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Abstract

The difference in angular distributions between top quarks and antiquarks, com-
monly referred to as the charge asymmetry, is measured in pp collisions at the LHC
with the CMS experiment. The data sample corresponds to an integrated luminosity
of 1.09 fb−1 at a centre-of-mass energy of 7 TeV. Top-quark pairs are selected in the
final state with an electron or muon and four or more jets. At least one jet is identi-
fied as originating from b-quark hadronization. The charge asymmetry is measured
in two variables, one based on the pseudorapidities (η) of the top quarks and the
other on their rapidities (y). The results Aη

C = −0.017± 0.032 (stat.) +0.025
−0.036 (syst.) and

Ay
C = −0.013± 0.028 (stat.) +0.029

−0.031 (syst.) are consistent within uncertainties with the
standard-model predictions.
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1 Introduction
The top quark is the only fundamental fermion with a mass on the order of the scale of elec-
troweak symmetry breaking, and may therefore play a special role in physics beyond the stan-
dard model (BSM). In some BSM theories, top-quark pairs can be produced through the ex-
change of yet unknown heavy particles, in addition to the production through quark-antiquark
annihilation and gluon-gluon fusion. Possible candidates include axigluons [1, 2], Z′ bosons [3],
and Kaluza-Klein excitations of gluons [4, 5]. Such new particles can appear as resonances in
the tt invariant mass spectrum in s-channel production of top-quark pairs. If these hypothetical
particles are exchanged in the t or u channels, alternative approaches are needed to search for
new top-quark production modes [6]. One property of tt production that can be sensitive to
the presence of such additional contributions is the difference in angular distributions of top
quarks and antiquarks, commonly referred to as the charge asymmetry.

In the standard model (SM), a small charge asymmetry in tt production through quark-anti-
quark annihilation appears in QCD calculations at next-to-leading order (NLO) [7, 8]. The
interference between the Born diagram and the box diagram, as well as between initial- and
final-state radiation, correlates the flight directions of the top quarks and antiquarks to the
directions of motion of the initial quarks and antiquarks, respectively. The asymmetric initial
state of proton-antiproton collisions leads to an observable forward-backward asymmetry at
the Tevatron, where the top quarks are emitted preferentially along the direction of motion
of the incoming protons and the top antiquarks along the direction of the antiprotons. This
asymmetry is observable in the difference in rapidity (y) of top quarks and antiquarks, yt − yt.
Recent measurements [9, 10] by the CDF and D0 Collaborations report asymmetries that are
about two standard deviations larger than the value of about 0.08 [7, 8, 11, 12] predicted in the
SM. At high tt invariant mass (Mtt > 450 GeV/c2), the CDF Collaboration finds an even larger
asymmetry relative to the SM prediction [9], while the D0 Collaboration does not observe a
significant mass dependence of the asymmetry. These results have led to speculations that the
large asymmetry might be generated by additional axial couplings of the gluon [13] or by heavy
particles with unequal vector and axial-vector couplings to top quarks and antiquarks [14–27].

Owing to the symmetric initial state of proton-proton collisions at the Large Hadron Collider
(LHC), the charge asymmetry does not manifest itself as a forward-backward asymmetry; the
rapidity distributions of top quarks and antiquarks are symmetrical around y = 0. However,
since the quarks in the initial state are mainly valence quarks, while the antiquarks are al-
ways sea quarks, the larger average momentum fraction of quarks leads to an excess of top
quarks produced in the forward directions. The rapidity distribution of top quarks in the SM
is therefore broader than that of the more centrally produced top antiquarks. The same ef-
fect is visible in the purely geometrically defined pseudorapidity η = − ln(tan θ/2), where θ
is the polar angle relative to the counterclockwise beam axis. The charge asymmetry can be
observed through the difference in the absolute values of the pseudorapidities of top quarks
and antiquarks, ∆|η| = |ηt| − |ηt| [28]. Another approach is motivated in Ref. [29], where the
observable used by the Tevatron experiments (yt − yt) is multiplied by a factor that accounts
for the boost of the tt system, yielding ∆y2 = (yt − yt) · (yt + yt) = (y2

t − y2
t ). Using either of

the two variables, the charge asymmetry can be defined as

AC =
N+ − N−

N+ + N−
, (1)

where N+ and N− represent the number of events with positive and negative values in the
sensitive variable, respectively. Since the SM charge asymmetry is a higher-order effect in
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quark-antiquark annihilation, and at the LHC the top-quark pairs are produced mainly through
gluon-gluon fusion, the asymmetry expected in the SM at the LHC is smaller than at the Teva-
tron. For a centre-of-mass energy of 7 TeV, the NLO prediction for an asymmetry in the ∆|η|
variable is Aη

