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Abstract
An introductory overview of the Standard Model descriptionof flavour is pre-
sented. The main emphasis is put on present tests of the quark-mixing matrix
structure and the phenomenological determination of its parameters. Special
attention is given to the experimental evidences ofCP violation and their im-
portant role in our understanding of flavour dynamics.

1 Fermion families

We have learnt experimentally that there are six different quark flavoursu , d , s , c , b , t , three different
charged leptonse , µ , τ and their corresponding neutrinosνe , νµ , ντ . We can include all these particles
into theSU(3)C ⊗ SU(2)L ⊗ U(1)Y Standard Model (SM) framework [1–3], by organizing them into
three families of quarks and leptons:

[

νe u
e− d′

]

,

[

νµ c
µ− s ′

]

,

[

ντ t
τ− b′

]

, (1)

where (each quark appears in three different colours)

[

νi ui
ℓ−i d′i

]

≡
(

νi
ℓ−i

)

L

,

(

ui
d′i

)

L

, ℓ−iR , uiR , d′iR , (2)

plus the corresponding antiparticles. Thus, the left-handed fields areSU(2)L doublets, while their right-
handed partners transform asSU(2)L singlets. The three fermionic families appear to have identical
properties (gauge interactions); they differ only by theirmass and their flavour quantum number.

The fermionic couplings of the photon and theZ boson are flavour conserving, i.e., the neutral
gauge bosons couple to a fermion and its corresponding antifermion. In contrast, theW± bosons couple
any up-type quark with all down-type quarks because the weakdoublet partner ofui turns out to be a
quantum superposition of down-type mass eigenstates:d′i =

∑

j Vij dj . This flavour mixing generates a
rich variety of observable phenomena, includingCP-violation effects, which can be described in a very
successful way within the SM [4].

In spite of its enormous phenomenological success, The SM does not provide any real understand-
ing of flavour. We do not know yet why fermions are replicated in three (and only three) nearly identical
copies. Why the pattern of masses and mixings is what it is? Are the masses the only difference among
the three families? What is the origin of the SM flavour structure? Which dynamics is responsible for
the observedCP violation? The fermionic flavour is the main source of arbitrary free parameters in the
SM: 9 fermion masses, 3 mixing angles and 1 complex phase, formassless neutrinos. 7 (9) additional
parameters arise with non-zero Dirac (Majorana) neutrino masses: 3 masses, 3 mixing angles and 1 (3)
phases. The problem of fermion mass generation is deeply related with the mechanism responsible for
the electroweak Spontaneous Symmetry Breaking (SSB). Thus, the origin of these parameters lies in the
most obscure part of the SM Lagrangian: the scalar sector. Clearly, the dynamics of flavour appears to
be “terra incognita” which deserves a careful investigation.

The following sections contain a short overview of the quarkflavour sector and its present phe-
nomenological status. The most relevant experimental tests are briefly described. A more pedagogic
introduction to the SM can be found in Ref. [4].

http://arxiv.org/abs/1112.4094v1
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Fig. 1: Flavour-changing transitions through the charged-current couplings of theW± bosons.

2 Flavour structure of the Standard Model

In the SM flavour-changing transitions occur only in the charged-current sector (Fig. 1):

LCC = − g

2
√
2







W †
µ





∑

ij

ūi γ
µ(1− γ5)Vij dj +

∑

ℓ

ν̄ℓ γ
µ(1− γ5) ℓ



 + h.c.







. (3)

The so-called Cabibbo–Kobayashi–Maskawa (CKM) matrixV [5, 6] is generated by the same Yukawa
couplings giving rise to the quark masses. Before SSB, thereis no mixing among the different quarks,
i.e.,V = I. In order to understand the origin of the matrixV , let us consider the general case ofNG

generations of fermions, and denoteν ′
j, ℓ

′
j, u

′
j, d

′
j the members of the weak familyj (j = 1, . . . , NG),

with definite transformation properties under the gauge group. Owing to the fermion replication, a large
variety of fermion-scalar couplings are allowed by the gauge symmetry. The most general Yukawa
Lagrangian has the form

LY = −
∑

jk

{

(

ū′
j , d̄′j

)

L

[

c
(d)
jk

(

φ(+)

φ(0)

)

d′kR + c
(u)
jk

(

φ(0)∗

−φ(−)

)

u′
kR

]

+
(

ν̄ ′
j, ℓ̄′j

)

L
c
(ℓ)
jk

(

φ(+)

φ(0)

)

ℓ′kR

}

+ h.c., (4)

whereφT (x) ≡
(

φ(+), φ(0)
)

is the SM scalar doublet andc(d)jk , c(u)jk and c(ℓ)jk are arbitrary coupling
constants. The second term involves theC-conjugate scalar fieldφc(x) ≡ i σ2 φ

∗(x).

In the unitary gaugeφT (x) ≡ 1√
2
(0, v +H), wherev is the electroweak vacuum expectation

value andH(x) the Higgs field. The Yukawa Lagrangian can then be written as

LY = −
(

1 +
H

v

)

{

d
′
LM

′
d d

′
R + u

′
LM

′
u u

′
R + l

′
LM

′
ℓ l

′
R + h.c.

}

. (5)

Here,d′, u′ andl′ denote vectors in theNG-dimensional flavour space, with componentsd′j , u
′
j andℓ′j,

respectively, and the corresponding mass matrices are given by

(M′
d)ij ≡ c

(d)
ij

v√
2
, (M′

u)ij ≡ c
(u)
ij

v√
2
, (M′

ℓ)ij ≡ c
(ℓ)
ij

v√
2
. (6)

The diagonalization of these mass matrices determines the mass eigenstatesdj, uj and ℓj, which are
linear combinations of the corresponding weak eigenstatesd′j, u

′
j andℓ′j, respectively.

The matrixM′
d can be decomposed as1

M
′
d = Hd Ud = S

†
d Md Sd Ud, whereHd ≡

√

M′
dM

′†
d

is an Hermitian positive-definite matrix, whileUd is unitary. Hd can be diagonalized by a unitary

1 The conditiondetM′
f 6= 0 (f = d, u, ℓ) guarantees that the decompositionM

′
f = HfUf is unique:Uf ≡ H

−1
f M

′
f .

The matricesSf are completely determined (up to phases) only if all diagonal elements ofMf are different. If there is some
degeneracy, the arbitrariness ofSf reflects the freedom to define the physical fields. IfdetM′

f = 0, the matricesUf andSf

are not uniquely determined, unless their unitarity is explicitly imposed.
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matrix Sd; the resulting matrixMd is diagonal, Hermitian and positive definite. Similarly, one has
M

′
u = HuUu = S

†
uMu SuUu and M

′
ℓ = HℓUℓ = S

†
ℓ Mℓ SℓUℓ. In terms of the diagonal mass

matrices

Md = diag(md,ms,mb, . . .) , Mu = diag(mu,mc,mt, . . .) , Mℓ = diag(me,mµ,mτ , . . .) ,
(7)

the Yukawa Lagrangian takes the simpler form

LY = −
(

1 +
H

v

)

{

dMd d + uMu u + lMℓ l
}

, (8)

where the mass eigenstates are defined by

dL ≡ Sd d
′
L , uL ≡ Su u

′
L , lL ≡ Sℓ l

′
L ,

dR ≡ SdUd d
′
R , uR ≡ SuUu u

′
R , lR ≡ SℓUℓ l

′
R . (9)

Note, that the Higgs couplings are proportional to the corresponding fermions masses.

Since, f
′
L f

′
L = fL fL and f

′
R f

′
R = fR fR (f = d, u, ℓ), the form of the neutral-current

part of theSU(3)C ⊗ SU(2)L ⊗ U(1)Y Lagrangian does not change when expressed in terms of mass
eigenstates. Therefore, there are no flavour-changing neutral currents in the SM (GIM mechanism [7]).
This is a consequence of treating all equal-charge fermionson the same footing. However,u ′

L d
′
L =

uL Su S
†
d dL ≡ uLVdL. In general,Su 6= Sd ; thus, if one writes the weak eigenstates in terms of

mass eigenstates, aNG × NG unitary mixing matrixV appears in the quark charged-current sector as
indicated in Eq. (3).

If neutrinos are assumed to be massless, we can always redefine the neutrino flavours, in such
a way as to eliminate the mixing in the lepton sector:ν

′
L l

′
L = ν

′
L S

†
ℓ lL ≡ νL lL. Thus, we have

lepton-flavour conservation in the minimal SM without right-handed neutrinos. If sterileνR fields are
included in the model, one has an additional Yukawa term in Eq. (4), giving rise to a neutrino mass matrix
(M′

ν)ij ≡ c
(ν)
ij v/

√
2 . Thus, the model can accommodate non-zero neutrino masses and lepton-flavour

violation through a lepton mixing matrixVL analogous to the one present in the quark sector. Note,
however, that the total lepton numberL ≡ Le+Lµ+Lτ is still conserved. We know experimentally that
neutrino masses are tiny and, as shown in Table 1, there are strong bounds on lepton-flavour violating
decays. However, we do have a clear evidence of neutrino oscillation phenomena. Moreover, since
right-handed neutrinos are singlets underSU(3)C ⊗ SU(2)L ⊗ U(1)Y , the SM gauge symmetry group
allows for a right-handed Majorana neutrino mass term, violating lepton number by two units. Non-zero
neutrino masses clearly imply interesting new phenomena [4].

The fermion masses and the quark mixing matrixV are all determined by the Yukawa couplings in
Eq. (4). However, the coefficientsc(f)ij are not known; therefore we have a bunch of arbitrary parameters.

Table 1: Experimental upper limits (90% C.L.) on lepton-flavour-violating decays [8–12].

