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Abstract
An introductory overview of the Standard Model description of flavour is pre-
sented. The main emphasis is put on present tests of the quark-mixing matrix
structure and the phenomenological determination of its parameters. Special
attention is given to the experimental evidence for CP-violation and its impor-
tant role in our understanding of flavour dynamics.

1 Fermion families
We have learnt experimentally that there are six different quark flavours (u, d, s, c, b, t), three different
charged leptons (e, µ, τ ) and their corresponding neutrinos (νe, νµ, ντ ). We can include all these particles
into the SU(3)C ⊗ SU(2)L ⊗ U(1)Y Standard Model (SM) framework [1–3], by organizing them into
three families of quarks and leptons:

[
νe u
e− d′

]
,

[
νµ c
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]
,

[
ντ t
τ− b′

]
, (1)

where (each quark appears in three different colours)
[
νi ui
`−i d′i

]
≡
(

νi
`−i

)

L

,

(
ui
d′i

)

L

, `−iR, uiR, d′iR, (2)

plus the corresponding antiparticles. Thus, the left-handed fields are SU(2)L doublets, while their right-
handed partners transform as SU(2)L singlets. The three fermionic families appear to have identical
properties (gauge interactions); they differ only by their mass and their flavour quantum number.

The fermionic couplings of the photon and the Z boson are flavour-conserving, i.e. the neutral
gauge bosons couple to a fermion and its corresponding antifermion. In contrast, the W± bosons couple
any up-type quark with all down-type quarks because the weak doublet partner of ui turns out to be a
quantum superposition of down-type mass eigenstates: d′i =

∑
j Vij dj . This flavour mixing generates

a rich variety of observable phenomena, including CP-violation effects, which can be described in a very
successful way within the SM [4].

In spite of its enormous phenomenological success, the SM does not provide any real understand-
ing of flavour. We do not know yet why fermions are replicated in three (and only three) nearly identical
copies. Why is the pattern of masses and mixings what it is? Are the masses the only difference among
the three families? What is the origin of the SM flavour structure? Which dynamics is responsible for
the observed CP-violation? The fermionic flavour is the main source of arbitrary free parameters in the
SM: nine fermion masses, three mixing angles and one complex phase, for massless neutrinos. Seven
(nine) additional parameters arise with non-zero Dirac (Majorana) neutrino masses: three masses, three
mixing angles and one (three) phases. The problem of fermion mass generation is deeply related to the
mechanism responsible for the electroweak spontaneous symmetry breaking (SSB). Thus, the origin of
these parameters lies in the most obscure part of the SM Lagrangian: the scalar sector. Clearly, the
dynamics of flavour appears to be terra incognita that deserves a careful investigation.

The following sections contain a short overview of the quark flavour sector and its present phe-
nomenological status. The most relevant experimental tests are briefly described. A more pedagogic
introduction to the SM can be found in [4].
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2 Flavour structure of the Standard Model
In the SM, flavour-changing transitions occur only in the charged-current sector (Fig. 1):
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Fig. 1: Flavour-changing transitions through the charged-current couplings of the W± bosons.

The so-called Cabibbo–Kobayashi–Maskawa (CKM) matrix V [5, 6] is generated by the same Yukawa
couplings giving rise to the quark masses. Before SSB, there is no mixing among the different quarks,
i.e. V = I. In order to understand the origin of the matrix V, let us consider the general case of NG

generations of fermions, and denote ν ′j , `
′
j , u′j and d′j the members of the weak family j (j = 1, . . . , NG),

with definite transformation properties under the gauge group. Owing to the fermion replication, a large
variety of fermion-scalar couplings are allowed by the gauge symmetry. The most general Yukawa
Lagrangian has the form

LY = −
∑

jk

{(
ū′j , d̄′j

)
L
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)
L
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`′kR

}
+ h.c., (4)

where φT (x) ≡ (φ(+), φ(0)) is the SM scalar doublet and c
(d)
jk , c(u)

jk and c
(`)
jk are arbitrary coupling

constants. The second term involves the C-conjugate scalar field φc(x) ≡ iσ2φ
∗(x).

In the unitary gauge, φT (x) ≡ (1/
√

2)(0, v+H), where v is the electroweak vacuum expectation
value and H(x) the Higgs field. The Yukawa Lagrangian can then be written as

LY = −
(

1 +
H

v

){
d′LM

′
dd
′
R + u′LM

′
uu
′
R + `̀̀′LM

′
` `̀̀
′
R + h.c.

}
. (5)

Here, d′, u′ and `̀̀′ denote vectors in the NG-dimensional flavour space, with components d′j , u′j and `′j ,
respectively, and the corresponding mass matrices are given by

(M′d)ij ≡ c(d)
ij

v√
2
, (M′u)ij ≡ c(u)

ij

v√
2
, (M′`)ij ≡ c

(`)
ij

v√
2
. (6)

The diagonalization of these mass matrices determines the mass eigenstates dj , uj and `j , which are
linear combinations of the corresponding weak eigenstates d′j , u′j and `′j , respectively.

