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The first measurements of the invariant differential cross sections of inclusive π0 and η meson
production at mid-rapidity in proton–proton collisions at

√
s = 0.9 TeV and

√
s = 7 TeV are reported.

The π0 measurement covers the ranges 0.4 < pT < 7 GeV/c and 0.3 < pT < 25 GeV/c for these
two energies, respectively. The production of η mesons was measured at

√
s = 7 TeV in the range

0.4 < pT < 15 GeV/c. Next-to-Leading Order perturbative QCD calculations, which are consistent with
the π0 spectrum at

√
s = 0.9 TeV, overestimate those of π0 and η mesons at

√
s = 7 TeV, but agree with

the measured η/π0 ratio at
√

s = 7 TeV.
© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Hadron production measurements in proton–proton collisions
at the Large Hadron Collider (LHC) [1] energies open a new, pre-
viously unexplored domain in particle physics, which allows val-
idation of the predictive power of Quantum Chromo Dynamics
(QCD) [2]. A quantitative description of hard processes is provided
by perturbative QCD (pQCD) supplemented with parton distribu-
tion functions (PDF) f (x) and fragmentation functions (FF) D(z),
where x is the fraction of the proton longitudinal momentum car-
ried by a parton and z is the ratio of the observed hadron mo-
mentum to the final-state parton momentum. Due to the higher
collision energy at the LHC, the PDF and FF can be probed at lower
values of x and z, respectively, than in previous experiments. Such
measurements can provide further constraints on these functions,
which are crucial for pQCD predictions for LHC energies. Further-
more, while pion production at the Relativistic Heavy Ion Collider
(RHIC) [3] is considered to be dominated by gluon fragmentation
only for pT < 5–8 GeV/c [4,5], at LHC energies it should remain
dominant for pT < 100 GeV/c [6,7]. Theoretical estimates [6] sug-
gest that the fraction of pions originating from gluon fragmenta-
tion remains above 75% in the pT range up to 30 GeV/c. Here,
the measurement of the π0 production cross section at LHC en-
ergies provides constraints on the gluon to pion fragmentation [8]
in a new energy regime. In addition, the strange quark content of
the η meson makes the comparison to pQCD relevant for possible
differences of fragmentation functions with and without strange
quarks [9]. Furthermore, the precise measurement of π0 and η
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meson spectra over a large pT range is a prerequisite for under-
standing the decay photon (electron) background for a direct pho-
ton (charm and beauty) measurement. Finally, a significant fraction
of hadrons at low pT is produced in pp collisions via soft parton
interactions, which cannot be well described within the framework
of pQCD. In this kinematic region commonly used event generators
like PYTHIA [10] or PHOJET [11] have to resort to phenomeno-
logical models tuned to available experimental data delivered by
lower-energy colliders like Spp̄S, RHIC, and Tevatron [12], to ade-
quately describe hadron production. The large increase in center-
of-mass energy at the LHC provides the possibility for a stringent
test of the extrapolations based on these models.

This Letter presents the first measurement of neutral pion
and η meson production in proton–proton collisions at center-of-
mass energies of

√
s = 0.9 TeV and 7 TeV in a wide pT range with

the ALICE detector [13]. The Letter is organized as follows: descrip-
tion of the subdetectors used for these measurements, followed by
the details about the data sample, as well as about event selection
and photon identification, is given in Section 2. Section 3 describes
the algorithms of neutral meson extraction, methods of production
spectra measurement, and shows the systematic uncertainty esti-
mation. Results and their comparison with pQCD calculations are
given in Section 4.

2. Detector description and event selection

Neutral pions and η mesons are measured in ALICE via the two-
photon decay channel. The photons are detected with two methods
in two independent subsystems, with the Photon Spectrometer
(PHOS) [14] and with the photon conversion method (PCM) in
the central tracking system employing the Inner Tracking System

0370-2693/ © 2012 CERN. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.09.015

http://dx.doi.org/10.1016/j.physletb.2012.09.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2012.09.015


ALICE Collaboration / Physics Letters B 717 (2012) 162–172 163

(ITS) [15] and the Time Projection Chamber (TPC) [16]. The latter
reconstructs and identifies photons converted to e+e− pairs in the
material of the inner detectors. The simultaneous measurements
with both methods with completely different systematic uncertain-
ties and with momentum resolutions having opposite dependence
on momentum provide a consistency check of the final result.