Br(µ− → X−) · 1012
e−γ 2.4 e−2γ 72 e−e−e+ 1.0

Br(τ− → X−) · 108
µ−γ 4.4 e−γ 3.3 µ−µ+µ− 2.1 µ−π+π− 3.3 µ−K+K− 6.8
µ−π0 11 e−π0 8.0 e−µ+µ− 2.7 e−π+π− 4.4 e−K+K− 5.4
µ−KS 2.3 e−KS 2.6 µ−e+e− 1.8 µ+π−π− 3.7 e−K±π∓ 5.8
µ−ρ0 2.6 e−φ 3.1 e−e+e− 2.7 e+π−π− 8.8 e+K−K− 6.0
µ−η 6.5 e−η 9.2 µ−µ−e+ 1.7 µ−ω 8.9 e+K−π− 6.7
µ−K∗0 5.9 e−K∗0 5.9 e−e−µ+ 1.5 Λπ− 7.2 µ+K−π− 9.4
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A generalNG × NG unitary matrix is characterized byN2
G real parameters:NG(NG − 1)/2 moduli

and NG(NG + 1)/2 phases. In the case ofV, many of these parameters are irrelevant because we can
always choose arbitrary quark phases. Under the phase redefinitions ui → eiφi ui and dj → eiθj dj ,
the mixing matrix changes asVij → Vij ei(θj−φi); thus,2NG− 1 phases are unobservable. The number
of physical free parameters in the quark-mixing matrix thengets reduced to(NG− 1)2: NG(NG− 1)/2
moduli and(NG − 1)(NG − 2)/2 phases.

In the simpler case of two generations,V is determined by a single parameter. One then recovers
the Cabibbo rotation matrix [5]

V =

(

cos θC sin θC

− sin θC cos θC

)

. (10)

With NG = 3, the CKM matrix is described by three angles and one phase. Different (but equivalent)
representations can be found in the literature. The Particle data Group [13] advocates the use of the
following one as the ‘standard’ CKM parametrization:

V =







c12 c13 s12 c13 s13 e−iδ13

−s12 c23 − c12 s23 s13 eiδ13 c12 c23 − s12 s23 s13 eiδ13 s23 c13

s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 c23 c13






. (11)

Here cij ≡ cos θij and sij ≡ sin θij , with i andj being generation labels (i, j = 1, 2, 3). The real
anglesθ12, θ23 andθ13 can all be made to lie in the first quadrant, by an appropriate redefinition of quark
field phases; then,cij ≥ 0 , sij ≥ 0 and 0 ≤ δ13 ≤ 2π . Notice thatδ13 is the only complex phase in
the SM Lagrangian. Therefore, it is the only possible sourceof CP-violation phenomena. In fact, it was
for this reason that the third generation was assumed to exist [6], before the discovery of theb and theτ .
With two generations, the SM could not explain the observedCP violation in theK system.

3 Lepton decays

W

e

µ

−

ν

ν

e−

µ−

W

e

e  ,   , d , s

,      , u

τ

ν

µ

τ

−

−

− µ−

ν ν  , u

Fig. 2: Tree-level Feynman diagrams forµ− → e−ν̄e νµ and τ− → ντX
− (X− = e−ν̄e, µ

−ν̄µ, dū, sū).

The simplest flavour-changing process is the leptonic decayof the muon, which proceeds through
theW -exchange diagram shown in Fig. 2. The momentum transfer carried by the intermediateW is very
small compared toMW . Therefore, the vector-boson propagator reduces to a contact interaction,

−gµν + qµqν/M
2
W

q2 −M2
W

q2≪M2
W−→ gµν

M2
W

. (12)

The decay can then be described through an effective local 4-fermion Hamiltonian,

Heff =
GF√
2
[ēγα(1− γ5)νe] [ν̄µγα(1− γ5)µ] , (13)

where
GF√
2

=
g2

8M2
W

=
1

2v2
(14)
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is called the Fermi coupling constant.GF is fixed by the total decay width,

1

τµ
= Γ[µ− → e−ν̄eνµ (γ)] =

G2
Fm

5
µ

192π3
(1 + δRC) f

(

m2
e/m

2
µ

)

, (15)

where f(x) = 1− 8x+ 8x3 − x4 − 12x2 lnx , and

1 + δRC =

[

1 +
α

2π

(

25

4
− π2

)]

[

1 +
3

5

m2
µ

M2
W

− 2
m2

e

M2
W

]

+ · · · (16)

contains the radiative higher-order corrections, which are known toO(α2) [14–16]. The measured life-
time [17],τµ = (2.196 980 3 ± 0.000 002 2) × 10−6 s, implies the value

GF = (1.166 378 8 ± 0.000 000 7) × 10−5 GeV−2 ≈ 1

(293 GeV)2
. (17)

The decays of theτ lepton proceed through the sameW -exchange mechanism. The only differ-
ence is that several final states are kinematically allowed:τ− → ντe

−ν̄e, τ− → ντµ
−ν̄µ, τ− → ντdū

andτ− → ντsū. Owing to the universality of theW couplings, all these decay modes have equal ampli-
tudes (if final fermion masses and QCD interactions are neglected), except for an additionalNC |Vui|2
factor (i = d, s) in the semileptonic channels, whereNC = 3 is the number of quark colours. Making
trivial kinematical changes in Eq. (15), one easily gets thelowest-order prediction for the totalτ decay
width:

1

ττ
≡ Γ(τ) ≈ Γ(µ)

(

mτ

mµ

)5
{

2 +NC

(

|Vud|2 + |Vus|2
)}

≈ 5

τµ

(

mτ

mµ

)5

, (18)

where we have used the CKM unitarity relation|Vud|2 + |Vus|2 = 1− |Vub|2 ≈ 1 (we will see later that
this is an excellent approximation). From the measured muonlifetime, one has thenττ ≈ 3.3× 10−13 s,
to be compared with the experimental value [13]τ expτ = (2.906 ± 0.010) × 10−13 s. The numerical
difference is due to the effect of QCD corrections which enhance the hadronicτ decay width by about
20%. The size of these corrections has been accurately predicted in terms of the strong coupling [18],
allowing us to extract fromτ decays one of the most precise determinations ofαs [19].

In the SM all lepton doublets have identical couplings to theW boson. Comparing the measured
decay widths of leptonic or semileptonic decays which only differ in the lepton flavour, one can test
experimentally that the W interaction is indeed the same, i.e., thatge = gµ = gτ ≡ g. As shown in
Table 2, the present data verify the universality of the leptonic charged-current couplings to the 0.2%
level.

Table 2: Experimental determinations of the ratiosgℓ/gℓ′ [13,20–22].

Γτ→µ/Γτ→e Γπ→µ/Γπ→e ΓK→µ/ΓK→e ΓK→πµ/ΓK→πe ΓW→µ/ΓW→e

|gµ/ge| 1.0018 (14) 1.0021 (16) 0.998 (2) 1.001 (2) 0.991 (9)

Γτ→e/Γµ→e Γτ→π/Γπ→µ Γτ→K/ΓK→µ ΓW→τ/ΓW→µ

|gτ/gµ| 1.0007 (22) 0.992 (4) 0.982 (8) 1.032 (12)

Γτ→µ/Γµ→e ΓW→τ/ΓW→e

|gτ/ge| 1.0016 (21) 1.023 (11)
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W
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W
+

c c

d , s d , s

e  ,+µ+

ν
e νµ,  u

d , s
__

Fig. 3: Vij are measured in semileptonic decays (left), where a single quark current is present. Hadronic decays
(right) involve two different quark currents and are more affected by QCD effects (gluons can couple everywhere).

4 Quark mixing

In order to measure the CKM matrix elements, one needs to study hadronic weak decays of the type
H → H ′ ℓ−ν̄ℓ or H → H ′ ℓ+νℓ, which are associated with the corresponding quark transitionsdj →
ui ℓ

−ν̄ℓ and ui → dj ℓ
+νℓ (Fig. 3). Since quarks are confined within hadrons, the decayamplitude

T [H → H ′ ℓ−ν̄ℓ] ≈ GF√
2
Vij 〈H ′| ūi γµ(1− γ5) dj |H〉

[

ℓ̄ γµ(1− γ5) νℓ
]

(19)

always involves an hadronic matrix element of the weak left current. The evaluation of this matrix
element is a non-perturbative QCD problem, which introduces unavoidable theoretical uncertainties.

One usually looks for a semileptonic transition where the matrix element can be fixed at some
kinematical point by a symmetry principle. This has the virtue of reducing the theoretical uncertainties
to the level of symmetry-breaking corrections and kinematical extrapolations. The standard example is
a 0− → 0− decay such asK → πℓνℓ , D → Kℓνℓ or B → Dℓνℓ . Only the vector current can
contribute in this case:

〈P ′(k′)| ūi γµ dj |P (k)〉 = CPP ′

{

(k + k′)µ f+(t) + (k − k′)µ f−(t)
}

. (20)

Here,CPP ′ is a Clebsh–Gordan factor andt = (k − k′)2 ≡ q2. The unknown strong dynamics is fully
contained in the form factorsf±(t). In the limit of equal quark masses,mui

= mdj , the divergence of the
vector current is zero; thusqµ [ūiγµdj ] = 0, which implies f−(t) = 0 and, moreover,f+(0) = 1 to all
orders in the strong coupling because the associated flavourcharge is a conserved quantity.2 Therefore,
one only needs to estimate the corrections induced by the quark mass differences.