The matrix M′d can be decomposed as1 M′d = HdUd = S†dMdSdUd, where Hd ≡
√
M′dM

′†
d is

a hermitian positive-definite matrix, while Ud is unitary. Hd can be diagonalized by a unitary matrix Sd;

1The condition detM′f 6= 0 (f = d,u, `) guarantees that the decomposition M′f = HfUf is unique: Uf ≡ H−1
f M′f .

The matrices Sf are completely determined (up to phases) only if all diagonal elements of Mf are different. If there is some
degeneracy, the arbitrariness of Sf reflects the freedom to define the physical fields. If detM′f = 0, the matrices Uf and Sf
are not uniquely determined, unless their unitarity is explicitly imposed.

2

A. PICH

120



the resulting matrixMd is diagonal, hermitian and positive-definite. Similarly, one has M′u = HuUu =

S†uMuSuUu and M′` = H`U` = S†`M`S`U`. In terms of the diagonal mass matrices

Md = diag(md,ms,mb, . . .), Mu = diag(mu,mc,mt, . . .), M` = diag(me,mµ,mτ , . . .), (7)

the Yukawa Lagrangian takes the simpler form

LY = −
(

1 +
H

v

){
dMdd + uMuu + `̀̀M``̀̀

}
, (8)

where the mass eigenstates are defined by

dL ≡ Sd d
′
L , uL ≡ Su u

′
L , `̀̀L ≡ S` `̀̀

′
L ,

dR ≡ SdUd d
′
R , uR ≡ SuUu u

′
R , `̀̀R ≡ S`U` `̀̀

′
R . (9)

Note that the Higgs couplings are proportional to the corresponding fermion masses.

Since f ′L f
′
L = fL fL and f ′R f ′R = fR fR (f = d, u, `), the form of the neutral-current part of the

SU(3)C ⊗ SU(2)L ⊗ U(1)Y Lagrangian does not change when expressed in terms of mass eigenstates.
Therefore, there are no flavour-changing neutral currents in the SM (Glashow–Iliopoulos–Maiani (GIM)
mechanism [7]). This is a consequence of treating all equal-charge fermions on the same footing. How-
ever, u ′L d

′
L = uL Su S

†
d dL ≡ uLVdL. In general, Su 6= Sd ; thus, if one writes the weak eigenstates

in terms of mass eigenstates, an NG×NG unitary mixing matrix V appears in the quark charged-current
sector as indicated in Eq. (3).

If neutrinos are assumed to be massless, we can always redefine the neutrino flavours, in such
a way as to eliminate the mixing in the lepton sector: ν ′L `̀̀

′
L = ν ′L S

†
` `̀̀L ≡ νL `̀̀L. Thus, we have

lepton-flavour conservation in the minimal SM without right-handed neutrinos. If sterile νR fields are
included in the model, one has an additional Yukawa term in Eq. (4), giving rise to a neutrino mass matrix
(M′ν)ij ≡ c

(ν)
ij v/

√
2 . Thus, the model can accommodate non-zero neutrino masses and lepton-flavour

violation through a lepton-mixing matrix VL analogous to the one present in the quark sector. Note,
however, that the total lepton number L ≡ Le + Lµ + Lτ is still conserved. We know experimentally
that neutrino masses are tiny and, as shown in Table 1, there are strong bounds on lepton-flavour-violating
decays. However, we do have clear evidence of neutrino oscillation phenomena. Moreover, since right-
handed neutrinos are singlets under SU(3)C⊗SU(2)L⊗U(1)Y , the SM gauge symmetry group allows for
a right-handed Majorana neutrino mass term, violating lepton number by two units. Non-zero neutrino
masses clearly imply interesting new phenomena [4].

The fermion masses and the quark-mixing matrix V are all determined by the Yukawa couplings in
Eq. (4). However, the coefficients c(f)

ij are not known; therefore, we have a bunch of arbitrary parameters.
A general NG × NG unitary matrix is characterized by N2

G real parameters: NG(NG − 1)/2 moduli

Table 1: Experimental upper limits (90% confidence level (CL)) on lepton-flavour-violating decays [8–12].

Br(µ− → X−)× 1012

e−γ 2.4 e−2γ 72 e−e−e+ 1.0

Br(τ− → X−)× 108

µ−γ 4.4 e−γ 3.3 µ−µ+µ− 2.1 µ−π+π− 3.3 µ−K+K− 6.8
µ−π0 11 e−π0 8.0 e−µ+µ− 2.7 e−π+π− 4.4 e−K+K− 5.4
µ−KS 2.3 e−KS 2.6 µ−e+e− 1.8 µ+π−π− 3.7 e−K±π∓ 5.8
µ−ρ0 2.6 e−φ 3.1 e−e+e− 2.7 e+π−π− 8.8 e+K−K− 6.0
µ−η 6.5 e−η 9.2 µ−µ−e+ 1.7 µ−ω 8.9 e+K−π− 6.7
µ−K∗0 5.9 e−K∗0 5.9 e−e−µ+ 1.5 Λπ− 7.2 µ+K−π− 9.4
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and NG(NG + 1)/2 phases. In the case of V, many of these parameters are irrelevant because we can
always choose arbitrary quark phases. Under the phase redefinitions ui → eiφi ui and dj → eiθj dj , the
mixing matrix changes as Vij → Vij ei(θj−φi); thus, 2NG − 1 phases are unobservable. The number of
physical free parameters in the quark-mixing matrix then gets reduced to (NG − 1)2: NG(NG − 1)/2
moduli and (NG − 1)(NG − 2)/2 phases.