The PHOS detector consists at present of three modules in-
stalled at a distance of 4.60 m from the interaction point. PHOS
covers the acceptance of 260◦ < ϕ < 320◦ in azimuthal angle
and |η| < 0.13 in pseudorapidity. Each module has 3584 detection
channels in a matrix of 64 × 56 cells. Each detection channel con-
sists of a lead tungstate, PbWO4, crystal of 2.2 × 2.2 cm2 cross
section and 18 cm length, coupled to an avalanche photo diode
and a low-noise charge-sensitive preamplifier. PHOS operates at
a temperature of −25 ◦ C at which the light yield of the PbWO4
crystal is increased by about a factor 3 compared to room temper-
ature. PHOS was calibrated in-situ by equalizing mean deposited
energies in each channel using events with pp collisions.

The Inner Tracking System (ITS) [13] consists of six layers
equipped with Silicon Pixel Detectors (SPD) positioned at a ra-
dial distance of 3.9 cm and 7.6 cm, Silicon Drift Detectors (SDD) at
15.0 cm and 23.9 cm, and Silicon Strip Detectors (SSD) at 38.0 cm
and 43.0 cm. The two innermost layers cover a pseudorapidity
range of |η| < 2 and |η| < 1.4, respectively.

The Time Projection Chamber (TPC) [16] is a large (85 m3)
cylindrical drift detector filled with a Ne/CO2/N2 (85.7/9.5/4.8%)
gas mixture. It is the main tracking system of the Central Barrel.
For the maximum track length of 159 clusters it covers a pseudora-
pidity range of |η| < 0.9 over the full azimuthal angle. In addition,
it provides particle identification via the measurement of the spe-
cific ionization energy loss (dE/dx) with a resolution of 5.5% [16].
The ITS and the TPC are aligned with respect to each other to the
level of few hundred μm using cosmic-ray and proton–proton col-
lision data [15].

The event selection was performed with the VZERO detec-
tor [17] in addition to the SPD. The VZERO is a forward scintillator
hodoscope with two segmented counters located at 3.3 m and
−0.9 m from the interaction point. They cover the pseudorapid-
ity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively.

The proton–proton collision data used in this analysis were col-
lected by the ALICE experiment in 2010 with the minimum bias
trigger MBOR [18]. This trigger required the crossing of two filled
bunches and a signal in at least one of the two SPD pixel layers or
in one of the VZERO counters. An offline selection based on time
and amplitude signals of the VZERO detectors and the SPD was
applied to reject beam-induced and noise background [18]. Pileup
collision events were identified imposing a criterion based on mul-
tiple primary vertices reconstructed with the SPD detector, and re-
moved from the further analysis. The cross sections for the MBOR
trigger have been calculated from other measured cross sections
at the same energies with appropriate scaling factors. At

√
s =

7 TeV the cross section for the coincidence between signals in the
two VZERO detectors, σMBAND , was measured in a Van-der-Meer
scan [19], and the relative factor σMBAND/σMBOR = 0.873 with neg-
ligible error as obtained from data was used. At

√
s = 0.9 TeV the

cross section σMBOR has been calculated from the inelastic cross
section measured in pp̄ collisions at

√
s = 0.9 TeV [20] and rel-

ative factor σMBOR/σinel = 0.91+0.03
−0.01 estimated from Monte Carlo

simulations [19].
Table 1 shows the values of the cross section obtained at both

energies as well as the integrated luminosity of the total data
samples used. In the photon conversion analysis, only events with
a reconstructed vertex (∼90% of the total) are inspected, and those
events with a longitudinal distance (i.e. along the beam direction)
between the position of the primary vertex and the geometrical

Table 1
Cross sections of the reactions (top) and integrated luminosities (bottom) of the
measured data samples for the two beam energies.