Sinceqµ
[

ℓ̄γµ(1− γ5)νℓ
]

∼ mℓ, the contribution off−(t) is kinematically suppressed in the
electron and muon modes. The decay width can then be written as

Γ(P → P ′lν) =
G2

FM
5
P

192π3
|Vij |2 C2

PP ′ |f+(0)|2 I (1 + δRC) , (21)

whereδRC is an electroweak radiative correction factor andI denotes a phase-space integral, which in
themℓ = 0 limit takes the form

I ≈
∫ (MP−MP ′)2

0

dt

M8
P

λ3/2(t,M2
P ,M

2
P ′)

∣

∣

∣

∣

f+(t)

f+(0)

∣

∣

∣

∣

2

. (22)

The usual procedure to determine|Vij | involves three steps:

1. Measure the shape of thet distribution. This fixes|f+(t)/f+(0)| and therefore determinesI.

2 This is completely analogous to the electromagnetic chargeconservation in QED. The conservation of the electromagnetic
current implies that the proton electromagnetic form factor does not get any QED or QCD correction atq2 = 0 and, therefore,
Q(p) = 2Q(u) +Q(d) = |Q(e)|. A detailed proof can be found in Ref. [23].
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2. Measure the total decay widthΓ. SinceGF is already known fromµ decay, one gets then an
experimental value for the product|f+(0)Vij |.

3. Get a theoretical prediction forf+(0).

It is important to realize that theoretical input is always needed. Thus, the accuracy of the|Vij | determi-
nation is limited by our ability to calculate the relevant hadronic parameters.

4.1 Determination of |Vud| and |Vus|

The conservation of the vector QCD currents in the massless quark limit allows for precise determinations
of the light-quark mixings. The most accurate measurement of Vud is done with superallowed nuclearβ
decays of the Fermi type (0+ → 0+), where the nuclear matrix element〈N ′|ūγµd|N〉 can be fixed by
vector-current conservation. The CKM factor is obtained through the relation [24,25],

|Vud|2 =
π3 ln 2

ftG2
Fm

5
e (1 + δRC)

=
(2984.48 ± 0.05) s
ft (1 + δRC)

, (23)

whereft denotes the product of a phase-space statistical decay-rate factor and the measured half-life. In
order to obtain|Vud|, one needs to perform a careful analysis of radiative corrections, including elec-
troweak contributions, nuclear-structure corrections and isospin-violating nuclear effects. These nuclear-
dependent corrections are quite large,δRC ∼ 3–4%, and have a crucial role in bringing the results from
different nuclei into good agreement. The weighted averageof the twenty most precise determinations
yields [26]

|Vud| = 0.97425 ± 0.00022 . (24)

A nuclear-physics-independent determination can be obtained from neutron decay,n → p e−ν̄e.
The axial current also contributes in this case; therefore,one needs to use the experimental value of
the axial-current matrix element atq2 = 0, 〈p | ūγµγ5d |n〉 = GA p̄γµn. The present world averages,
gA ≡ GA/GV = −1.2701 ± 0.0025 andτn = (881.5 ± 1.5) s, imply [13,24,25]:

|Vud| =
{

(4908.7 ± 1.9) s
τn (1 + 3g2A)

}1/2

= 0.9765 ± 0.0018 , (25)

which is larger but less precise than (24).

The experimental determination of the neutron lifetime is controversial. The most precise mea-
surement,τn = (878.5± 0.8) s [27], disagrees by6σ from the 2010 PDG averageτn = (885.7± 0.8) s
[13], from which it was excluded. Since a more recent experiment [28] finds a mean life closer to
the value of Ref. [27], both results have been included in the2011 PDG average, enlarging the error
with a scale factor of 2.7 to account for the discrepancies. Including only the 3 most recent measure-
ments [27–29] leads toτn = (879.1 ± 1.2) s; this implies|Vud| = 0.9779 ± 0.0017, which is 2.1σ
larger than (24). Small inconsistencies are also present inthe gA measurements, with the most recent
experiments [30] favouring slightly larger values of|gA|. Better measurements ofgA andτn are needed.

The pionβ decayπ+ → π0e+νe offers a cleaner way to measure|Vud|. It is a pure vector
transition, with very small theoretical uncertainties. Atq2 = 0, the hadronic matrix element does not
receive isospin-breaking contributions of first order inmd − mu, i.e., f+(0) = 1 + O[(md − mu)

2]
[31]. The small available phase space makes it possible to theoretically control the form factor with
high accuracy over the entire kinematical domain [32]; unfortunately, it also implies a very suppressed
branching fraction. From the present experimental value [33], Br(π+ → π0e+νe) = (1.040 ± 0.006) ×
10−8, one gets|Vud| = 0.9741±0.0002th ±0.0026exp [34]. A tenfold improvement of the experimental
accuracy would be needed to get a determination competitivewith (24).

The classic determination of|Vus| takes advantage of the theoretically well-understoodKℓ3 de-
cays. The most recent high-statistics experiments have resulted in significant shifts in the branching
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fractions and improved precision for all of the experimental inputs [13]. Supplemented with theoreti-
cal calculations of electromagnetic and isospin corrections [35, 36], they allow us to extract the product
|Vus f+(0)| = 0.2163 ± 0.0005 [22], with f+(0) = 1 + O[(ms −mu)

2] the vector form factor of the
K0 → π−l+νl decay [31, 37]. The exact value off+(0) has been thoroughly investigated since the
first precise estimate by Leutwyler and Roos,f+(0) = 0.961 ± 0.008 [38]. While analytical calcula-
tions based on chiral perturbation theory obtain higher values [39,40], as a consequence of including the
large and positive (∼ 0.01) two-loop chiral corrections [41], the lattice results [42] tend to agree with
the Leutwyler–Roos estimate. Taking as reference value themost recent and precise lattice result [43],
f+(0) = 0.960 ± 0.006, one obtains [44]

|Vus| = 0.2255 ± 0.0005exp ± 0.0012th . (26)

Information onVus can also be obtained [22, 45] from the ratio of radiative inclusive decay rates
Γ[K → µν(γ)]/Γ[π → µν(γ)]. With a careful treatment ot electromagnetic and isospin-violating
corrections, one extracts|Vus/Vud| |FK/Fπ| = 0.2763 ± 0.0005 [46]. Taking for the ratio of meson
decay constants the lattice averageFK/Fπ = 1.193 ± 0.006 [42], one gets [46]

|Vus|
|Vud|

= 0.2316 ± 0.0012 . (27)

With the value of|Vud| in Eq. (24), this implies|Vus| = 0.2256 ± 0.0012.

Hyperon decays are also sensitive toVus [47]. Unfortunately, in weak baryon decays the theoreti-
cal control onSU(3)-breaking corrections is not as good as for the meson case. A conservative estimate
of these effects leads to the result|Vus| = 0.226 ± 0.005 [48].

The accuracy of all previous determinations is limited by theoretical uncertainties. The separate
measurement of the inclusive|∆S| = 0 and|∆S| = 1 tau decay widths provides a very clean observable
to directly measure|Vus| [49, 50], becauseSU(3)-breaking corrections are suppressed by two powers
of theτ mass. The presentτ decay data imply|Vus| = 0.2166 ± 0.0019exp ± 0.0005th [50], the error
being dominated by the experimental uncertainties. The central value has been shifted down by the
inclusion of the most recent BABAR and BELLE measurements, which find branching ratios smaller
than the previous world averages [13]. More precise data is needed to clarify this worrisome effect. If
the strangeness-changingτ decay width is measured with a 1% precision, the resultingVus uncertainty
will get reduced to around 0.6%, i.e.,±0.0013.

4.2 Determination of |Vcb| and |Vub|

In the limit of very heavy quark masses, QCD has additional flavour and spin symmetries [51–54] which
can be used to make rather precise determinations of|Vcb|, either from exclusive decays [55,56] or from
the inclusive analysis ofb→ c ℓ ν̄ℓ transitions.

Whenmb ≫ ΛQCD, all form factors characterizing the decaysB → Dℓν̄ℓ andB → D∗ℓν̄ℓ reduce
to a single function [51], which depends on the product of thefour-velocities of the two mesonsw ≡
vB · vD(∗) = (M2

B +M2
D(∗) − q2)/(2MBMD(∗)). Heavy quark symmetry determines the normalization

of the rate atw = 1, the maximum momentum transfer to the leptons, because the corresponding vector
current is conserved in the limit of equalB andD(∗) velocities. TheB → D∗ mode has the additional
advantage that corrections to the infinite-mass limit are ofsecond order in1/mb − 1/mc at zero recoil
(w = 1) [56]. The exclusive determination of|Vcb| is obtained from an extrapolation of the measured
spectrum tow = 1. FromB → D∗ℓν̄ℓ data one gets|Vcb| F(1) = (36.04 ± 0.52) × 10−3, while
the measuredB → Dℓν̄ℓ distribution results in|Vcb| G(1) = (42.3 ± 0.7 ± 1.3) × 10−3 [57]. Lattice
simulations are used to estimate the deviations from unity of the two form factors atw = 1; the most
recent results areF(1) = 0.908 ± 0.017 [58] andG(1) = 1.074 ± 0.018 ± 0.016 [59]. A smaller value
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F(1) = 0.86± 0.03 is obtained from zero-recoil sum rules [60]. Adopting the lattice estimates, one gets

|Vcb| =
{

(39.7 ± 0.9) × 10−3 (B → D∗ℓν̄ℓ)

(39.4 ± 1.6) × 10−3 (B → Dℓν̄ℓ)
= (39.6 ± 0.8) × 10−3 . (28)