In the simpler case of two generations, V is determined by a single parameter. One then recovers
the Cabibbo rotation matrix [5]

V =

(
cos θC sin θC

− sin θC cos θC

)
. (10)

With NG = 3, the CKM matrix is described by three angles and one phase. Different (but equivalent)
representations can be found in the literature. The Particle Data Group (PDG) [13] advocates the use of
the following one as the ‘standard’ CKM parametrization:

V =




c12 c13 s12 c13 s13 e−iδ13

−s12 c23 − c12 s23 s13 eiδ13 c12 c23 − s12 s23 s13 eiδ13 s23 c13

s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 c23 c13


 . (11)

Here cij ≡ cos θij and sij ≡ sin θij , with i and j being generation labels (i, j = 1, 2, 3). The real
angles θ12, θ23 and θ13 can all be made to lie in the first quadrant, by an appropriate redefinition of quark
field phases; then cij ≥ 0, sij ≥ 0 and 0 ≤ δ13 ≤ 2π. Note that δ13 is the only complex phase in the SM
Lagrangian. Therefore, it is the only possible source of CP-violation phenomena. In fact, it was for this
reason that the third generation was assumed to exist [6], before the discovery of the b and the τ . With
two generations, the SM could not explain the observed CP-violation in the K system.

3 Lepton decays
The simplest flavour-changing process is the leptonic decay of the muon, which proceeds through the
W-exchange diagram shown in Fig. 2. The momentum transfer carried by the intermediate W is very
small compared to MW. Therefore, the vector-boson propagator reduces to a contact interaction,

−gµν + qµqν/M
2
W

q2 −M2
W

q2�M2
W−→ gµν
M2

W

. (12)
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Fig. 2: Tree-level Feynman diagrams for µ− → e−ν̄eνµ and τ− → ντX− (X− = e−ν̄e, µ−ν̄µ,dū, sū).

The decay can then be described through an effective local four-fermion Hamiltonian,

Heff =
GF√

2
[ēγα(1− γ5)νe] [ν̄µγα(1− γ5)µ] , (13)

where
GF√

2
=

g2

8M2
W

=
1

2v2
(14)

4

A. PICH

122



is called the Fermi coupling constant. GF is fixed by the total decay width,

1

τµ
= Γ[µ− → e−ν̄eνµ(γ)] =

G2
Fm

5
µ

192π3
(1 + δRC) f(m2

e/m
2
µ), (15)

where f(x) = 1− 8x+ 8x3 − x4 − 12x2 lnx , and

1 + δRC =

[
1 +

α

2π

(
25

4
− π2

)] [
1 +

3

5

m2
µ

M2
W

− 2
m2

e

M2
W

]
+ · · · (16)

contains the radiative higher-order corrections, which are known to O(α2) [14–16]. The measured life-
time [17], τµ = (2.196 980 3± 0.000 002 2)× 10−6 s, implies the value

GF = (1.166 378 8± 0.000 000 7)× 10−5 GeV−2 ≈ 1

(293 GeV)2
. (17)

The decays of the τ lepton proceed through the same W-exchange mechanism. The only differ-
ence is that several final states are kinematically allowed: τ− → ντe−ν̄e, τ− → ντµ

−ν̄µ, τ− → ντdū
and τ− → ντ sū. Owing to the universality of the W couplings, all these decay modes have equal ampli-
tudes (if final fermion masses and quantum chromodynamic (QCD) interactions are neglected), except
for an additionalNC |Vui|2 factor (i = d, s) in the semileptonic channels, whereNC = 3 is the number of
quark colours. Making trivial kinematic changes in Eq. (15), one easily gets the lowest-order prediction
for the total τ decay width:

1

ττ
≡ Γ(τ) ≈ Γ(µ)

(
mτ

mµ

)5 {
2 +NC

(
|Vud|2 + |Vus|2

)}
≈ 5

τµ

(
mτ

mµ

)5

, (18)

where we have used the CKM unitarity relation |Vud|2 + |Vus|2 = 1− |Vub|2 ≈ 1 (we will see later that
this is an excellent approximation). From the measured muon lifetime, one then has ττ ≈ 3.3× 10−13 s,
to be compared with the experimental value [13] τ exp

τ = (2.906 ± 0.010) × 10−13 s. The numerical
difference is due to the effect of QCD corrections, which enhance the hadronic τ decay width by about
20%. The size of these corrections has been accurately predicted in terms of the strong coupling [18],
allowing us to extract from τ decays one of the most precise determinations of αs [19].

In the SM, all lepton doublets have identical couplings to the W boson. Comparing the measured
decay widths of leptonic or semileptonic decays that only differ in the lepton flavour, one can test exper-
imentally that the W interaction is indeed the same, i.e. that ge = gµ = gτ ≡ g. As shown in Table 2,
the present data verify the universality of the leptonic charged-current couplings to the 0.2% level.

Table 2: Experimental determinations of the ratios g`/g`′ [13, 20–22].