√
s (TeV) σMBOR (mb) σ INEL

pp (mb)

0.9 47.8+2.4
−1.9 (syst) 52.5 ± 2 (syst)

7 62.2 ± 2.2 (syst) 73.2+2.0
−4.6 ± 2.6lumi

√
s (TeV) L (nb−1)

PCM PHOS π0 PHOS η

0.9 0.14 0.14
7 5.6 4.0 5.7

center of the apparatus larger than 10 cm are discarded. The anal-
ysis using PHOS as well as Monte Carlo simulations show that the
number of π0s in events without a reconstructed vertex is be-
low 1% of the total number of π0s.

To maximize the pion reconstruction efficiency in PHOS, only
relatively loose cuts on the clusters (group of crystals with de-
posited energy and common edges) were used: the cluster energy
was required to be above the minimum ionizing energy Ecluster >

0.3 GeV and the minimum number of crystals in a cluster was
three to reduce the contribution of non-photon clusters.

Candidate track pairs for photon conversions were recon-
structed using a secondary vertex (V0) finding algorithm [21].
In order to select photons among all secondary vertices (mainly γ ,
K0

S , Λ and Λ̄), electron selection and pion rejection cuts were
applied. The main particle identification (PID) selection used the
specific energy loss in the TPC (dE/dx). The measured dE/dx of
electrons was required to lie in the interval [−4σdE/dx,+5σdE/dx]
around the expected value. In addition, pion contamination was
further reduced by a cut of 2σ above the nominal pion dE/dx
in the momentum range of 0.25 GeV/c to 3.5 GeV/c and a cut
of 0.5σ at higher momenta. For the γ reconstruction constraints
on the reconstructed photon mass and on the opening angle be-
tween the reconstructed photon momentum vector and the vector
joining the collision vertex and the conversion point were applied.
These constraints were implemented as a cut on the χ2(γ ) de-
fined using a reconstruction package for fitting decay particles [22].
The photon measurement contains information on the direction
which allows to reduce the contamination from secondary neutral
pions. With the conversion method a precise γ -ray tomograph of
the ALICE experiment has been obtained [23]. The integrated ma-
terial budget for r < 180 cm and |η| < 0.9 is 11.4 ± 0.5% X0 as
extracted from detailed comparisons between the measured thick-
ness and its implementation in Monte Carlo simulations based on
the GEANT 3.21 package using the same simulation runs for the
material studies as for the π0 measurement. Photon pairs with
an opening angle larger than 5 mrad were selected for the meson
analysis.

3. Neutral meson reconstruction

Neutral pions and η mesons are reconstructed as excess yields,
visible as peaks at their respective rest mass, above the combi-
natorial background in the two-photon invariant mass spectrum.
Invariant mass spectra demonstrating the π0 and η mesons peak
in some selected pT slices are shown in Fig. 1 by the histogram.
The background is determined by mixing photon pairs from differ-
ent events and is normalized to the same event background at the
right side of the meson peaks. A residual correlated background
is further subtracted using a linear or second order polynomial
fit. The invariant mass spectrum after background subtraction, de-
picted by bullets in Fig. 1, was fitted to obtain the π0 and η
peak parameters (a curve). The number of reconstructed π0s (ηs)
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Fig. 1. Invariant mass spectra in selected pT slices in PCM (left) and PHOS (right) in the π0 and η meson mass regions. The histogram and the bullets show the data before
and after background subtraction, respectively. The curve is a fit to the invariant mass spectrum after background subtraction.
is obtained in each pT bin by integrating the background sub-
tracted peak within 3 standard deviations around the mean value
of the π0 (η) peak position in the case of PHOS. In the PCM
measurement the integration windows were chosen to be asym-
metric (mπ0 − 0.035 GeV/c2, mπ0 + 0.010 GeV/c2) and (mη −
0.047 GeV/c2, mη + 0.023 GeV/c2) to take into account the left
side tail of the meson peaks due to bremsstrahlung. For the same
reason in the case of PCM the full width at half maximum (FWHM)
instead of the Gaussian width of the peak was used. We vary the
normalization and integration windows to estimate the related sys-
tematic uncertainties. The peak position and width from the two
analyses compared to Monte Carlo simulations are shown in Fig. 2
as a function of pT. The deviation of the peak position from the
nominal π0 mass is explained by a finite energy resolution of the
detectors convoluted with the steeply falling pT spectrum of pro-
duced π0. A residual non-linearity of the energy response in PHOS
is reflected in a small difference of the measured π0 peak position
from Monte Carlo at pT < 2 GeV/c, which is taken into account in
the systematic uncertainty (see Table 2).