The inclusive determination uses the Operator Product Expansion [61, 62] to express the total
b → c ℓ ν̄ℓ rate and moments of the differential energy and invariant-mass spectra in a double expansion
in powers ofαs and1/mb [63–67], which includes terms ofO(1/m3

b) and has recently been upgraded
to a completeO(α2

s) calculation [68]. The non-perturbative matrix elements ofthe corresponding local
operators are obtained from a global fit to experimental moments of inclusiveB → Xc ℓ ν̄ℓ (lepton energy
and hadronic invariant mass) andB → Xsγ (photon energy spectrum) observables. The combination of
66 different measurements results in [57]

|Vcb| = (41.85 ± 0.73) × 10−3 . (29)

At present there is a2.1σ discrepancy between the exclusive and inclusive determinations. Fol-
lowing the PDG prescription [13], we average both values scaling the error by

√

χ2/dof = 2.1:

|Vcb| = (40.8 ± 1.1)× 10−3 . (30)

A similar disagreement is observed for the analogous|Vub| determinations. The presence of a
light quark makes more difficult to control the theoretical uncertainties. ExclusiveB → πℓνℓ decays
involve a non-perturbative form factorf+(t) which is estimated through light-cone sum rules [69–71] or
lattice simulations [72,73]. The inclusive measurement requires the use of stringent experimental cuts to
suppress theb → Xcℓνℓ background; this induces large errors in the theoretical predictions [34,74–81],
which become sensitive to non-perturbative shape functions and depend much more strongly onmb. The
PDG quotes the value [13]

|Vub| =
{

(3.38 ± 0.36) × 10−3 (B → πℓν̄ℓ)

(4.27 ± 0.38) × 10−3 (B → Xuℓν̄ℓ)
= (3.89 ± 0.44) × 10−3 , (31)

where the average includes an error scaling factor
√

χ2/dof = 1.62.

4.3 Determination of the charm and top CKM elements

The analytic control of theoretical uncertainties is more difficult in semileptonic charm decays, because
the symmetry arguments associated with the light and heavy quark limits get corrected by sizeable
symmetry-breaking effects. The magnitudes of|Vcd| and |Vcs| can be extracted fromD → πℓνℓ and

D → Kℓνℓ decays. Using the lattice determination off
D→π/K
+ (0) [82, 83], the CLEO-c [84] measure-

ments of these decays imply [85]

|Vcd| = 0.234 ± 0.026 , |Vcs| = 0.963 ± 0.026 , (32)

where the errors are dominated by lattice uncertainties.

The most precise determination of|Vcd| is based on neutrino and antineutrino interactions. The
difference of the ratio of double-muon to single-muon production by neutrino and antineutrino beams is
proportional to the charm cross section off valenced quarks and, therefore, to|Vcd| times the average
semileptonic branching ratio of charm mesons. Averaging data from several experiments, the PDG
quotes [13]

|Vcd| = 0.230 ± 0.011 . (33)

The analogous determination of|Vcs| from νs → cX suffers from the uncertainty of thes-quark sea
content.
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The top quark has only been seen decaying into bottom. From the ratio of branching fractions
Br(t→ Wb)/Br(t→Wq), one determines [86,87]

|Vtb|
√

∑

q |Vtq|2
> 0.89 (95%CL) , (34)

whereq = b, s, d. A more direct determination of|Vtb| can be obtained from the single top-quark
production cross section, measured by D0 [88] and CDF [89]:

|Vtb| = 0.88 ± 0.07 . (35)

4.4 Structure of the CKM matrix

Using the previous determinations of CKM elements, we can check the unitarity of the quark mixing
matrix. The most precise test involves the elements of the first row:

|Vud|2 + |Vus|2 + |Vub|2 = 1.0000 ± 0.0007 , (36)

where we have taken as reference values the determinations in Eqs. (24), (26) and (31). Radiative cor-
rections play a crucial role at the quoted level of uncertainty, while the|Vub|2 contribution is negligible.

The ratio of the total hadronic decay width of theW to the leptonic one provides the sum [90,91]

∑

j= d,s,b

(

|Vuj |2 + |Vcj |2
)

= 2.002 ± 0.027 . (37)

Although much less precise than Eq. (36), this result test unitarity at the 1.3% level. From Eq. (37) one
can also obtain a tighter determination of|Vcs|, using the experimental knowledge on the other CKM
matrix elements, i.e.,|Vud|2 + |Vus|2 + |Vub|2 + |Vcd|2 + |Vcb|2 = 1.0546 ± 0.0051 . This gives

|Vcs| = 0.973 ± 0.014 , (38)

which is more accurate than the direct determination in Eq. (32).

The measured entries of the CKM matrix show a hierarchical pattern, with the diagonal elements
being very close to one, the ones connecting the two first generations having a size

λ ≈ |Vus| = 0.2255 ± 0.0013 , (39)

the mixing between the second and third families being of order λ2, and the mixing between the first
and third quark generations having a much smaller size of about λ3. It is then quite practical to use the
approximate parametrization [92]:

V =















1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1















+ O
(

λ4
)

, (40)

where

A ≈ |Vcb|
λ2

= 0.802 ± 0.024 ,
√

ρ2 + η2 ≈
∣

∣

∣

∣

Vub

λVcb

∣

∣

∣

∣

= 0.423 ± 0.049 . (41)

Defining to all orders inλ [93] s12 ≡ λ, s23 ≡ Aλ2 and s13 e−iδ13 ≡ Aλ3(ρ − iη), Eq. (40) just
corresponds to a Taylor expansion of Eq. (11) in powers ofλ.
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Fig. 4: Box diagrams contributing toB0–B̄0 mixing.

5 Meson-antimeson mixing

Additional information on the CKM parameters can be obtained from flavour-changing neutral-current
transitions, occurring at the 1-loop level. An important example is provided by the mixing between the
B0 meson and its antiparticle. This process occurs through thebox diagrams shown in Fig. 4, where two
W bosons are exchanged between a pair of quark lines. The mixing amplitude is proportional to

〈B̄0
d |H∆B=2|B0〉 ∼

∑

ij

VidV
∗
ibVjdV

∗
jb S(ri, rj) ∼ V

2
td S(rt, rt) , (42)

whereS(ri, rj) is a loop function [94] which depends on the masses (ri ≡ m2
i /M

2
W ) of the up-type

quarks running along the internal fermionic lines. Owing tothe unitarity of the CKM matrix, the mix-
ing vanishes for equal (up-type) quark masses (GIM mechanism [7]); thus the effect is proportional to
the mass splittings between theu, c and t quarks. Since the different CKM factors have all a similar
size,VudV

∗
ub ∼ VcdV

∗
cb ∼ VtdV

∗
tb ∼ Aλ3, the final amplitude is completely dominated by the top

contribution. This transition can then be used to perform anindirect determination ofVtd.

Notice that this determination has a qualitatively different character than the ones obtained before
from tree-level weak decays. Now, we are going to test the structure of the electroweak theory at the
quantum level. This flavour-changing transition could thenbe sensitive to contributions from new physics
at higher energy scales. Moreover, the mixing amplitude crucially depends on the unitarity of the CKM
matrix. Without the GIM mechanism embodied in the CKM mixingstructure, the calculation of the
analogousK0 → K̄0 transition (replace theb quark by as in the box diagrams) would have failed to
explain the observedK0–K̄0 mixing by several orders of magnitude [95].

5.1 General Formalism

Since weak interactions can transform aP 0 state (P = K, D, B) into its antiparticleP̄ 0, these flavour
eigenstates are not mass eigenstates and do not follow an exponential decay law. Let us consider an
arbitrary mixture of the two flavour states,

|ψ(t)〉 = a(t) |P 0〉+ b(t) |P̄ 0〉 ≡
(

a(t)
b(t)

)

, (43)

with the time evolution

i
d

dt
|ψ(t)〉 = M|ψ(t)〉 . (44)

AssumingCPT symmetry to hold, the2× 2 mixing matrix can be written as

M =

(

M M12

M∗
12 M

)

− i

2

(

Γ Γ12

Γ∗
12 Γ

)

. (45)

The diagonal elementsM andΓ are real parameters, which would correspond to the mass and width
of the neutral mesons in the absence of mixing. The off-diagonal entries contain thedispersive and
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absorptive parts of the∆P = 2 transition amplitude. IfCP were an exact symmetry,M12 andΓ12

would also be real. The physical eigenstates ofM are

|P∓〉 =
1

√

|p|2 + |q|2
[

p |P 0〉 ∓ q |P̄ 0〉
]

, (46)

with

q

p
≡ 1− ε̄

1 + ε̄
=

(

M∗
12 − i

2Γ
∗
12

M12 − i
2Γ12

)1/2

. (47)

If M12 andΓ12 were real thenq/p = 1 and|B∓〉 would correspond to theCP-even andCP-odd states
(we use the phase convention3 CP|P 0〉 = −|P̄ 0〉)

|P1,2〉 ≡
1√
2

(

|P 0〉 ∓ |P̄ 0〉
)

, CP |P1,2〉 = ±|P1,2〉 . (48)

The two mass eigenstates are no longer orthogonal whenCP is violated:

〈P−|P+〉 =
|p|2 − |q|2
|p|2 + |q|2 =

2Re (ε̄)

(1 + |ε̄|2) . (49)

The time evolution of a state which was originally produced as aP 0 or aP̄ 0 is given by

(

|P 0(t)〉
|P̄ 0(t)〉

)

=

(

g1(t)
q
p g2(t)

p
q g2(t) g1(t)

)

(

|P 0〉
|P̄ 0〉

)

, (50)

where
(

g1(t)
g2(t)

)

= e−iMt e−Γt/2

(

cos [(∆M − i
2∆Γ)t/2]

−i sin [(∆M − i
2∆Γ)t/2]

)