Γτ→µ/Γτ→e Γπ→µ/Γπ→e ΓK→µ/ΓK→e ΓK→πµ/ΓK→πe ΓW→µ/ΓW→e

|gµ/ge| 1.0018 (14) 1.0021 (16) 0.998 (2) 1.001 (2) 0.991 (9)

Γτ→e/Γµ→e Γτ→π/Γπ→µ Γτ→K/ΓK→µ ΓW→τ/ΓW→µ
|gτ/gµ| 1.0007 (22) 0.992 (4) 0.982 (8) 1.032 (12)

Γτ→µ/Γµ→e ΓW→τ/ΓW→e

|gτ/ge| 1.0016 (21) 1.023 (11)
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4 Quark mixing
In order to measure the CKM matrix elements, one needs to study hadronic weak decays of the type
H → H′`−ν̄` or H → H′`+ν`, which are associated with the corresponding quark transitions dj →
ui `
−ν̄` and ui → dj `

+ν` (Fig. 3). Since quarks are confined within hadrons, the decay amplitude

T [H→ H′`−ν̄`] ≈
GF√

2
Vij 〈H′| ūi γµ(1− γ5) dj |H〉 [¯̀γµ(1− γ5)ν`] (19)

always involves a hadronic matrix element of the weak left current. The evaluation of this matrix element
is a non-perturbative QCD problem, which introduces unavoidable theoretical uncertainties.

W

+


W

+


c
 c


d , s
 d , s


e  ,
+
µ
+


ν

e


ν

µ


, 
 u


d , s


_
 _


Fig. 3: (left) Matrix elements Vij are measured in semileptonic decays, where a single quark current is present.
(right) Hadronic decays involve two different quark currents and are more affected by QCD effects (gluons can
couple everywhere).

One usually looks for a semileptonic transition where the matrix element can be fixed at some
kinematic point by a symmetry principle. This has the virtue of reducing the theoretical uncertainties
to the level of symmetry-breaking corrections and kinematic extrapolations. The standard example is a
0− → 0− decay such as K→ π`ν`, D→ K`ν` or B→ D`ν`. Only the vector current can contribute
in this case:

〈P ′(k′)| ūi γµ dj |P (k)〉 = CPP ′
{

(k + k′)µ f+(t) + (k − k′)µ f−(t)
}
. (20)

Here, CPP ′ is a Clebsch–Gordan factor and t = (k − k′)2 ≡ q2. The unknown strong dynamics is fully
contained in the form factors f±(t). In the limit of equal quark masses,mui = mdj , the divergence of the
vector current is zero; thus qµ [ūiγ

µdj ] = 0, which implies f−(t) = 0 and, moreover, f+(0) = 1 to all
orders in the strong coupling because the associated flavour charge is a conserved quantity.2 Therefore,
one only needs to estimate the corrections induced by the quark mass differences.

Since qµ[¯̀γµ(1−γ5)ν`] ∼ m`, the contribution of f−(t) is kinematically suppressed in the electron
and muon modes. The decay width can then be written as

Γ(P → P ′lν) =
G2
FM

5
P

192π3
|Vij |2 C2

PP ′ |f+(0)|2 I(1 + δRC), (21)

where δRC is an electroweak radiative correction factor and I denotes a phase-space integral, which in
the m` = 0 limit takes the form

I ≈
∫ (MP−MP ′ )

2

0

dt

M8
P

λ3/2(t,M2
P ,M

2
P ′)

∣∣∣∣
f+(t)

f+(0)

∣∣∣∣
2

. (22)

The usual procedure to determine |Vij | involves three steps:

1. Measure the shape of the t distribution. This fixes |f+(t)/f+(0)| and therefore determines I.
2This is completely analogous to the electromagnetic charge conservation in quantum electrodynamics (QED). The con-

servation of the electromagnetic current implies that the proton electromagnetic form factor does not get any QED or QCD
correction at q2 = 0 and, therefore, Q(p) = 2Q(u) + Q(d) = |Q(e)|. A detailed proof can be found in [23].
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2. Measure the total decay width Γ. Since GF is already known from µ decay, one then gets an
experimental value for the product |f+(0)Vij |.

3. Get a theoretical prediction for f+(0).

It is important to realize that theoretical input is always needed. Thus, the accuracy of the |Vij | determi-
nation is limited by our ability to calculate the relevant hadronic parameters.

4.1 Determination of |Vud| and |Vus|
The conservation of the vector QCD currents in the massless quark limit allows for precise determinations
of the light-quark mixings. The most accurate measurement of Vud is done with super-allowed nuclear
beta decays of the Fermi type (0+ → 0+), where the nuclear matrix element 〈N ′|ūγµd|N〉 can be fixed
by vector-current conservation. The CKM factor is obtained through the relation [24, 25],

|Vud|2 =
π3 ln 2

ftG2
Fm

5
e (1 + δRC)

=
(2984.48± 0.05) s
ft (1 + δRC)

, (23)

where ft denotes the product of a phase-space statistical decay-rate factor and the measured half-life. In
order to obtain |Vud|, one needs to perform a careful analysis of radiative corrections, including elec-
troweak contributions, nuclear-structure corrections and isospin-violating nuclear effects. These nuclear-
dependent corrections are quite large, δRC ∼ 3–4%, and have a crucial role in bringing the results
from different nuclei into good agreement. The weighted average of the 20 most precise determinations
yields [26]

|Vud| = 0.974 25± 0.000 22. (24)

A nuclear-physics-independent determination can be obtained from neutron decay, n → p e−ν̄e.
The axial current also contributes in this case; therefore, one needs to use the experimental value of
the axial-current matrix element at q2 = 0, 〈p | ūγµγ5d | n〉 = GA p̄γµn. The present world averages,
gA ≡ GA/GV = −1.2701± 0.0025 and τn = (881.5± 1.5) s, imply [13, 24, 25]

|Vud| =

{
(4908.7± 1.9) s
τn (1 + 3g2

A)

}1/2

= 0.9765± 0.0018 , (25)

which is larger but less precise than the value in (24).