C(theory) = 0.0136± 0.0008 [12], while Ay
C(theory) = 0.0115± 0.0006 [12] for the

rapidity variable. The existence of new sources of physics with different vector and axial-vector
couplings to top quarks and antiquarks could enhance these asymmetries up to a maximum
of 0.08 [6]. The uncertainties on the above predictions reflect the variations from the choice of
parton distribution functions and different choices of factorization and renormalization scales,
as well as the dependence on the top-quark mass within its experimental uncertainty.

For the sake of simplicity, we focus on ∆|η| when describing the method but quote uncertain-
ties and results for both variables. We discuss below the experimental setup (Section 2), the
data sample (Section 3), and the selection of tt candidate events (Section 4). This is followed by
a description of the estimation of the background contamination (Section 5). The reconstruc-
tion of the kinematics of the top-quark candidates is described in Section 6. The details of the
applied unfolding and measurement procedures and of the different sources of systematic un-
certainties are given in Section 7 and Section 8, respectively, and the results of the analysis are
presented in Section 9.

2 The CMS detector
The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting
solenoid of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the sili-
con pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL), and the brass/scin-
tillator hadron calorimeter (HCAL). The inner tracker measures trajectories of charged particles
within the pseudorapidity range |η| < 2.5. It consists of 1440 silicon pixel and 15 148 silicon
strip detector modules and provides an impact parameter resolution of ∼15 µm and a trans-
verse momentum (pT) resolution of about 1.5% for 100 GeV/c particles.

The ECAL consists of nearly 76 000 lead tungstate crystals that provide coverage in pseudo-
rapidity of |η| < 1.48 for the ECAL barrel region and 1.48 < |η| < 3.0 for the two endcaps.
A preshower detector consisting of two planes of silicon sensors interleaved with a total of
three radiation lengths of lead is located in front of the endcaps. The ECAL energy resolution
is 3% or better for the range of electron energies relevant for this analysis. The HCAL is com-
posed of layers of plastic scintillator within a brass/stainless steel absorber, covering the region
|η| < 3.0. In the region |η| < 1.74, the HCAL cells have widths of 0.087 in pseudorapidity and
0.087 rad in azimuth (φ). In the (η, φ) plane, for |η| < 1.48, the HCAL cells match the corre-
sponding 5× 5 ECAL crystal arrays to form calorimeter towers projecting radially outwards
from the centre of the detector. At larger values of |η|, the coverage in η of each tower increases,
although the matching ECAL arrays contain fewer crystals.

Muons are measured in the pseudorapidity range |η| < 2.4, with detection planes made us-
ing three technologies, drift tubes, cathode strip chambers, and resistive plate chambers, all
embedded in the steel return yoke. Matching the muons to the tracks measured in the silicon
tracker provides a transverse momentum resolution between 1 and 5%, for pT values up to
1 TeV/c. In addition to barrel and endcap detectors, CMS has extensive forward calorimetry. A
detailed description of CMS can be found in Ref. [30].
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3 Data and simulation
This analysis of tt events produced in proton-proton collisions at a centre-of-mass energy of
7 TeV is based on data taken with the CMS detector, corresponding to an integrated luminosity
of 1.09± 0.04 fb−1. To translate the distributions measured with reconstructed objects to dis-
tributions for the underlying quarks, we use simulated data samples. Top-quark pair events
are generated with the tree-level matrix-element generator MADGRAPH version 5 [31], inter-
faced to PYTHIA version 6.4 [32] for the parton showering, where the MLM algorithm [33]
is used for the matching. Spin correlation in decays of top quarks is taken into account and
higher-order gluon and quark production is described through matrix elements for up to three
extra jets accompanying the tt system. Although the higher-order processes leading to the tt
charge asymmetry are not taken fully into account in this leading-order (LO) simulation, its
usage is still justified by the fact that these processes affect only the production of top quarks
and not their decay, and that the simulated events are used only to reconstruct top-quark mo-
menta from their decay products and to correct for resolution effects. We simulate the main SM
backgrounds to top-quark pair production using the same combination of MADGRAPH and
PYTHIA programs. The radiation of up to four jets in weak vector-boson production is simu-
lated through matrix-element-based calculations (these processes are denoted as W+jets and
Z+jets in the following). The background from electroweak production of single top quarks
is also simulated using the MADGRAPH generator. Multijet background events are generated
using PYTHIA version 6.4. On average, six additional proton-proton interactions (pile-up) per
event are observed in the analysed data, and this pile-up contribution is overlaid on the simu-
lated events, all of which are processed through the CMS detector simulation and reconstructed
using standard CMS software.