, (51)

with
∆M ≡MP+ −MP−

, ∆Γ ≡ ΓP+ − ΓP−
. (52)

5.2 Experimental Measurements

The main difference between theK0–K̄0 andB0–B̄0 systems stems from the different kinematics in-
volved. The light kaon mass only allows the hadronic decay modesK0 → 2π andK0 → 3π. Since
CP |ππ〉 = +|ππ〉, the CP-even kaon state decays into2π whereas theCP-odd one decays into the
phase-space-suppressed3π mode. Therefore, there is a large lifetime difference and wehave a short-
lived |KS〉 ≡ |K−〉 ≈ |K1〉 + ε̄K |K2〉 and a long-lived|KL〉 ≡ |K+〉 ≈ |K2〉 + ε̄K |K1〉 kaon, with
ΓKL

≪ ΓKS
. One finds experimentally that∆ΓK0 ≈ −ΓKS

≈ −2∆MK0 [13]:

∆MK0 = (0.5292 ± 0.0009) · 1010 s−1 , ∆ΓK0 = −(1.1150 ± 0.0006) · 1010 s−1 . (53)

In theB system, there are many open decay channels and a large part ofthem are common to both
mass eigenstates. Therefore, the|B∓〉 states have a similar lifetime; i.e.,|∆ΓB0 | ≪ ΓB0 . Moreover,
whereas theB0–B̄0 transition is dominated by the top box diagram, the decay amplitudes get obviously
their main contribution from theb → c process. Thus,|∆ΓB0/∆MB0 | ∼ m2

b/m
2
t ≪ 1. To exper-

imentally measure the mixing transition requires the identification of theB-meson flavour at both its

3 Since flavour is conserved by strong interactions, there is some freedom in defining the phases of flavour eigenstates. One
could use|P 0

ζ 〉 ≡ e−iζ |P 0〉 and |P̄ 0
ζ 〉 ≡ eiζ |P̄ 0〉, which satisfyCP |P 0

ζ 〉 = −e−2iζ |P̄ 0
ζ 〉. Both basis are trivially related:

Mζ
12 = e2iζM12, Γζ

12 = e2iζΓ12 and(q/p)ζ = e−2iζ(q/p). Thus,q/p 6= 1 does not necessarily implyCP violation. CP
is violated if |q/p| 6= 1; i.e., Re(ε̄) 6= 0 and〈P−|P+〉 6= 0. Note that〈P−|P+〉ζ = 〈P−|P+〉. Another phase-convention-
independent quantity is(q/p) (Āf/Af ), whereAf ≡ A(P 0→f) andĀf ≡ −A(P̄ 0→f), for any final statef .
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production and decay time. This can be done through flavour-specific decays such asB0 → Xl+νl and
B̄0 → Xl−ν̄l. In general, mixing is measured by studying pairs ofB mesons so that oneB can be used
to tag the initial flavour of the other meson. For instance, ine+e− machines one can look into the pair
production processe+e− → B0B̄0 → (Xlνl) (Y lνl). In the absence of mixing, the final leptons should
have opposite charges; the amount of like-sign leptons is then a clear signature of meson mixing.

Evidence for a largeB0
d–B̄0

d mixing was first reported in 1987 by ARGUS [96]. This provided
the first indication that the top quark was very heavy. Since then, many experiments have analyzed the
mixing probability. The present world-average value is [13,57]:

∆MB0
d
= (0.507 ± 0.004) · 1012 s−1 , xB0

d
≡

∆MB0
d

ΓB0
d

= 0.771 ± 0.008 . (54)

The first direct evidence ofB0
s–B̄0

s oscillations was obtained by CDF [97]. The large measured mass
difference reflects the CKM hierarchy|Vts|2 ≫ |Vtd|2, implying very fast oscillations [13,57]:

∆MB0
s
= (17.77 ± 0.12) · 1012 s−1 , xB0

s
≡

∆MB0
s

ΓB0
s

= 26.2 ± 0.5 . (55)

A more precise but still preliminary value,∆MB0
s
= (17.725 ± 0.041 ± 0.026) ps−1, has been recently

obtained by LHCb [98] using the flavour-specific decaysB0
s → D−

s π
+ andB̄0

s → D+
s π

−.

Evidence of mixing has been also obtained in theD0–D̄0 system. The present world averages [57],

xD0 ≡ ∆MD0

ΓD0

= −
(

0.63+ 0.19
− 0.20

)

% , yD0 ≡ ∆ΓD0

2ΓD0

= − (0.75 ± 0.12)% , (56)

confirm the SM expectation of a very slow oscillation, compared with the decay rate.

5.3 Mixing constraints on the CKM matrix

Long-distance contributions arising from intermediate hadronic states completely dominate theD0–D̄0

mixing amplitude and are very sizeable in theK0–K̄0 case, making difficult to extract useful information
on the CKM matrix. The situation is much better forB0 mesons, owing to the dominance of the short-
distance top contribution which is known to next-to-leading order (NLO) in the strong coupling [99,100].
The main uncertainty stems from the hadronic matrix elementof the∆B = 2 four-quark operator

〈B̄0 | (b̄γµ(1− γ5)d) (b̄γµ(1− γ5)d) |B0〉 ≡ 8

3
M2

B ξ
2
B , (57)

which is characterized through the non-perturbative parameter [101]ξB(µ) ≡
√
2 fB

√

BB(µ). Present
lattice calculations obtain the ranges [102]ξ̂Bd

= (216 ± 15) MeV, ξ̂Bs = (266 ± 18) MeV and
ξ̂Bs/ξ̂Bd

= 1.258 ± 0.033, whereξ̂B ≈ αs(µ)
−3/23ξB(µ) is the corresponding renormalization-group-

invariant quantity. Using these values, the measured mixings in (54) and (55) imply

|V∗
tbVtd| = 0.0084 ± 0.0006 , |V∗

tbVts| = 0.040 ± 0.003 ,
|Vtd|
|Vts|

= 0.214 ± 0.006 . (58)

The last number takes advantage of the smaller uncertainty in the ratio ξ̂Bs/ξ̂Bd
. Since |Vtb| ≈ 1,

B0
d,s mixing provides indirect determinations of|Vtd| and|Vts|. The resulting value of|Vts| is in per-

fect agreement with Eq. (30), satisfying the unitarity constraint |Vts| ≈ |Vcb|. In terms of the(ρ, η)
parametrization of Eq. (40), one obtains

√

(1− ρ)2 + η2 =















∣

∣

∣

∣

Vtd

λVcb

∣

∣

∣

∣

= 0.91 ± 0.07

∣

∣

∣

∣

Vtd

λVts

∣

∣

∣

∣

= 0.95 ± 0.03

. (59)

The uncertainties in all these determinations are dominated by the theoretical errors on the hadronic
matrix elements. Therefore, they are not improved by the recent precise LHCb measurement of∆MB0

s
.
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6 CP violation

While parity and charge conjugation are violated by the weakinteractions in a maximal way, the prod-
uct of the two discrete transformations is still a good symmetry of the gauge interactions (left-handed
fermions↔ right-handed antifermions). In fact,CP appears to be a symmetry of nearly all observed
phenomena. However, a slight violation of theCP symmetry at the level of0.2% is observed in the
neutral kaon system and more sizeable signals ofCP violation have been established at the B factories.
Moreover, the huge matter–antimatter asymmetry present inour Universe is a clear manifestation ofCP
violation and its important role in the primordial baryogenesis.

The CPT theorem guarantees that the product of the three discrete transformations is an exact
symmetry of any local and Lorentz-invariant quantum field theory preserving micro-causality. A viola-
tion of CP requires then a corresponding violation of time reversal. SinceT is an antiunitary transfor-
mation, this requires the presence of relative complex phases between different interfering amplitudes.

The electroweak SM Lagrangian only contains a single complex phaseδ13 (η). This is the sole
possible source ofCP violation and, therefore, the SM predictions forCP-violating phenomena are
quite constrained. The CKM mechanism requires several necessary conditions in order to generate an
observableCP-violation effect. With only two fermion generations, the quark mixing mechanism cannot
give rise toCP violation; therefore, forCP violation to occur in a particular process, all three generations
are required to play an active role. In the kaon system, for instance,CP violation can only appear at the
one-loop level, where the top quark is present. In addition,all CKM matrix elements must be non-
zero and the quarks of a given charge must be non-degenerate in mass. If any of these conditions were
not satisfied, the CKM phase could be rotated away by a redefinition of the quark fields.CP-violation
effects are then necessarily proportional to the product ofall CKM angles, and should vanish in the limit
where any two (equal-charge) quark masses are taken to be equal. All these necessary conditions can be
summarized as a single requirement on the original quark mass matricesM′

u andM′
d [103]:

CP violation ⇐⇒ Im
{

det
[

M
′
uM

′†
u , M

′
dM

′†
d

]}

6= 0 . (60)

Without performing any detailed calculation, one can make the following general statements on
the implications of the CKM mechanism ofCP violation:

– Owing to unitarity, for any choice ofi, j, k, l (between 1 and 3),

Im
[

VijV
∗
ikVlkV

∗
lj

]

= J
3
∑

m,n=1

ǫilmǫjkn , (61)

J = c12 c23 c
2
13 s12 s23 s13 sin δ13 ≈ A2λ6η < 10−4 . (62)

Any CP-violation observable involves the productJ [103]. Thus, violations of theCP symmetry
are necessarily small.

– In order to have sizeableCP-violating asymmetriesA ≡ (Γ − Γ)/(Γ + Γ), one should look for
very suppressed decays, where the decay widths already involve small CKM matrix elements.