The experimental determination of the neutron lifetime is controversial. The most precise mea-
surement, τn = (878.5± 0.8) s [27], disagrees by 6σ from the 2010 PDG average τn = (885.7± 0.8) s
[13], from which it was excluded. Since a more recent experiment [28] finds a mean life closer to the
value given in [27], both results have been included in the 2011 PDG average, enlarging the error with
a scale factor of 2.7 to account for the discrepancies. Including only the three most recent measure-
ments [27–29] leads to τn = (879.1±1.2) s; this implies |Vud| = 0.9779±0.0017, which is 2.1σ larger
than the value in (24). Small inconsistencies are also present in the gA measurements, with the most
recent experiments [30] favouring slightly larger values of |gA|. Better measurements of gA and τn are
needed.

The pion beta decay π+ → π0e+νe offers a cleaner way to measure |Vud|. It is a pure vector
transition, with very small theoretical uncertainties. At q2 = 0, the hadronic matrix element does not
receive isospin-breaking contributions of first order in md − mu, i.e. f+(0) = 1 + O[(md − mu)2]
[31]. The small available phase space makes it possible to control the form factor theoretically with
high accuracy over the entire kinematic domain [32]; unfortunately, it also implies a very suppressed
branching fraction. From the present experimental value [33], Br(π+ → π0e+νe) = (1.040± 0.006)×
10−8, one gets |Vud| = 0.9741±0.0002th±0.0026exp [34]. A 10-fold improvement of the experimental
accuracy would be needed to get a determination competitive with (24).
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The classic determination of |Vus| takes advantage of the theoretically well-understood K`3 de-
cays. The most recent high-statistics experiments have resulted in significant shifts in the branching
fractions and improved precision for all of the experimental inputs [13]. Supplemented with theoreti-
cal calculations of electromagnetic and isospin corrections [35, 36], they allow us to extract the product
|Vus f+(0)| = 0.2163 ± 0.0005 [22], with f+(0) = 1 + O[(ms −mu)2] the vector form factor of the
K0 → π−`+ν` decay [31, 37]. The exact value of f+(0) has been thoroughly investigated since the
first precise estimate by Leutwyler and Roos [38], f+(0) = 0.961 ± 0.008. While analytical calcula-
tions based on chiral perturbation theory obtain higher values [39, 40], as a consequence of including
the large and positive (∼ 0.01) two-loop chiral corrections [41], the lattice results [42] tend to agree with
the Leutwyler–Roos estimate. Taking as reference value the most recent and precise lattice result [43],
f+(0) = 0.960± 0.006, one obtains [44]

|Vus| = 0.2255± 0.0005exp ± 0.0012th . (26)

Information on Vus can also be obtained [22, 45] from the ratio of radiative inclusive decay rates
Γ[K → µν(γ)]/Γ[π → µν(γ)]. With a careful treatment of electromagnetic and isospin-violating
corrections, one extracts |Vus/Vud| |FK/Fπ| = 0.2763 ± 0.0005 [46]. Taking for the ratio of meson
decay constants the lattice average FK/Fπ = 1.193± 0.006 [42], one gets [46]

|Vus|
|Vud|

= 0.2316± 0.0012 . (27)

With the value of |Vud| in Eq. (24), this implies |Vus| = 0.2256± 0.0012.

Hyperon decays are also sensitive to Vus [47]. Unfortunately, in weak baryon decays the theoreti-
cal control on SU(3)-breaking corrections is not as good as for the meson case. A conservative estimate
of these effects leads to the result |Vus| = 0.226± 0.005 [48].

The accuracy of all previous determinations is limited by theoretical uncertainties. The separate
measurement of the inclusive |∆S| = 0 and |∆S| = 1 tau decay widths provides a very clean observable
to measure |Vus| directly [49, 50], because SU(3)-breaking corrections are suppressed by two powers
of the τ mass. The present τ decay data imply |Vus| = 0.2166 ± 0.0019exp ± 0.0005th [50], the error
being dominated by the experimental uncertainties. The central value has been shifted down by the
inclusion of the most recent BABAR and BELLE measurements, which find branching ratios smaller
than the previous world averages [13]. More precise data are needed to clarify this worrisome effect. If
the strangeness-changing τ decay width is measured with a 1% precision, the resulting Vus uncertainty
will get reduced to around 0.6%, i.e. ±0.0013.

4.2 Determination of |Vcb| and |Vub|
In the limit of very heavy quark masses, QCD has additional flavour and spin symmetries [51–54], which
can be used to make rather precise determinations of |Vcb|, either from exclusive decays [55,56] or from
the inclusive analysis of b→ c`ν̄` transitions.