4 Event selection
In the SM, a top quark decays almost exclusively into a b quark and a W boson. In this mea-
surement we focus on tt events, where one of the W bosons from the decay of a top-quark pair
subsequently decays into a muon or electron and the corresponding neutrino, and the other W
boson decays into a pair of jets. We therefore select events containing one electron or muon
and four or more jets, at least one of which is identified as originating from the hadronization
of a b quark. For the reconstruction of electrons, muons, jets, and any imbalance in transverse
momentum due to the neutrino, we use a particle-flow (PF) algorithm [34]. This algorithm
aims to reconstruct the entire event by combining information from all subdetectors, including
tracks of charged particles in the tracker and the muon system, and energy depositions in the
electromagnetic and hadronic calorimeters.

We select events with triggers that require an electron or muon with transverse momentum
greater than 25 GeV/c and 17 GeV/c, respectively, together with at least three jets, each with
pT > 30 GeV/c. In addition, we require the primary vertex reconstructed from the tracks with
the largest summed transverse momentum to be located in a cylindrical region defined by the
longitudinal distance |z| < 24 cm and radial distance r < 2 cm relative to the centre of the CMS
detector.

In the electron+jets selection, the electron candidates are required to have a transverse momen-
tum of pT > 30 GeV/c and to be within the region |η| < 2.5, excluding the transition region
between the ECAL barrel and endcaps of 1.4442 < |ηsc| < 1.5660, where ηsc is the pseudorapid-
ity of the electron candidate’s supercluster, which corresponds to the cluster of ECAL energy
depositions from the electron and any accompanying bremsstrahlung photons [35]. The trans-
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verse impact parameter of the electron track relative to the beam axis is required to be smaller
than 0.02 cm. The energy in the HCAL cell that is mapped onto the supercluster must be less
than 2.5% of the total ECAL energy associated with the supercluster. Additional requirements
are made on the spatial distribution of the shower and the angular separation between the
ECAL supercluster and the matching track. The longitudinal position of the electron track at
its closest approach to the beam line is required to lie within 1 cm of the longitudinal position
of the primary vertex, to ensure that the electron is emitted from the primary interaction. Also,
electron candidates must be isolated. The lepton isolation variable I`Rel is based on the recon-
structed energies of particle-flow objects relative to the lepton transverse momentum (p`T):

I`Rel =
E`

CH + E`
NH + E`

γ

p`T · c
, (2)

where E`
CH is the energy deposited by charged hadrons in a cone with radius ∆R = 0.4 in (η, φ)

around the lepton track, and E`
NH and E`

γ are the respective energies of neutral hadrons and
photons. We require electron candidates to have Ie

Rel < 0.125. Events with exactly one electron
candidate satisfying these quality criteria are selected for further consideration. Electron can-
didates that lack signals in the inner layers of the tracking system or that can be paired with a
second track of opposite curvature are assumed to be the product of photon conversions and
are discarded.

Muons are reconstructed using the combined information from the silicon tracker and muon
system. In the selection of muon+jets events, the muons are required to have pT > 20 GeV/c
and lie within the muon trigger acceptance (|η| < 2.1). The same requirements as for electron
candidates are imposed on the transverse impact parameter and the longitudinal origin of the
muon track. The muon candidate is required to have a prescribed minimum number of hits
in both the silicon tracking system and the muon chambers, and must be isolated from other
energy depositions in the event, again defined by Iµ

Rel < 0.125. When more than one muon
passes all these criteria, the event is rejected.