– In the SM,CP violation is a low-energy phenomenon, in the sense that any effect should disappear
when the quark mass differencemc −mu becomes negligible.

– B decays are the optimal place forCP-violation signals to show up. They involve small CKM
matrix elements and are the lowest-mass processes where thethree quark generations play a direct
(tree-level) role.

The SM mechanism ofCP violation is based on the unitarity of the CKM matrix. Testing the
constraints implied by unitarity is then a way to test the source of CP violation. The unitarity tests in
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Fig. 5: Experimental constraints on the SM unitarity triangle [104].

Eqs. (36) and (37) involve only the moduli of the CKM parameters, whileCP violation has to do with
their phases. More interesting are the off-diagonal unitarity conditions:

V
∗
udVus + V

∗
cdVcs + V

∗
tdVts = 0 ,

V
∗
usVub + V

∗
csVcb + V

∗
tsVtb = 0 , (63)

V
∗
ubVud + V

∗
cbVcd + V

∗
tbVtd = 0 .

These relations can be visualized by triangles in a complex plane which, owing to Eq. (61), have the
same area|J |/2. In the absence ofCP violation, these triangles would degenerate into segmentsalong
the real axis.

In the first two triangles, one side is much shorter than the other two (the Cabibbo suppression
factors of the three sides areλ, λ andλ5 in the first triangle, andλ4, λ2 andλ2 in the second one). This
is whyCP effects are so small forK mesons (first triangle), and why certain asymmetries inBs decays
are predicted to be tiny (second triangle). The third triangle looks more interesting, since the three sides
have a similar size of aboutλ3. They are small, which means that the relevantb-decay branching ratios
are small, but once enoughB mesons have been produced, theCP-violation asymmetries are sizeable.
The present experimental constraints on this triangle are shown in Fig. 5, where it has been scaled by
dividing its sides byV∗

cbVcd. This aligns one side of the triangle along the real axis and makes its length
equal to 1; the coordinates of the 3 vertices are then(0, 0), (1, 0) and(ρ̄, η̄) ≈ (1− λ2/2) (ρ, η).

We have already determined the sides of the unitarity triangle in Eqs. (41) and (59), through two
CP-conserving observables:|Vub/Vcb| andB0

d,s mixing. This gives the circular regions shown in Fig. 5,
centered at the vertices(0, 0) and(1, 0). Their overlap atη 6= 0 establishes thatCP is violated (assuming
unitarity). More direct constraints on the parameterη can be obtained fromCP-violating observables,
which provide sensitivity to the angles of the unitarity triangle (α+ β + γ = π):

α ≡ arg

[

− VtdV
∗
tb

VudV
∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV
∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV
∗
cb

]

. (64)

6.1 Indirect and direct CP violation in the kaon system

Any observableCP-violation effect is generated by the interference betweendifferent amplitudes con-
tributing to the same physical transition. This interference can occur either through meson-antimeson
mixing or via final-state interactions, or by a combination of both effects.

The flavour-specific decaysK0 → π−l+νl and K̄0 → π+l−ν̄l provide a way to measure the
departure of theK0–K̄0 mixing parameter|p/q| from unity. In the SM, the decay amplitudes satisfy
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|A(K̄0 → π+l−ν̄l)| = |A(K0 → π−l+νl)|; therefore,

δL ≡ Γ(KL → π−l+νl)− Γ(KL → π+l−ν̄l)

Γ(KL → π−l+νl) + Γ(KL → π+l−ν̄l)
=

|p|2 − |q|2
|p|2 + |q|2 =

2Re (ε̄K)

(1 + |ε̄K |2)
. (65)

The experimental measurement [13],δL = (3.32 ± 0.06) × 10−3, implies

Re (ε̄K) = (1.66 ± 0.03) × 10−3 , (66)

which establishes the presence ofindirect CP violation generated by the mixing amplitude.

If the flavour of the decaying mesonP is known, any observed difference between the decay rate
Γ(P → f) and itsCP conjugateΓ(P̄ → f̄) would indicate thatCP is directly violated in the decay
amplitude. One could study, for instance,CP asymmetries in decays such asK± → π±π0 where the
pion charges identify the kaon flavour; no positive signal has been found in charged kaon decays. Since
at least two interfering contributions are needed, let us write the decay amplitudes as

A[P → f ] = M1 e
iφ1 eiδ1 + M2 e

iφ2 eiδ2 , A[P̄ → f̄ ] = M1 e
−iφ1eiδ1 + M2 e

−iφ2eiδ2 , (67)

whereφi denote weak phases,δi strong final-state phases andMi the moduli of the matrix elements. The
rate asymmetry is given by

ACP
P→f ≡ Γ[P → f ]− Γ[P̄ → f̄ ]

Γ[P → f ] + Γ[P̄ → f̄ ]
=

−2M1M2 sin (φ1 − φ2) sin (δ1 − δ2)

|M1|2 + |M2|2 + 2M1M2 cos (φ1 − φ2) cos (δ1 − δ2)
. (68)

Thus, to generate a directCP asymmetry one needs: 1) at least two interfering amplitudes, which
should be of comparable size in order to get a sizeable asymmetry; 2) two different weak phases
[sin (φ1 − φ2) 6= 0], and 3) two different strong phases [sin (δ1 − δ2) 6= 0].

Direct CP violation has been searched for in decays of neutral kaons, whereK0–K̄0 mixing is
also involved. Thus, both direct and indirectCP violation need to be taken into account simultaneously.
A CP-violation signal is provided by the ratios:

η+− ≡ A(KL → π+π−)

A(KS → π+π−)
= εK + ε′K , η00 ≡ A(KL → π0π0)

A(KS → π0π0)
= εK − 2ε′K . (69)

The dominant effect fromCP violation inK0–K̄0 mixing is contained inεK , while ε′K accounts for
directCP violation in the decay amplitudes:

εK = ε̄K + iξ0 , ε′K =
i√
2
ω (ξ2 − ξ0) , ω ≡ Re (A2)

Re (A0)
ei(δ2−δ0) , ξI ≡

Im (AI)

Re (AI)
. (70)

AI andδI are the decay amplitudes and strong phase shifts of isospinI = 0, 2 (these are the only two
values allowed by Bose symmetry for the final2π state). Althoughε′K is strongly suppressed by the
small ratio|ω| ≈ 1/22 [44], a non-zero value has been established through very accurate measurements,
demonstrating the existence of directCP violation in K decays [105–108]:

Re
(

ε′K/εK

)

=
1

3

(

1−
∣

∣

∣

∣

η00
η+−

∣

∣

∣

∣

)

= (16.8 ± 1.4) × 10−4 . (71)

In the SM the necessary weak phases are generated through thegluonic and electroweak penguin di-
agrams shown in Fig. 6, involving virtual up-type quarks of the 3 generations in the loop. These
short-distance contributions are known to NLO in the strongcoupling [109, 110]. However, the the-
oretical prediction involves a delicate balance between the two isospin amplitudes and is sensitive to
long-distance and isospin-violating effects. Using chiral perturbation theory techniques [111–113], one

findsRe
(

ε′K/εK

)

=
(

19+11
− 9

)

× 10−4 [44], in agreement with (71) but with a large uncertainty.
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Fig. 6: ∆S = 1 penguin diagrams.

SinceRe
(

ε′K/εK

)

≪ 1, the ratiosη+−
andη00 provide a measurement ofεK = |εK |eiφε [13]:

|εK | = 1

3

(

2|η+−
|+ |η00 |

)

= (2.228 ± 0.011) × 10−3, φε = (43.51 ± 0.05)◦ , (72)

in perfect agreement with the semileptonic asymmetryδL. In the SMεK receives short-distance contri-
butions from box diagrams involving virtual top and charm quarks, which are proportional to

εK ∝
∑

i,j=c,t

ηij Im
[

VidV
∗
isVjdV

∗
js

]

S(ri, rj) ∝ A2λ6η̄
{

ηtt A
2λ4(1− ρ̄) + Pc

}

. (73)

The first term shows the CKM dependence of the dominant top contribution, Pc accounts for the charm
corrections [114] and the short-distance QCD correctionsηij are known to NLO [99, 100, 115]. The
measured value of|εK | determines an hyperbolic constraint in the(ρ̄, η̄) plane, shown in Fig. 5, taking
into account the theoretical uncertainty in the hadronic matrix element of the∆S = 2 operator [34,44].

6.2 CP asymmetries in B decays

The semileptonic decaysB0 → X−l+νl andB̄0 → X+l−ν̄l provide the most direct way to measure the
amount ofCP violation in theB0–B̄0 mixing matrix, through

aqsl ≡
Γ(B̄0

q → X−l+νl)− Γ(B0
q → X+l−ν̄l)

Γ(B̄0
q → X−l+νl) + Γ(B0

q → X+l−ν̄l)
=

|p|4 − |q|4
|p|4 + |q|4 ≈ 4 Re (ε̄B0

q
)

≈ |Γ12|
|M12|

sinφq ≈
|∆ΓB0

q
|

|∆MB0
q
| tanφq . (74)

This asymmetry is expected to be tiny because|Γ12/M12| ∼ m2
b/m

2
t << 1. Moreover, there is an

additional GIM suppression in the relative mixing phaseφq ≡ arg (−M12/Γ12) ∼ (m2
c − m2

u)/m
2
b ,

implying a value of|q/p| very close to 1. Therefore,aqsl could be very sensitive to newCP phases
contributing toφq. The present measurements give [13,57]

Re(ε̄B0
d
) = (−0.1 ± 1.4) · 10−3 , Re(ε̄B0

s
) = (−2.9 ± 1.5) · 10−3 . (75)

The non-zero value ofRe(ε̄B0
s
) originates in a recent D0 measurement [116] claiming the like-sign

dimuon charge asymmetry to be 3.9σ larger than the SM prediction [117, 118]. However this is not
supported by the measuredCP asymmetries inB0

s → J/ψφ [119–121] andB0
s → J/ψf0(980) [119],

which are in good agreement with the SM expectations.

