

8
D2W2;

1

8
�D2 �W2

�
; (A4)

where Lðu; �uÞ is a real analytic function of the complex
variable u � 1

8D
2W2 and its conjugate. With9

�S

�W	 ¼ 1

2
W	

�
1� 1

4
�D2½ �W2��

�

where � ¼ Lþ 1

8
D2

�
W2 �L

�u

�
(A5)

one finds with Eq. (A3)

iM	 ¼ W	

�
1� 1

4
�D2½ �W2��

�
(A6)

or, equivalently,

iM	 ¼ W	

�
1� 1

4
�D2

�
�W2

�
Lþ 1

8
D2

�
W2 @Lðu; �uÞ

@u

����
:

(A7)

Plugging Eq. (A7) into the NGZ constraint Eq. (A1)
leads to a functional equation for �Z

d8zW2 �W2 Im½�� �u�2� ¼ 0; (A8)

where we have used that for any N ¼ 1 superfield Y

W2 �W2 �D2½ �W2Y� ¼ W2 �W2 �D2½ �W2�Y (A9)

because W3 ¼ W	W
W� ¼ 0 for the two-component

spinor W	. One can rewrite the above constraint in terms
of L as

Z
d8zW2 �W2 Im½@uðuLÞ � �uð@uðuLÞÞ2� ¼ 0: (A10)

This partial differential equation has infinitely many solu-
tions, parametrized e.g. by the coefficients of the terms
ðu �uÞn with n > 2 in the expansion around u ¼ 0 (as well as
the coefficient of u �u2), as was shown in [27] in the non-
supersymmetric case.
The relation to the nonsupersymmetric case discussed in

[12] is straightforward: taking the integral over the fermi-
onic superspace coordinates and setting the gauginos and
auxiliary fields to zero, one finds

L ¼ � 1

2
ðuþ �uÞ þ u �uLðu �uÞ;

u � 1

8
D2W2j�¼0;D¼0;c¼0 ) 1

4
F2 þ i

4
F ~F � !:

(A11)

In the nonsupersymmetric cases the Born-Infeld (BI) and
Bossard-Nicolai (BN) examples are reproduced by func-
tions [12]:

LBI¼ g2

1þ 1
2g

2ð!þ �!Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2ð!þ �!Þþ 1

4g
4ð!� �!Þ2

q
(A12)

¼ g2

2
� g4

4
ð!þ �!Þ þ g6

8
ðð!þ �!Þ2 þ! �!Þ

� g8

16
ðð!þ �!Þ3 þ 3ð!2 �!þ! �!2ÞÞ þ . . . (A13)

and

LBN ¼ g2

2
� g4

4
ð!þ �!Þ þ g6

8
ðð!þ �!Þ2 þ 2! �!Þ

� g8

16
ðð!þ �!Þ3 þ 7ð!2 �!þ! �!2ÞÞ þ . . .

where the first deviation occurs at Oðg6Þ.
With the above identifications, the same is true for the

model with N ¼ 1 supersymmetry. At Oðg6Þ a deviation
between the Born-Infeld-type N ¼ 1 model and the
N ¼ 1 supersymmetrization of the Bossard-Nicolai
model will occur:

L BNjOðg6Þ �LBIjOðg6Þ ¼
g6

8
! �! � g6

8
D2W2 �D2 �W2:

(A14)

Comparing now the Oð�3Þ terms in Eq. (4.15), which
corresponds to the N ¼ 2 supersymmetrization of the
BN-initial deformation, with the corresponding terms in
the Born-Infeld action Eq. (2.22), one finds again the
difference

�3

32
H ð0ÞH ð0Þ ¼ �3

32
D4W 2D4W 2

; (A15)
9Here, as well as in [19], the N ¼ 1 functional superderiva-

tive is defined as �W
ðz0Þ
�W	ðzÞ ¼ � 1

4�


	 �D2�8ðz� z0Þ.
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where we have set a ¼ � 1
16 in Eq. (4.15) in order to

connect to the BI result as discussed in Sec. IVA.

APPENDIX B: N ¼ 2 SUPERSYMMETRY, Uð1Þ
DUALITY, AND DERIVATIVE REQUIREMENTS

Here we consider a generalization of the N ¼ 0 and
N ¼ 1 actions assuming—as in [18]—dependence on the

N ¼ 2 superfields W 2 and W 2
. While the free action

reads

S free ¼ 1

8

Z
d8ZW 2 þ 1

8

Z
d8ZW 2

; (B1)

it is obvious to try, whether an ansatz similar10 to the
interaction part of Eq. (A4),

S int ¼ � 1

4

Z
d12ZW 2W 2LðD4W 2;D4W 2Þ (B2)

suffices to produce a duality-invariant action. Wewill show
in the following, that this is not the case: one has to include
new terms depending on spacetime derivatives in order to
satisfy conservation of the NGZ current Eq. (2.16).