Dilepton events from tt and Z-boson decays are suppressed by applying a veto on additional,
less stringently defined charged leptons in the event. We reject all events containing any addi-
tional electron candidates with pT > 15 GeV/c, |η| < 2.5, and Ie

Rel < 0.25, or additional muon
candidates with pT > 10 GeV/c, |η| < 2.5, and Iµ

Rel < 0.25.

We cluster all particles reconstructed through the particle-flow algorithm, excluding isolated
electron and muon candidates, into jets using the anti-kT jet algorithm [36] with the distance
parameter R = 0.5, as constructed with FASTJET version 2.4 [37, 38]. The jet energy is corrected
for additional contributions from multiple interactions, as well as for η and pT-dependent de-
tector response. To account for observed differences of about 10% in jet-energy resolution be-
tween data and simulation, a correction is applied to jets in the simulated samples so that their
resolutions match those measured in data. Selected jets are required to be within |η| < 2.4
and have corrected pT > 30 GeV/c. At least four jets must be present in an event, and at least
one of the jets must be tagged as coming from the hadronization of a b quark by an algorithm
that orders the tracks in impact parameter significance and discriminates using the track with
the second highest significance [39, 40]. This algorithm has a tagging efficiency of about 60%,
evaluated using b jets containing muons from semileptonic decays of b hadrons [40], and a
misidentification rate of about 1% [40].
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5 Estimation of background
Applying the selection criteria described above, we find a total of 12 757 events, 5665 in the
electron+jets channel and 7092 in the muon+jets channel. From an evaluation of the simu-
lated background processes, we expect a background contribution of about 20% to the selected
data sample. We estimate the contributions from the various background processes separately
for the two lepton flavours. We make use of the discriminating power of the imbalance in
transverse momentum in an event, Emiss

T , and of M3, the invariant mass of the combination of
three jets that corresponds to the largest vectorially summed transverse momentum [41]. For
the W+jets, Z+jets, and single-top-quark background processes, the respective simulated sam-
ples are used to model the shapes of the Emiss

T and M3 distributions, while an approach based
on data is pursued for the multijet background.

Background contributions are estimated in both channels separately by means of binned max-
imum-likelihood fits to the two distributions. The Emiss

T distribution shows the largest discrim-
ination power for small values, where it discriminates between events with and without neu-
trinos in the final state. We therefore separate the data sample into events with Emiss

T < 40 GeV
and Emiss

T > 40 GeV, and simultaneously fit the Emiss
T distribution for the low-Emiss

T sample and
the M3 distribution from the high-Emiss

T sample, to obtain estimates of the numbers of events
from each process in the entire data sample (Emiss

T ≥ 0).

The tt signal and all the above-listed background processes enter the likelihood function with a
single fit parameter for the normalization of their respective Emiss

T and M3 distributions. W+jets
production is inherently asymmetric at the LHC, with more W+ bosons being produced than
W− bosons. As the distributions of kinematic variables for the two processes are slightly dif-
ferent, this could introduce an artificial contribution to the measured tt charge asymmetry.
Therefore, this background process requires special care, and we measure the W+jets contri-
butions from W+ and W− bosons separately, using different fit parameters for the two sources
of W+jets.

As mentioned above, for all background processes, with the exception of multijet events, we
rely on simulations to model the Emiss

T and M3 distributions. Since the overall cross section
for multijet production is several orders of magnitude larger than that of any other process,
this specific background can be modelled directly from data by defining an appropriate region
enriched in multijet events. In both lepton channels, the largest suppression of multijet events
in the default event selection is achieved by requiring isolation of the charged leptons. Con-
sequently, to enrich background from multijet events, we require 0.3 < I`Rel < 0.5, instead of
I`Rel < 0.125. To avoid double counting of energy contributions, the momenta of these electron
and muon candidates are removed from that of the jet to which they were assigned. The event
samples obtained with these altered selections are estimated using simulated events to have
multijet purities of 92% in the muon+jets channel and 87% in the electron+jets channel.