The largeB0–B̄0 mixing provides a different way to generate the requiredCP-violating interfer-
ence. There are quite a few nonleptonic final states which arereachable both from aB0 and aB̄0. For
these flavour non-specific decays theB0 (or B̄0) can decay directly to the given final statef , or do it after
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the meson has been changed to its antiparticle via the mixingprocess; i.e., there are two different ampli-
tudes,A(B0 → f) andA(B0 → B̄0 → f), corresponding to two possible decay paths.CP-violating
effects can then result from the interference of these two contributions.

The time-dependent decay probabilities for the decay of a neutral B meson created at the time
t0 = 0 as a pureB0 (B̄0) into the final statef (f̄ ≡ CP f ) are:

Γ[B0(t) → f ] ∝ 1

2
e−Γ

B0 t
(

|Af |2 + |Āf |2
)

{1 + Cf cos (∆MB0t)− Sf sin (∆MB0t)} ,

Γ[B̄0(t) → f̄ ] ∝ 1

2
e−Γ

B0 t
(

|Āf̄ |2 + |Af̄ |2
) {

1− Cf̄ cos (∆MB0t) + Sf̄ sin (∆MB0t)
}

, (76)

where the tiny∆ΓB0 corrections have been neglected and we have introduced the notation

Af ≡ A[B0 → f ] , Āf ≡ −A[B̄0 → f ] , ρ̄f ≡ Āf/Af ,

Af̄ ≡ A[B0 → f̄ ] , Āf̄ ≡ −A[B̄0 → f̄ ] , ρf̄ ≡ Af̄/Āf̄ , (77)

Cf ≡ 1− |ρ̄f |2
1 + |ρ̄f |2

, Sf ≡
2 Im

(

q
p ρ̄f

)

1 + |ρ̄f |2
, Cf̄ ≡ −

1− |ρf̄ |2
1 + |ρf̄ |2

, Sf̄ ≡
−2 Im

(

p
q ρf̄

)

1 + |ρf̄ |2
.

CP invariance demands the probabilities ofCP-conjugate processes to be identical. Thus,CP
conservation requiresAf = Āf̄ , Af̄ = Āf , ρ̄f = ρf̄ andIm( qp ρ̄f ) = Im(pq ρf̄ ), i.e.,Cf = −Cf̄ and
Sf = −Sf̄ . Violation of any of the first three equalities would be a signal of directCP violation. The
fourth equality testsCP violation generated by the interference of the direct decayB0 → f and the
mixing-induced decayB0 → B̄0 → f .

ForB0 mesons
q

p

∣

∣

∣

∣

B0
q

≈
√

M∗
12

M12
≈

V
∗
tbVtq

VtbV
∗
tq

≡ e−2iϕM
q , (78)

whereϕM
d = β + O(λ4) andϕM

s = −βs + O(λ6). The angleβ is defined in Eq. (64), whileβs ≡
arg [− (VtsV

∗
tb) / (VcsV

∗
cb)] = λ2η +O(λ4) is the equivalent angle in theB0

s unitarity triangle which is
predicted to be tiny. Therefore, the mixing ratioq/p is given by a known weak phase.

An obvious example of final statesf which can be reached both from theB0 and theB̄0 areCP
eigenstates; i.e., states such thatf̄ = ζff (ζf = ±1). In this case,Af̄ = ζfAf , Āf̄ = ζf Āf , ρf̄ = 1/ρ̄f ,
Cf̄ = Cf andSf̄ = Sf . A non-zero value ofCf or Sf signals thenCP violation. The ratios̄ρf andρf̄
depend in general on the underlying strong dynamics. However, for CP self-conjugate final states, all
dependence on the strong interaction disappears if only oneweak amplitude contributes to theB0 → f
andB̄0 → f transitions [122,123]. In this case, we can write the decay amplitude asAf = Meiϕ

D
eiδs ,

with M =M∗ andϕD andδs weak and strong phases. The ratiosρ̄f andρf̄ are then given by

ρf̄ = ρ̄∗f = ζf e
2iϕD

. (79)

The modulusM and the unwanted strong phase cancel out completely from these two ratios;ρf̄ and
ρ̄f simplify to a single weak phase, associated with the underlying weak quark transition. Since|ρf̄ | =
|ρ̄f | = 1, the time-dependent decay probabilities become much simpler. In particular,Cf = 0 and there
is no longer any dependence oncos (∆MB0t). Moreover, the coefficients of the sinusoidal terms are then
fully known in terms of CKM mixing angles only:Sf = Sf̄ = −ζf sin [2(ϕM

q + ϕD)] ≡ −ζf sin (2Φ).
In this ideal case, the time-dependentCP-violating decay asymmetry

Γ[B̄0(t) → f̄ ]− Γ[B0(t) → f ]

Γ[B̄0(t) → f̄ ] + Γ[B0(t) → f ]
= −ζf sin (2Φ) sin (∆MB0t) (80)
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Table 3: CKM factors and relevant angleΦ for someB decays intoCP eigenstates.

Decay Tree-level CKM Penguin CKM Exclusive channels Φ

b̄→ c̄cs̄ Aλ2 −Aλ2 B0
d → J/ψKS , J/ψKL β

B0
s → D+

s D
−
s , J/ψφ −βs

b̄→ s̄ss̄ −Aλ2 B0
d → KSφ,KLφ β

B0
s → φφ −βs

b̄→ d̄ds̄ −Aλ2 B0
s → KSKS ,KLKL −βs

b̄→ c̄cd̄ −Aλ3 Aλ3(1− ρ− iη) B0
d → D+D−, J/ψπ0 ≈ β

B0
s → J/ψKS , J/ψKL ≈ −βs

b̄→ ūud̄ Aλ3(ρ+ iη) Aλ3(1− ρ− iη) B0
d → π+π−, ρ0π0, ωπ0 ≈ β + γ

B0
s → ρ0KS,L, ωKS,L, π

0KS,L 6= γ − βs

b̄→ s̄sd̄ Aλ3(1− ρ− iη) B0
d → KSKS ,KLKL, φπ

0 0

B0
s → KSφ,KLφ −β − βs

provides a direct and clean measurement of the CKM parameters [124].

When several decay amplitudes with different phases contribute, |ρ̄f | 6= 1 and the interference
term will depend both on CKM parameters and on the strong dynamics embodied in̄ρf . The leading
contributions tōb→ q̄′q′q̄ are either the tree-levelW exchange or penguin topologies generated by gluon
(γ, Z) exchange. Although of higher order in the strong (electroweak) coupling, penguin amplitudes are
logarithmically enhanced by the virtualW loop and are potentially competitive. Table 3 contains the
CKM factors associated with the two topologies for different B decay modes intoCP eigenstates.

The gold-plated decay mode isB0
d → J/ψKS . In addition of having a clean experimental sig-

nature, the two topologies have the same (zero) weak phase. TheCP asymmetry provides then a clean
measurement of the mixing angleβ, without strong-interaction uncertainties. Fig. 7 shows the most re-
cent BELLE measurement [125] of time-dependentb̄ → cc̄s̄ asymmetries forCP-odd (B0

d → J/ψKS ,
B0

d → ψ′KS , B0
d → χc1KS) andCP-even (B0

d → J/ψKL) final states. A very nice oscillation is man-
ifest, with opposite signs for the two different choices ofζf = ±1. Including the information obtained
from otherb̄→ cc̄s̄ decays, one gets the world average [57]:

sin (2β) = 0.68 ± 0.02 . (81)

Fitting an additionalcos (∆MB0t) term in the measured asymmetries results inCf = 0.013 ± 0.017
[57], confirming the expected null result. An independent measurement ofsin 2β can be obtained from
b̄ → ss̄s̄ and b̄ → dd̄s̄ decays, which only receive penguin contributions and, therefore, could be more
sensitive to new-physics corrections in the loop diagram. These modes givesin (2β) = 0.64±0.04 [57],
in perfect agreement with (81).

Eq. (81) determines the angleβ up to a four-fold ambiguity. The time-dependent analysis ofthe
angularB0

d → J/ψK∗0 distribution and the Dalitz plot ofB0
d → D̄0h0 decays (h0 = π0, η, ω) allows us

to resolve theβ ↔ π
2 − β ambiguity (but not theβ ↔ π + β), showing that negativecos (2β) solutions

are very unlikely [126,127]. The result fits nicely with all previous unitarity triangle constraints in Fig. 5.

A determination ofβ + γ = π − α can be obtained from̄b → ūud̄ decays, such asB0
d → ππ or

B0
d → ρρ. However, the penguin contamination which carries a different weak phase can be sizeable.