The reconstruction efficiency ε and acceptance A are calcu-
lated in Monte Carlo simulations tuned to reproduce the detector
response. In the PHOS case, the tuning included a 4.5% energy
non-linearity observed in real data at E < 1 GeV and not repro-
duced by the GEANT simulations and an additional 6% channel-
by-channel decalibration. In the PCM case, an additional smearing

in each momentum component given by σ =
√

σ 2
0 + σ 2

1 · p2 with

σ0 = 0.011 GeV/c and σ1 = 0.007 was necessary to reproduce the
measured width of the π0 peak. PYTHIA [10] and PHOJET [11]
event generators and single particle simulations were used as in-
put. The small photon conversion probability of about 8.5%, com-
pensated by the large TPC acceptance, translates into ε · A of about
2 × 10−3 at pT > 1 GeV/c and decreases at lower pT due to the
decrease of the efficiency of soft electron reconstruction and con-
version probability. In the PHOS case, the acceptance A is zero
for pT < 0.4 GeV/c, ε · A increases with pT and saturates at about
2.0 × 10−2 at pT > 15 GeV/c. At high pT > 25 GeV/c the efficiency
decreases due to cluster merging.

The invariant differential cross section of π0 and η meson pro-
duction were calculated as

E
d3σ

dp3
= 1

2π

σMBOR

Nevents

1

pT

1

ε A Br

Nπ0(η)


y
pT
, (1)

Fig. 2. Reconstructed π0 peak width (a) and position (b) as a function of pT in
pp collisions at

√
s = 7 TeV in PHOS and in the photon conversion method (PCM)

compared to Monte Carlo simulations. The horizontal line in (b) indicates the nom-
inal π0 mass.

where σMBOR is the interaction cross section for the MBOR trig-
ger for pp collisions at

√
s = 0.9 TeV or

√
s = 7 TeV, Nevents

is the number of MBOR events, pT is the transverse momentum
within the bin to which the cross section has been assigned after
the correction for the finite bin width 
pT (see below), Br is the
branching ratio of the π0 (η) meson to the two γ decay chan-
nel and Nπ0(η) is the number of reconstructed π0 (η) mesons
in a given 
y and 
pT bin. The efficiency of the minimum bias
trigger was evaluated in Monte Carlo simulations and the trigger
bias on the spectrum was found to be negligible, less than 0.1%
at pT < 2 GeV/c and vanishing at higher pT. Finally, the invariant
cross sections were corrected for the finite pT bin width following
the prescription in [24], keeping the y values equal to the bin aver-
ages and calculating the pT position at which the differential cross
section coincides with the bin average. The Tsallis fit (see below)
was used for the correction. Secondary π0’s from weak decays
or hadronic interactions in the detector material are subtracted
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Table 2
Summary of the relative systematic errors for the PHOS and the PCM analyses.

PHOS

pT = 1.1 GeV/c pT = 7.5 GeV/c

Yield extraction ±2.1 ±2.5
Non-linearity ±9.0 ±1.5
Conversion ±3.5 ±3.5
Absolute energy scale ±0.7 ±1.0
Acceptance ±1.0 ±1.0
Calibration and alignment ±7.0 ±3.0
Pileup ±0.8 ±0.8

Total ±12.5% ±6.0%

PCM

pT = 1.1 GeV/c pT = 7.5 GeV/c

Material budget ±9.0 ±9.0
Yield extraction ±0.6 ±4.9
PID ±0.1 ±5.4
χ2(γ ) ±0.3 ±6.2
Reconstruction ε ±1.9 ±4.9