When mb � ΛQCD, all form factors characterizing the decays B→ D`ν̄` and B→ D∗`ν̄` reduce
to a single function [51], which depends on the product of the four-velocities of the two mesons, w ≡
vB · vD(∗) = (M2

B + M2
D(∗) − q2)/(2MBMD(∗)). Heavy-quark symmetry determines the normalization

of the rate at w = 1, the maximum momentum transfer to the leptons, because the corresponding vector
current is conserved in the limit of equal B and D(∗) velocities. The B → D∗ mode has the additional
advantage that corrections to the infinite-mass limit are of second order in 1/mb − 1/mc at zero recoil
(w = 1) [56]. The exclusive determination of |Vcb| is obtained from an extrapolation of the measured
spectrum to w = 1. From B → D∗`ν̄` data one gets |Vcb| F(1) = (36.04 ± 0.52) × 10−3, while
the measured B → D`ν̄` distribution results in |Vcb| G(1) = (42.3 ± 0.7 ± 1.3) × 10−3 [57]. Lattice
simulations are used to estimate the deviations from unity of the two form factors at w = 1; the most
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recent results are F(1) = 0.908± 0.017 [58] and G(1) = 1.074± 0.018± 0.016 [59]. A smaller value
F(1) = 0.86± 0.03 is obtained from zero-recoil sum rules [60]. Adopting the lattice estimates, one gets

|Vcb| =

{
(39.7± 0.9)× 10−3 (B→ D∗`ν̄`)

(39.4± 1.6)× 10−3 (B→ D`ν̄`)
= (39.6± 0.8)× 10−3. (28)

The inclusive determination uses the operator product expansion [61, 62] to express the total b→
c`ν̄` rate and moments of the differential energy and invariant-mass spectra in a double expansion in
powers of αs and 1/mb [63–67], which includes terms of O(1/m3

b) and has recently been upgraded
to a complete O(α2

s) calculation [68]. The non-perturbative matrix elements of the corresponding local
operators are obtained from a global fit to experimental moments of inclusive B→ Xc ` ν̄` (lepton energy
and hadronic invariant mass) and B → Xsγ (photon energy spectrum) observables. The combination of
66 different measurements results in [57]

|Vcb| = (41.85± 0.73)× 10−3 . (29)

At present there is a 2.1σ discrepancy between the exclusive and inclusive determinations. Follow-
ing the PDG prescription [13], we average both values by scaling the error by

√
χ2/dof = 2.1 (where

dof denotes the number of degrees of freedom):

|Vcb| = (40.8± 1.1)× 10−3 . (30)

A similar disagreement is observed for the analogous |Vub| determinations. The presence of a
light quark makes it more difficult to control the theoretical uncertainties. Exclusive B → π`ν` decays
involve a non-perturbative form factor f+(t), which is estimated through light-cone sum rules [69–71] or
lattice simulations [72,73]. The inclusive measurement requires the use of stringent experimental cuts to
suppress the b→ Xc`ν` background; this induces large errors in the theoretical predictions [34, 74–81],
which become sensitive to non-perturbative shape functions and depend much more strongly onmb. The
PDG quotes the value [13]

|Vub| =

{
(3.38± 0.36)× 10−3 (B→ π`ν̄`)

(4.27± 0.38)× 10−3 (B→ Xu`ν̄`)
= (3.89± 0.44)× 10−3, (31)

where the average includes an error scaling factor
√
χ2/dof = 1.62.

4.3 Determination of the charm and top CKM elements
The analytic control of theoretical uncertainties is more difficult in semileptonic charm decays, because
the symmetry arguments associated with the light- and heavy-quark limits get corrected by sizeable
symmetry-breaking effects. The magnitudes of |Vcd| and |Vcs| can be extracted from D → π`ν` and
D → K`ν` decays. Using the lattice determination of fD→π/K

+ (0) [82, 83], the CLEO-c [84] measure-
ments of these decays imply [85]

|Vcd| = 0.234± 0.026 , |Vcs| = 0.963± 0.026 , (32)

where the errors are dominated by lattice uncertainties.

The most precise determination of |Vcd| is based on neutrino and antineutrino interactions. The
difference of the ratio of double-muon to single-muon production by neutrino and antineutrino beams is
proportional to the charm cross-section off valence d quarks and, therefore, to |Vcd| times the average
semileptonic branching ratio of charm mesons. Averaging data from several experiments, the PDG
quotes [13]

|Vcd| = 0.230± 0.011 . (33)
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The analogous determination of |Vcs| from νs → cX suffers from the uncertainty of the s-quark sea
content.

The top quark has only been seen decaying into bottom. From the ratio of branching fractions,
Br(t→Wb)/Br(t→Wq), one determines [86, 87]

|Vtb|√∑
q |Vtq|2

> 0.89 (95% CL), (34)

where q = b, s, d. A more direct determination of |Vtb| can be obtained from the single top-quark
production cross-section, measured by D0 [88] and CDF [89]:

|Vtb| = 0.88± 0.07. (35)

4.4 Structure of the CKM matrix
Using the previous determinations of CKM elements, we can check the unitarity of the quark-mixing
matrix. The most precise test involves the elements of the first row:

|Vud|2 + |Vus|2 + |Vub|2 = 1.0000± 0.0007 , (36)

where we have taken as reference values the determinations in Eqs. (24), (26) and (31). Radiative cor-
rections play a crucial role at the quoted level of uncertainty, while the |Vub|2 contribution is negligible.