The Z+jets contribution to the selected data is expected to be small, and is difficult to discrimi-
nate from the multijet background processes, especially in the Emiss

T distributions. It is also very
difficult to discriminate single-top-quark production from the tt signal. Both single-top-quark
and Z+jets production are well understood theoretically and their expected contributions are
modest. We therefore constrain the numbers of Z+jets and single-top-quark events in the fit
to the predictions from simulation, assigning an uncertainty of 30%, as was done in Ref. [41],
through Gaussian functions in the likelihood. The numbers of events for all other processes are
left free in the fit.

Table 1 summarizes the results of the fits separately for the electron+jets and muon+jets chan-
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nels, along with their statistical uncertainties and the sum. The largest correlation is found
between the rates for the W++jets and W−+jets backgrounds (+17%). The rates of W−+jets
and Z+jets backgrounds are anticorrelated with that from multijet background (−10%). All
other correlations among the fit parameters are found to be small. Figure 1 shows the mea-
sured Emiss

T and M3 distributions summed for the two channels, with the individual simulated
contributions normalized to the results from the fit.

Table 1: Results for the numbers of events for background and tt contributions from fits to
data in the electron+jets and muon+jets channels, along with their statistical uncertainties.
The uncertainties quoted for the single-top-quark and Z+jets backgrounds are related to the
constraints used as input for the likelihood fit, and are not the statistical uncertainties from the
fit. The last column gives the sum of both channels, where the uncertainties have been added
in quadrature. The number of events observed in each channel can be found in the last row.

process electron+jets muon+jets total
Single-top (t + tW) 213± 58 293± 81 506± 99
W++jets 313± 84 404± 106 717± 135
W−+jets 299± 90 245± 109 544± 141
Z+jets 81± 24 85± 26 166± 35
Multijet 355± 71 232± 79 587± 106
Total background 1261± 155 1259± 191 2520± 246
tt 4401± 165 5835± 199 10 236± 258
Observed 5665 7092 12 757
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Figure 1: Comparison of the combined lepton+jets data with simulated contributions for the
distributions in Emiss

T (left) and M3 (right). The last bins include the sum of all contributions
for Emiss

T > 200 GeV and M3 > 800 GeV/c2, respectively. The simulated signal and background
contributions are normalized to the results of the fits in Table 1.

6 Reconstruction of tt pairs
The measurement of the tt charge asymmetry is based on the full reconstruction of the four-
momenta of the top quark and antiquark in each event. This is done in two steps: first, by
reconstructing the leptonically decaying W boson, and then by associating the measured jets in
the event with quarks in the tt decay chain.
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The transverse momentum of the neutrino is taken to be the reconstructed Emiss
T vector. To cal-

culate the longitudinal component of the neutrino momentum, a quadratic constraint, relying
on the known mass and decay kinematics of the W boson, is used. This procedure leads to two
solutions for the longitudinal momentum of the neutrino. If these solutions are complex, the
transverse components of the neutrino momentum are adjusted such that the pT of the neutrino
is as close as possible to the measured Emiss

T and the imaginary part of the pz solution vanishes.
Adding the resulting four-momentum of the neutrino to that of the charged lepton defines
the four-momentum of the parent W boson. Combining the four-vector of one of the jets in
the event with that of the W boson results in the four-vector of the top quark decaying to the
charged lepton in the final state, while the other top quark is reconstructed by combining three
of the remaining jets. The charge of the lepton then defines which of the two reconstructed
four-momenta corresponds to the top quark, and which to the top antiquark.

From the list of possible reconstructions in each event, we choose the hypothesis that best
matches the assumption of a tt interpretation. In simulated tt events, the best possible hy-
pothesis is defined through comparing the reconstructed and true momenta of the top quarks
and W bosons. This kind of information is not accessible in data, and we therefore calculate
the probability ψ for each hypothesis to be the best possible one. The calculation of ψ uses
the masses of the two reconstructed top quarks and of the hadronically decaying W boson, as
well as the b-tag information for the four jets assigned to the four final-state quarks. The three
masses are correlated, especially those of the hadronically decaying W boson and top quark.
Assuming a linear correlation, which is confirmed from simulation, they are redefined in terms
of three uncorrelated masses m1, m2, and m3, through a rotation matrix derived from simulated
tt events. The mass m1 is almost identical to the mass of the top quark decaying to the charged
lepton in the final state, while m2 and m3 are mixtures of the masses of the other top quark and
the hadronically decaying W boson. For each of the three uncorrelated masses mi we calcu-
late a likelihood ratio function Li(mi), that provides a measure of the probability for a given
hypothesis with a certain value of mi to be the best possible one.