Total ±9.2% ±14.0%

using Monte Carlo simulations. The contribution from K0
S decays

is scaled using the measured K0
S spectrum at

√
s = 0.9 TeV [30]

or the charged kaon spectra at
√

s = 7 TeV [31]. The measured π0

and η meson spectra at the center-of-mass energy of
√

s = 7 TeV
cover a pT range from 0.3 to 25 GeV/c and from 0.4 to 15 GeV/c,
respectively; the π0 spectra at

√
s = 0.9 TeV cover a pT range from

0.4 to 7 GeV/c.
A summary of the systematic uncertainties is shown in Table 2

for two different pT values. In PHOS, the significant source of sys-
tematic errors both at low and high pT is the raw yield extraction.
It was estimated by varying the fitting range and the assumption
about the shape of the background around the peak. The uncer-
tainty related to the non-linearity of PHOS which dominates at
low pT was estimated by introducing different non-linearities into
the MC simulations under the condition that the simulated pT-
dependence of the π0 peak position and peak width is still consis-
tent with data. The uncertainties on the calibration and alignment
were estimated in Monte Carlo simulations by varying the cali-
bration parameters and the relative module positions within the
expected tolerances. The uncertainty related to the pileup event re-
jection was evaluated in data by estimating the fraction of uniden-
tified pileup events by extrapolating the distance and the number
of contributing tracks of found pileup vertices to zero. The un-
certainty of the conversion probability was estimated comparing
measurements without magnetic field to the standard measure-
ments with magnetic field. In the measurements with converted
photons, the main sources of systematic errors are the knowledge
of the material budget (dominant at low pT), raw yield extraction,
PID, the photon χ2 cut and reconstruction efficiency. The contri-
bution from the raw yield extraction was estimated by changing
the normalization range, the integration window, and the combi-
natorial background evaluation. The PID, photon χ2(γ ) cut and
reconstruction efficiency was estimated by evaluating stability of
the results after changing the cut values.

4. Results and comparison with pQCD

The combined spectrum is calculated as a weighted average
using statistical and systematic errors of the individual analy-
ses [25]. The combined production cross sections are shown in
Fig. 3. The combined spectra including statistical and systematic
errors are fitted with the Tsallis function [26]

Fig. 3. Differential invariant cross section of π0 production in pp collisions at
√

s =
7 TeV (circles) and 0.9 TeV (squares) and of η meson production at

√
s = 7 TeV

(stars). The lines and the boxes represent the statistical and systematic error of the
combined measurement respectively. The uncertainty on the pp cross section is not
included. NLO pQCD calculations using the CTEQ6M5 PDF and the DSS (AESS for η
mesons) FF for three scales μ = 0.5pT, 1pT and 2pT are shown.

Table 3
Fit parameters of the Tsallis parametrization (2) to the combined invariant pro-
duction yields of π0 and η mesons for inelastic events. The uncertainty on the
parameter A due to the spectra normalization of +3.2

−1.1% and +7.0
−3.5% at

√
s = 900 GeV,

and 7 TeV respectively, is not included.

Meson
√

s
(TeV)

A C
(MeV/c2)

n

π0 0.9 1.5 ± 0.3 132 ± 15 7.8 ± 0.5
π0 7 2.40 ± 0.15 139 ± 4 6.88 ± 0.07
η 7 0.21 ± 0.03 229 ± 21 7.0 ± 0.5

E
d3σ

dp3
= σ INEL

pp

2π
A

c · (n − 1)(n − 2)

nC[nC + m(n − 2)]
(

1 + mT − m

nC

)−n

, (2)

where the fit parameters are A, C and n, σpp is the proton–
proton inelastic cross section, m is the meson rest mass and mT =√

m2 + p2
T is the transverse mass. The fit parameters are shown in

Table 3. The property of the Tsallis function (2) is such that the pa-
rameter A is equal to the integral of this function over pT from 0
to infinity, A = dN/dy, and thus can be used as an estimation of
the total yield at y = 0 per inelastic pp collision. The additional
uncertainty on the parameter A due to the spectra normalization
of +3.2

−1.1% and +7.0
−3.5% at

√
s = 900 GeV, and 7 TeV respectively, is not

included. The found parameters of the Tsallis function for π0 pro-
duction spectrum in pp collisions at

√
s = 900 GeV are in agree-

ment with those for the π+ + π− spectra measured by the ALICE
Collaboration at the same energy [27]. The ratio of the data points
of the two methods to the combined fit, shown in Fig. 4, illustrates
the consistency between the two measurements.