The ratio of the total hadronic decay width of the W to the leptonic one provides the sum [90, 91]
∑

j= d,s,b

(|Vuj |2 + |Vcj |2) = 2.002± 0.027 . (37)

Although much less precise than Eq. (36), this result tests unitarity at the 1.3% level. From Eq. (37) one
can also obtain a tighter determination of |Vcs|, using the experimental knowledge on the other CKM
matrix elements, i.e. |Vud|2 + |Vus|2 + |Vub|2 + |Vcd|2 + |Vcb|2 = 1.0546± 0.0051 . This gives

|Vcs| = 0.973± 0.014 , (38)

which is more accurate than the direct determination in Eq. (32).

The measured entries of the CKM matrix show a hierarchical pattern, with the diagonal elements
being very close to unity, those connecting the first two generations having a size

λ ≈ |Vus| = 0.2255± 0.0013 , (39)

the mixing between the second and third families being of order λ2, and the mixing between the first and
third quark generations having a much smaller size of about λ3. It is then quite practicable to use the
approximate parametrization [92]:

V =




1− 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 + O

(
λ4
)
, (40)

where

A ≈ |Vcb|
λ2

= 0.802± 0.024 ,
√
ρ2 + η2 ≈

∣∣∣∣
Vub

λVcb

∣∣∣∣ = 0.423± 0.049 . (41)

Defining to all orders in λ [93] s12 ≡ λ, s23 ≡ Aλ2 and s13 e−iδ13 ≡ Aλ3(ρ − iη), Eq. (40) just
corresponds to a Taylor expansion of Eq. (11) in powers of λ.
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5 Meson–antimeson mixing
Additional information on the CKM parameters can be obtained from flavour-changing neutral-current
transitions, occurring at the one-loop level. An important example is provided by the mixing between
the B0 meson and its antiparticle. This process occurs through the box diagrams shown in Fig. 4, where
two W bosons are exchanged between a pair of quark lines. The mixing amplitude is proportional to

〈B̄0
d|H∆B=2|B0〉 ∼

∑

ij

VidV
∗
ibVjdV

∗
jb S(ri, rj) ∼ V2

td S(rt, rt), (42)

where S(ri, rj) is a loop function [94] that depends on the masses (ri ≡ m2
i /M

2
W) of the up-type

quarks running along the internal fermionic lines. Owing to the unitarity of the CKM matrix, the mix-
ing vanishes for equal (up-type) quark masses (GIM mechanism [7]); thus the effect is proportional to
the mass splittings between the u, c and t quarks. Since the different CKM factors have all a similar
size, VudV

∗
ub ∼ VcdV

∗
cb ∼ VtdV

∗
tb ∼ Aλ3, the final amplitude is completely dominated by the top

contribution. This transition can then be used to perform an indirect determination of Vtd.

q bu, c, t

qb u, c, t

W

Wq b

W qb

u, c, t u, c, tW

Fig. 4: Box diagrams contributing to B0–B̄0 mixing.

Note that this determination has a qualitatively different character than those obtained before from
tree-level weak decays. Now, we are going to test the structure of the electroweak theory at the quantum
level. This flavour-changing transition could then be sensitive to contributions from new physics at higher
energy scales. Moreover, the mixing amplitude crucially depends on the unitarity of the CKM matrix.
Without the GIM mechanism embodied in the CKM mixing structure, the calculation of the analogous
K0 → K̄0 transition (replace the b quark by a s in the box diagrams) would have failed to explain the
observed K0–K̄0 mixing by several orders of magnitude [95].

5.1 General Formalism
Since weak interactions can transform a P 0 state (P = K, D, B) into its antiparticle P̄ 0, these flavour
eigenstates are not mass eigenstates and do not follow an exponential decay law. Let us consider an
arbitrary mixture of the two flavour states,

|ψ(t)〉 = a(t) |P 0〉+ b(t) |P̄ 0〉 ≡
(
a(t)
b(t)

)
, (43)

with the time evolution
i

d

dt
|ψ(t)〉 = M|ψ(t)〉 . (44)

Assuming CPT symmetry to hold, the 2× 2 mixing matrix can be written as

M =

(
M M12

M∗12 M

)
− i

2

(
Γ Γ12

Γ∗12 Γ

)
. (45)

The diagonal elements M and Γ are real parameters, which would correspond to the mass and width
of the neutral mesons in the absence of mixing. The off-diagonal entries contain the dispersive and

11

FLAVOUR PHYSICS AND CP-VIOLATION

129



absorptive parts of the ∆P = 2 transition amplitude. If CP were an exact symmetry, M12 and Γ12

would also be real. The physical eigenstates ofM are

|P∓〉 =
1√

|p|2 + |q|2
[
p |P 0〉 ∓ q |P̄ 0〉

]
, (46)

with
q

p
≡ 1− ε̄

1 + ε̄
=

(
M∗12 − 1

2 iΓ∗12

M12 − 1
2 iΓ12

)1/2

. (47)