In addition, we consider the b-tag values for the jets assigned to the two b quarks and the two
light quarks. The probability that a jet with b-tag value x is assigned to one of the b quarks
in the best possible hypothesis is estimated in simulated tt events and denoted as Pb(x). The
probability that an assignment of a jet to one of the light quarks is the best possible assignment
is then given by (1− Pb(x)).

Finally, we choose in each event the hypothesis with the largest value of ψ:

ψ = L1(m1)L2(m2)L3(m3)Pb(xb1)Pb(xb2)(1− Pb(xq1))(1− Pb(xq2)) , (3)

where xb1, xb2, xq1, and xq2 are the b-tag values for the jets assigned to the two b quarks and
two light quarks, respectively.

Studies using simulated tt events show that in about 29% of all events, we choose the best
possible hypothesis using the ψ criterion. In about 72% of all events, the values of ∆|η| and ∆y2

are reconstructed with the correct sign.

To check that the simulated background adequately describes the data, several kinematic distri-
butions in data samples without b-tagged jets, where the dominant contribution is from W+jets
processes, are compared with those in simulated W+jets events. The observed agreement be-
tween the measured and the simulated distributions substantiates that the simulated samples
used in the analysis describe well the reconstructed quantities in data.
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Figure 2: Reconstructed ∆|η| (left) and ∆y2 (right) distributions for the combined lepton+jets
channel. The last bins include the sum of all contributions for |∆|η|| > 4.0 and

∣∣∆y2
∣∣ > 4.0,

respectively. The signal and background contributions are normalized to the results in Table 1.

The distributions in the two sensitive variables ∆|η| and ∆y2 obtained from the reconstructed
top quark and antiquark four-vectors are shown in Fig. 2. These distributions are used to
calculate an uncorrected charge asymmetry AC,unc by simply counting the numbers of events
with positive and negative values. Using the definition in Eq. (1), we find Aη

C,unc = −0.004±
0.009 and Ay

C,unc = −0.004± 0.009, where the uncertainties are statistical only.

The above values cannot be compared directly with the theoretical predictions, since several
effects bias the measurement at this stage. First, despite the application of relatively stringent
tt event selections, about 20% of all events arise from background processes. The simulated
distributions for these background processes exhibit no significant asymmetries. We normalize
these distributions to the observed background rates, and subtract them from the data, assum-
ing Gaussian uncertainties on the background rates as well as on statistical fluctuations in the
background templates. The effect of the correlations among the individual background rates,
discussed in Section 5, is found to be negligible.

Distortions of the remaining tt distributions relative to the true distributions can be factorized
into effects from the event selection and event reconstruction. The values of ∆|η| or ∆y2 affect
the probability for any event to survive all selection criteria (see Fig. 3 (left)), and thereby the
distributions even before reconstruction. Further distortions can occur because of ambiguities
in the assignment of jets to top-quark candidates, the determination of the neutrino momentum
from the W-boson mass constraint, the energy resolution of the calorimeters and jet reconstruc-
tion, and the overall detector acceptance. The migration matrix, obtained from simulated tt
events and shown graphically in Fig. 3 (right), describes the migration of selected events from
true values of ∆|η| to different reconstructed values.

To correct for the above effects, we apply a regularized unfolding procedure to the data [42]
through a generalized matrix-inversion method. The measured spectrum, denoted as vector ~w,
is divided into 12 bins (see y axis of Fig. 3 (right)), where the bin widths are chosen to contain
approximately an equal number of events. Six bins are used for the unfolded spectrum ~x (see
x axis of Fig. 3 (right)). Using twice as many bins for the uncorrected as for the corrected
spectrum is recommended for this type of unfolding technique [42].

The smearing matrix S, which accounts for migration and efficiency, is derived from simu-
lated tt events. Mathematically, this matrix is the product of the migration matrix, depicted in
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Figure 3: (left) Selection efficiency as a function of generated ∆|η|, defined with respect to inclu-
sive tt production. (right) Migration matrix between the true (generated) and the reconstructed
values in ∆|η|, after the event selection.