The time-dependent asymmetry inB0
d → π+π− shows indeed a non-zero value for thecos (∆MB0t)

term,Cf = −0.38 ± 0.06 [57], indicating the presence of an additional amplitude; thenSf = −0.65 ±
0.07 6= sin 2α. One could still extract useful information onα (up to 16 mirror solutions), using the
isospin relations among theB0

d → π+π−, B0
d → π0π0 andB+ → π+π0 amplitudes and theirCP
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Fig. 7: Time-dependent asymmetries forCP-odd (B0

d → J/ψKS, B0

d → ψ′KS , B0

d → χc1KS; ζf = −1; left)
andCP-even (B0

d → J/ψKL; ζf = +1; right) final states, measured by BELLE [125].

conjugates [128]; however, only a loose constraint is obtained given the limited experimental precision
on B0

d → π0π0. Much stronger constraints are obtained fromB0
d → ρρ because one can use the

additional polarization information of two vectors in the final state to resolve the different contributions
and, moreover, the small branching fractionBr(B0

d → ρ0ρ0) = (0.73+ 0.27
− 0.28) · 10−6 [13] implies a very

small penguin contribution. Additional information can beobtained fromB0
d , B̄

0
d → ρ±π∓, although

the final states are notCP eigenstates. Combining all pieces of information results in [13,104]

α = (89.0+4.4
− 4.2)

◦ . (82)

The angleγ cannot be determined in̄b → uūd̄ decays such asB0
s → ρ0KS because the colour

factors in the hadronic matrix element enhance the penguin amplitude with respect to the tree-level
contribution. Instead,γ can be measured through the tree-level decaysB− → D0K− (b → cūs) and
B− → D̄0K− (b → uc̄s), using final states accessible in bothD0 andD̄0 decays and playing with the
interference of both amplitudes [129–131]. The sensitivity can be optimized with Dalitz-plot analyses of
D0, D̄0 → KSπ

+π− decays. The extensive studies made by BABAR and BELLE resultin [13,104]

γ = (73+22
− 25)

◦ . (83)

Mixing-inducedCP violation has been also searched for in the decaysB0
s → J/ψφ andB0

s →
J/ψf0(980). From the corresponding time-dependentCP asymmetries, LHCb has recently determined
the angle [119]

βs = −(2± 5)◦ , (84)

in good agrement with the SM predictionβs ≈ ηλ2 ≈ 1◦.

6.3 Global fit of the unitarity triangle

The CKM parameters can be more accurately determined through a global fit to all available measure-
ments, imposing the unitarity constraints and taking properly into account the theoretical uncertainties.
The global fit shown in Fig. 5 uses frequentist statistics andgives [104]

λ = 0.2254+ 0.0006
− 0.0010 , A = 0.801+ 0.026

− 0.014 , ρ̄ = 0.144+ 0.023
− 0.026 , η̄ = 0.343+ 0.015

− 0.014 . (85)

This impliesJ = (2.884+ 0.253
− 0.053) · 10−5, α = (90.9+ 3.5

− 4.1)
◦, β = (21.84+ 0.80

− 0.76)
◦ andγ = (67.3+ 4.2

− 3.5)
◦.

Similar results are obtained by the UTfit group [132], using instead a Bayesian approach and a slightly
different treatment of theoretical uncertainties.
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6.4 DirectCP violation in B andD decays

The B factories have established the presence of directCP violation in several decays ofB mesons. The
most significative signals are [13,57]

ACP
B̄0

d
→K−π+ = −0.098 ± 0.013 , ACP

B̄0
d
→K̄∗0η = 0.19 ± 0.05 , ACP

B̄0
d
→K∗−π+ = −0.19 ± 0.07 ,

CB0
d
→π+π− = −0.38 ± 0.06 , ACP

B−→K−DCP(+1)
= 0.24 ± 0.06 ,

ACP
B−→K−ρ0 = 0.37 ± 0.10 , ACP

B−→K−η = −0.37 ± 0.09 ,

ACP
B−→K−f2(1270)

= −0.68+0.19
− 0.17 , ACP

B−→π−f0(1370)
= 0.72 ± 0.22 . (86)

LHCb has also reported evidence for directCP violation inD decays [133]:

ACP
D0→K+K− −ACP

D0→π+π− = −0.82± 0.24 . (87)

Unfortunately, owing to the unavoidable presence of strongphases, a real theoretical understanding of the
corresponding SM predictions is still lacking. Progress inthis direction is needed to perform meaningful
tests of the CKM mechanism ofCP violation and pin down any possible effects from new physicsbeyond
the SM framework.

7 Rare decays

Complementary and very valuable information could be also obtained from rare decays which in the SM
are strongly suppressed by the GIM mechanism. These processes are sensitive to new-physics contribu-
tions with a different flavour structure. Well-known examples are the kaon decay modesK± → π±νν̄
andKL → π0νν̄, where long-distance effects play a negligible role. The decay amplitudes are dominated
by short-distance loops (Z penguin,W box) involving the heavy top quark, but receive also sizeable con-
tributions from internal charm exchanges. The relevant hadronic matrix elements can be obtained from
Kl3 decays, assuming isospin symmetry. The neutral decay isCP violating and proceeds almost entirely
through directCP violation (via interference with mixing). Taking the CKM matrix elements from the
global fit, the predicted SM rates are [134–136]:

Br(K+ → π+νν̄)th = (0.78± 0.08)× 10−10 , Br(KL → π0νν̄)th = (2.4± 0.4)× 10−11 . (88)

On the experimental side, the charged kaon mode was already observed [137], while only an upper bound
on the neutral mode has been achieved [138]:

Br(K+ → π+νν̄) = (1.73+1.15
−1.05)× 10−10 , Br(KL → π0νν̄) < 2.6× 10−8 (90%C.L.) . (89)

New experiments are under development at CERN [139] and J-PARC [140] for charged and neutral
modes, respectively, aiming to reachO(100) events and begin to seriously probe the new-physics po-
tential of these decays. Increased sensitivities could be obtained through the recent P996 proposal for a
K+ → π+νν̄ experiment at Fermilab and the higher kaon fluxes available at Project-X [141].

Another promising mode isKL → π0e+e−. Owing to the electromagnetic suppression of the 2γ
CP-conserving contribution, this decay is dominated by theCP-violating one-photon emission ampli-
tude. It receives contributions from both direct and indirect CP violation, which amount to a predicted
rateBr(KL → π0e+e−)th = (3.1 ± 0.9) · 10−11 [44], ten times smaller than the present experimental
boundBr(KL → π0e+e−) < 2.8 · 10−10 (90% C.L.) [142]. Other interestingK decays are discussed
in Ref. [44].

The inclusive decaȳB → Xsγ provides another powerful test of the SM flavour structure at
the quantum loop level. The present experimental world average [57]Br(B̄ → Xsγ)Eγ≥1.6 GeV =
(3.55 ± 0.26) · 10−4 agrees very well with the SM theoretical prediction [143] atthe next-to-next-to-
leading order,Br(B̄ → Xsγ)

th
Eγ≥1.6 GeV = (3.15 ± 0.23) · 10−4. Other interesting processes withB

mesons arēB → K(∗)l+l−, B̄0 → l+l− andB̄ → K(∗)νν̄ [34].
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8 Discussion

The flavour structure of the SM is one of the main pending questions in our understanding of weak
interactions. Although we do not know the reason of the observed family replication, we have learnt
experimentally that the number of SM generations is just three (and no more). Therefore, we must study
as precisely as possible the few existing flavours, to get some hints on the dynamics responsible for their
observed structure.

In the SM all flavour dynamics originate in the fermion mass matrices, which determine the mea-
surable masses and mixings. The SM incorporates a mechanismto generateCP violation, through the
single phase naturally occurring in the CKM matrix. This mechanism, deeply rooted into the unitarity
structure ofV, implies very specific requirements forCP violation to show up. The CKM matrix has
been thoroughly investigated in dedicated experiments anda large number ofCP-violating processes
have been studied in detail. At present, all flavour data seemto fit into the SM framework, confirm-
ing that the fermion mass matrices are the dominant source offlavour-mixing phenomena. However, a
fundamental explanation of the flavour dynamics is still lacking.

The dynamics of flavour is a broad and fascinating subject, which is closely related to the so far
untested scalar sector of the SM. LHC has already excluded a broad range of Higgs masses, narrowing
down the SM Higgs hunting to the region of low masses between 115.5 and 127 GeV (95% CL) [144,
145]. This is precisely the range of masses preferred by precision electroweak tests [4]. The discovery of
a neutral scalar boson in this mass range would provide a spectacular confirmation of the SM framework.

If the Higgs boson does not show up soon, we should look for alternative mechanisms of mass
generation, satisfying the many experimental constraintswhich the SM has successfully fulfilled so far.
The easiest perturbative way would be enlarging the scalar sector with additional Higgs doublets, with-
out spoiling the electroweak precision tests. However, adding more scalar doublets to the Yukawa La-
grangian (4) leads to new sources of flavour-changing phenomena; in particular, the additional neutral
scalars acquire tree-level flavour-changing neutral couplings, which represent a major phenomenological
problem. In order to satisfy the stringent experimental constraints, these scalars should be either decou-
pled (very large masses above 10-50 TeV or tiny couplings) orhave their Yukawa couplings aligned in
flavour space [146], which suggests the existence of additional flavour symmetries at higher scales. The
usual supersymmetric models with two scalar doublets avoidthis problem through a discrete symme-
try which only allows one of the scalars to couple to a given right-handed fermion [147]; however, the
presence of flavoured supersymmetric partners gives rise toother problematic sources of flavour andCP
phenomena, making necessary to tune their couplings to be tiny (or zero) [148]. Models with dynamical
electroweak symmetry breaking have also difficulties to accommodate the flavour constraints in a natural
way. Thus, flavour phenomena imposes severe restrictions onpossible extensions of the SM.

New experimental input is expected from LHCb, BESS-III, thefuture Super-Belle and Super-B
factories and from several kaon (NA62, DAΦNE,K0TO, TREK, KLOD, OKA, Project-X) and muon
(MEG, Mu2e, COMET, PRISM) experiments. These data will provide very valuable information, com-
plementing the high-energy searches for new phenomena at LHC. Unexpected surprises may well be
discovered, probably giving hints of new physics at higher scales and offering clues to the problems of
fermion mass generation, quark mixing and family replication.
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