Using Eq. (2.13) in the above equation yields

�Sint

�W
¼�1

2
WD4ðW 2

�Þ where�¼LþD4

�
W 2�L

�u

�
;

(B3)

where here u ¼ D4W 2. In terms of � one finds

iM ¼ W ð1� 2WD4½W 2
��Þ: (B4)

Plugging Eq. (B4) M into the self-duality equation (2.16)
yieldsZ

d12ZW 2W 2
Im½�� �D4ðW 2

�Þ� ¼ 0: (B5)

Rewriting the above equation in terms of L does not give
the same beautiful result as in the N ¼ 1 situation: there
is no N ¼ 2 analogue to Eq. (A9). As the N ¼ 2 super-
field W is a scalar, terms containing W 3 will not vanish.
Thus the constraint analogue to Eq. (A10) readsZ

d12ZW 2W 2
Im½@uðuLÞ � �uð@uðuLÞÞ2 þ �L� ¼ 0:

(B6)

The correctional term �L contains terms like D4½D4W �
which, after carrying out the derivatives, yields terms

proportional to @�W which do not cancel. Thus, the

ansatz Eq. (B2) is not sufficient, instead one needs

S int ¼ 1

2

Z
d12ZW 2W 2

LðD4W 2;D4W 2Þ

þOð@W ; @W Þ: (B7)

Comparing with Eq. (2.20), one finds that those terms do
indeed appear. Already at Oð�2Þ there is a term
�2

9 W
3hW 3

, which would have vanished in a N ¼ 1

supersymmetric theory. At the next order,Oð�3Þ, one finds
terms of the form W 2W 2D4½W 2D4½W 2��, which are
not covered by an ansatz of the form

W 2W 2LðD4W 2;D4W 2Þ.

APPENDIX C: CONVENTIONS
OF N ¼ 2 SUPERSPACE

Superderivatives are defined as

D i
	 ¼ @i	 þ i �� _	i@	 _	 and D _	i ¼ �@ _	i � i�	i @	 _	

(C1)

where 	; _	 are usual SUð2Þ spinor indices and Latin in-
dices are superindices in the range from f1; . . . 4g.
Anticommutation relations read

fDi
	;

�D _	ig ¼ �2i�i
j@	 _	: (C2)

Derivatives can be combined into

D ij ¼ D	iDj
	 and Dij ¼ Di

_	D
_	j (C3)

and finally

D 4 ¼ 1

48
DijDij and D4 ¼ 1

48
DijDij: (C4)

Chiral and antichiral superfieldsW ðx; �Þ andW ðx; ��Þ are
defined as

D _	iW ¼ 0 and Di
	W ¼ 0: (C5)

For a full superfield V ðx; �; ��Þ,Z
d8ZD4V ¼

Z
d8ZW ¼

Z
d12ZV : (C6)

Correspondingly, the functional derivative for chiral and
antichiral superfields are defined via

�W ðZÞ
�W ðZ0Þ ¼ D4�12ðZ�Z0Þ and

�W ðZÞ
�W ðZ0Þ

¼ D4�12ðZ�Z0Þ:
(C7)

Because of anticommutativity, powers higher than four in
the superderivatives vanish (here we write the chiral part
only, the antichiral is completely equivalent),

D n ¼ 0 8 n > 4; (C8)

which leads to

10The prefactor is chosen to allow for straightforward compari-
son of the resulting differential equation with the N ¼ 1 model
in the last section. Of course, any prefactor can be absorbed in
the definition of L.
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D4ðD4ðxÞÞ ¼ 0 and thus

D4ðXD4ðYÞÞ ¼ D4ðXÞD4ðYÞ (C9)

for arbitrary X and Y. Besides linearity and scaling

D4ðXþ YÞ ¼ D4ðXÞ þD4ðYÞ and

D4ðcXÞ ¼ cD4ðXÞ 8 scalar c (C10)

the chain rule does not apply trivially due to the product
structure of D4.
For the spacetime d’Alambert operator appearing in the

examples in Secs. (4.3) and (4.16), the following commu-
tation relation holds:

hD4ðXÞ ¼ D4hðXÞ: (C11)
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