We compare our results with Next-to-Leading Order (NLO)
pQCD calculations using the PDF CTEQ6M5 and DSS π0 [8],
BKK π0 [29] and AESSS η [9] NLO fragmentation functions,
see Fig. 3. The data and NLO predictions are compared via a ratio
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Fig. 4. Ratio of the two independent π0 meson measurements to the fit of the com-
bined normalized invariant production cross section of π0 mesons in pp collisions
at

√
s = 7 TeV.

Fig. 5. Ratio of the NLO predictions to the fit to the measured cross section of π0

production in pp collisions at
√

s = 7 TeV (a) and 0.9 TeV (b) and of η meson
production at

√
s = 7 TeV (c). Different curves correspond to different NLO fragmen-

tation functions, explained in the legend. The full boxes represent the uncertainty
on the pp cross sections.

with the fit to the measured cross section (Fig. 5). In the NLO
calculations the factorization, renormalization and fragmentation
scales are chosen to have the same value given by μ. The un-
certainty in the inelastic pp cross section is represented by the
full boxes at unity. At

√
s = 0.9 TeV the NLO calculations at

μ = 1pT describe the measured π0 data well, while at
√

s = 7 TeV
the higher scale (μ = 2pT) and a different set of fragmentation
functions are required for a description of the data. However,
the latter parameter set does not provide a good description of
the low energy data. In any case, the NLO pQCD calculations
show a harder slope compared to the measured results. Using
the INCNLO program [28], we tested different parton distribution
functions (CTEQ5M, CTEQ6M, MRS99) and different fragmentation
functions (BKK, KKP, DSS) and found a similar result: pQCD pre-
dicts harder slopes, and variation of PDFs and FFs does not change
the shape, but results mainly in the variation of the absolute cross

Fig. 6. η/π0 ratio measured in pp collisions at
√

s = 7 TeV compared to NLO pQCD
predictions.

section. A similar trend is observed for the η meson (a higher scale
μ = 2pT is required), although the discrepancy is less significant
due to the larger error bars and smaller pT reach.

The ratio η/π0 is shown in Fig. 6. It has the advantage that
systematic uncertainties in the measurement partially cancel. This
is also the case for the NLO pQCD calculation, where in particular
the influence of the PDF is reduced in the ratio. Here, predictions
that failed to reproduce the measured π0 and η cross section are
able to reproduce the η/π0 ratio. The measured ratio η/π0 grows
with pT and saturates at pT > 3 GeV/c at a value approximately
equal to 0.5. The comparison of the ALICE result with the world
compilation of the η/π0 ratio in hadronic collisions at

√
s from

13.8 GeV to 1.8 TeV [33] shows that this ratio is universal and in-
dependent on the collision energy. Therefore, this ratio can provide
further constraints in theoretical calculations of hadron produc-
tions at high energies.

5. Conclusion

In summary, the invariant differential cross sections for inclu-
sive π0 production in pp collisions at

√
s = 7 TeV and 0.9 TeV

and for η meson production at 7 TeV have been measured in
a wide pT range taking advantage of two independent methods
available in the ALICE experiment at the LHC. NLO pQCD calcula-
tions cannot provide a consistent description of measured data at
both beam energies. State-of-the-art calculations describe the data
at 0.9 TeV and 0.2 TeV [32], however this is not the case at 7 TeV,
where the calculations overestimate the cross sections and exhibit
a different slope compared to the data. Thus, this measurement
provides an important input for the tuning of pQCD calculations
and represents crucial reference data for the measurement of the
nuclear modification factor RAA of the π0 production in heavy-ion
collisions at the LHC. Furthermore, the NLO predictions for the η
mesons using the newest fragmentation functions require a value
μ = 2pT in order to get closer to the experimental results.
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