Fig. 3 (right), and a diagonal matrix with the efficiencies for each of the bins in Fig. 3 (left) on
the diagonal, and all other elements set to zero. It defines the translation of the true spectrum
~x into the measured spectrum ~w = S~x. We solve this equation for the true spectrum ~x using a
least-squares (LS) technique and searching for the ~xLS that minimizes the LS through the use of
the generalized inverse of the smearing matrix S.

In general, the resulting solutions are unstable, with unacceptable fluctuations for small changes
in ~w. To regularize the problem and avoid unphysical fluctuations, two additional terms, a reg-
ularization term and a normalization term, are introduced in the procedure [43, 44]. For both
the ∆|η| and the ∆y2 variables, we use independent unfolding procedures based on the respec-
tive observable.

The performance of the unfolding algorithm is tested in sets of pseudoexperiments, each of
which provides a randomly-generated sample distribution. The number of events from each
contributing process is determined through a random number from a Gaussian distribution
centred around the measured event rate given in Table 1, with a width corresponding to the re-
spective uncertainty. To take statistical variations into account, the number of expected events
is defined by a Poisson distribution around the chosen Gaussian means. This final number of
events for each process is drawn randomly from the appropriately simulated events to gener-
ate distributions for each pseudoexperiment. Each generated distribution is then subjected to
the unfolding procedure described above. For all pseudoexperiments, we subtract the same
number of background events as found in data.

We perform 50 000 pseudoexperiments and compare the unfolded spectrum with the gener-
ated distribution in each experiment. The average asymmetry from these pseudoexperiments
agrees well with the true asymmetry in the sample used to model the signal component and the
pull distributions agree with expectations, indicating that the treatment of uncertainties is con-
sistent with Gaussian behaviour. To test the unfolding procedure for different asymmetries, we
reweight the events of the default tt̄ sample according to their ∆|η| or ∆y2 value, to artificially
introduce asymmetries between −0.2 and +0.2, and then perform 50 000 pseudoexperiments
for each of the reweighted distributions. We find a linear dependence of the ensemble mean on
the input value. While for ∆|η| the agreement is excellent, for ∆y2 we observe a slope for the
linear dependence of 0.94 instead of 1.0, necessitating a correction of 1/0.94 to the measured
asymmetry. The statistical uncertainties of the measurements are found to be independent of
the generated asymmetries.
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Table 2: Listed are the positive and negative shifts on AC induced by systematic uncertainties
in the pseudoexperiments from the different sources and the total.

Aη
C Ay

C
Source − Shift + Shift − Shift + Shift

JES −0.003 0.000 −0.007 0.000
JER −0.002 0.000 −0.001 +0.001

Q2 scale −0.005 +0.008 −0.013 0.000
ISR/FSR −0.006 +0.003 0.000 +0.024

Jet-matching threshold −0.034 +0.021 −0.026 +0.014
PDF −0.001 +0.001 −0.001 +0.001

b-tagging efficiency −0.001 +0.003 0.000 +0.001
Lepton ID/sel. efficiency −0.002 +0.004 −0.002 +0.003

Multijet-background model −0.008 +0.008 −0.006 +0.006
Pile-up −0.002 +0.002 0.000 0.000

Total −0.036 +0.025 −0.031 +0.029

8 Estimation of systematic uncertainties
The measured charge asymmetry AC can be affected by several sources of systematic uncer-
tainty. Influences on the direction of the reconstructed top-quark momenta can change the
value of the reconstructed charge asymmetry. Systematic uncertainties with an impact on the
differential selection efficiency can also bias the result, while the overall selection efficiency
and acceptance may not. Variations in the background rates can also change the asymmetry
attributed to the signal. Since the uncorrected asymmetries observed in data are close to zero,
such changes have only a small influence. To evaluate each source of systematic uncertainty, we
perform studies on pseudoexperiments using samples with systematically shifted parameters,
and unfolding the distributions of interest as done with data.

The corrections on jet-energy scale (JES) and jet-energy resolution (JER) are changed by ±1
standard deviations of their η and pT-dependent uncertainties to estimate their effects on the
measurement. Similarly, to estimate differences between simulation and data, other dedi-
cated tt samples are generated using different renormalization and factorization scales (Q2), jet-
matching thresholds [33], and initial and final-state radiation (ISR and FSR). The systematic un-
certainties on the measured asymmetry from the choice of parton distribution functions (PDF)
for the colliding protons are estimated using the CTEQ6.6 [45] PDF set and the LHAPDF [46]
package. In addition, the impact of the uncertainty on b-tagging efficiency, lepton selections,
and lepton-trigger efficiencies are examined, taking their η dependence into account. The un-
certainty on the multijet background obtained from data, and on the frequency of occurrence
of pile-up events, are also estimated. A mismodelling of Emiss

T and M3 in the simulation could
change the estimation of the background rates. The measured charge asymmetry is found to
be stable under such variations, as verified by shifting the amount of background in the pseu-
doexperiments. The estimations of all the systematic uncertainties are summarized in Table 2.
The largest contribution arises from the jet-matching threshold, which is changed by factors of
2 and 0.5. Other important effects are from uncertainties in the Q2 scale, from ISR and FSR in
the simulated tt sample, and from the uncertainty in the multijet-background model.
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9 Results
Table 3 gives the values of the uncorrected asymmetries, the asymmetries after background
subtraction (BG-subtracted), and the final, corrected asymmetries for both variables, along with
the predicted theoretical values. Figure 4 shows the unfolded spectra used for computing the
asymmetries, together with the SM prediction at NLO.

Table 3: The measured asymmetries for both observables at the different stages of the analysis
and the corresponding theory predictions. The final result for Ay

C is corrected for a small bias
observed in the dependence of the reconstructed value on the true value.

Asymmetry Aη
C Ay

C

Uncorrected −0.004± 0.009 (stat.) −0.004± 0.009 (stat.)
BG-subtracted −0.009± 0.010 (stat.) −0.007± 0.010 (stat.)
Final corrected −0.017± 0.032 (stat.) +0.025

−0.036 (syst.) −0.013± 0.028 (stat.) +0.029
−0.031 (syst.)

Theory predictions 0.0136± 0.0008 0.0115± 0.0006
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Figure 4: Unfolded ∆|η| (left) and ∆y2 (right) normalized spectra. The NLO prediction is based
on the calculations of Ref. [12]. The last bins include the sum of all contributions for |∆|η|| > 4.0
and

∣∣∆y2
∣∣ > 4.0, respectively. The uncertainties shown on the data are statistical, while the

uncertainties on the prediction account also for the dependence on the top-quark mass, PDF,
and factorization and renormalization scales.

Both measurements of the charge asymmetry are in agreement with the NLO predictions. We
also measure the background-subtracted asymmetry as a function of the reconstructed tt in-
variant mass. A dependence of the charge asymmetry on Mtt, as large as reported by the CDF
experiment [9], could be visible in the reconstructed quantities, even without unfolding of ∆|η|
(or ∆y2) and Mtt. Figure 5 shows the results for the two variables, where no significant change
in asymmetry is observed as a function of Mtt in the distributions before unfolding.

10 Summary
A measurement of the charge asymmetry in tt production using data corresponding to an inte-
grated luminosity of 1.09 fb−1 has been reported. Events with top-quark pairs decaying in the
lepton+jets channel were selected and a full tt event reconstruction was performed to deter-
mine the four-momenta of the top quarks and antiquarks. The measured distributions of the
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Figure 5: Background-subtracted asymmetries for ∆|η| (left) and ∆y2 (right) as functions of the
reconstructed tt invariant mass.

sensitive observables were then subjected to a regularized unfolding procedure to extract the
asymmetry values, corrected for acceptance and reconstruction. The measured asymmetries
are

Aη
C = −0.017± 0.032 (stat.) +0.025

−0.036 (syst.) , (4)

and
Ay

C = −0.013± 0.028 (stat.) +0.029
−0.031 (syst.) , (5)

consistent with SM predictions. The background-subtracted asymmetry shows no statistically
significant dependence on the reconstructed tt invariant mass.
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G. Mantovania,b, M. Menichellia, A. Nappia ,b, F. Romeoa ,b, A. Santocchiaa,b, S. Taronia ,b ,1,
M. Valdataa,b



22 A The CMS Collaboration
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25: Also at Università della Basilicata, Potenza, Italy
26: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
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