If M12 and Γ12 were real, then q/p = 1 and |B∓〉 would correspond to the CP-even and CP-odd states
(we use the phase convention3 CP|P 0〉 = −|P̄ 0〉)

|P1,2〉 ≡
1√
2

(|P 0〉 ∓ |P̄ 0〉), CP |P1,2〉 = ±|P1,2〉. (48)

The two mass eigenstates are no longer orthogonal when CP is violated:

〈P−|P+〉 =
|p|2 − |q|2
|p|2 + |q|2 =

2 Re(ε̄)

(1 + |ε̄|2)
. (49)

The time evolution of a state that was originally produced as a P 0 or a P̄ 0 is given by

(
|P 0(t)〉
|P̄ 0(t)〉

)
=

(
g1(t) (q/p)g2(t)

(p/q)g2(t) g1(t)

) (
|P 0〉
|P̄ 0〉

)
, (50)

where (
g1(t)
g2(t)

)
= e−iMt e−Γt/2

(
cos [(∆M − 1

2 i∆Γ)t/2]

−i sin [(∆M − 1
2 i∆Γ)t/2]

)
, (51)

with
∆M ≡MP+ −MP− , ∆Γ ≡ ΓP+ − ΓP− . (52)

5.2 Experimental measurements
The main difference between the K0–K̄0 and B0–B̄0 systems stems from the different kinematics in-
volved. The light kaon mass only allows the hadronic decay modes K0 → 2π and K0 → 3π. Since
CP|ππ〉 = +|ππ〉, the CP-even kaon state decays into 2π whereas the CP-odd one decays into the
phase-space-suppressed 3π mode. Therefore, there is a large lifetime difference and we have a short-
lived |KS〉 ≡ |K−〉 ≈ |K1〉 + ε̄K|K2〉 and a long-lived |KL〉 ≡ |K+〉 ≈ |K2〉 + ε̄K|K1〉 kaon, with
ΓKL � ΓKS . One finds experimentally that ∆ΓK0 ≈ −ΓKS ≈ −2∆MK0 [13]:

∆MK0 = (0.5292± 0.0009)× 1010 s−1, ∆ΓK0 = −(1.1150± 0.0006)× 1010 s−1. (53)

In the B system, there are many open decay channels and a large part of them are common to
both mass eigenstates. Therefore, the |B∓〉 states have a similar lifetime; i.e. |∆ΓB0 | � ΓB0 . Moreover,
whereas the B0–B̄0 transition is dominated by the top box diagram, the decay amplitudes obviously
get their main contribution from the b → c process. Thus, |∆ΓB0/∆MB0 | ∼ m2

b/m
2
t � 1. To

measure the mixing transition experimentally requires the identification of the B-meson flavour at both
3Since flavour is conserved by strong interactions, there is some freedom in defining the phases of flavour eigenstates. One

could use |P 0
ζ 〉 ≡ e−iζ |P 0〉 and |P̄ 0

ζ 〉 ≡ eiζ |P̄ 0〉, which satisfy CP |P 0
ζ 〉 = −e−2iζ |P̄ 0

ζ 〉. The two bases are trivially related:
Mζ

12 = e2iζM12, Γζ12 = e2iζΓ12 and (q/p)ζ = e−2iζ(q/p). Thus, q/p 6= 1 does not necessarily imply CP-violation. CP
is violated if |q/p| 6= 1; i.e. Re(ε̄) 6= 0 and 〈P−|P+〉 6= 0. Note that 〈P−|P+〉ζ = 〈P−|P+〉. Another phase-convention-
independent quantity is (q/p) (Āf/Af ), where Af ≡ A(P 0→f) and Āf ≡ −A(P̄ 0→f), for any final state f .
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its production and decay time. This can be done through flavour-specific decays such as B0 → X`+ν`
and B̄0 → X`−ν̄`. In general, mixing is measured by studying pairs of B mesons so that one B can be
used to tag the initial flavour of the other meson. For instance, in e+e− machines, one can look into the
pair production process e+e− → B0B̄0 → (X`ν`) (Y`ν`). In the absence of mixing, the final leptons
should have opposite charges; the amount of like-sign leptons is then a clear signature of meson mixing.

Evidence for a large B0
d–B̄0

d mixing was first reported in 1987 by ARGUS [96]. This provided
the first indication that the top quark was very heavy. Since then, many experiments have analysed the
mixing probability. The present world-average value is [13, 57]:

∆MB0
d

= (0.507± 0.004)× 1012 s−1, xB0
d
≡

∆MB0
d

ΓB0
d

= 0.771± 0.008. (54)

The first direct evidence of B0
s –B̄0

s oscillations was obtained by CDF [97]. The large measured mass
difference reflects the CKM hierarchy |Vts|2 � |Vtd|2, implying very fast oscillations [13, 57]:

∆MB0
s

= (17.77± 0.12)× 1012 s−1, xB0
s
≡

∆MB0
s

ΓB0
s

= 26.2± 0.5. (55)

A more precise but still preliminary value, ∆MB0
s

= (17.725± 0.041± 0.026) ps−1, has recently been
obtained by LHCb [98] using the flavour-specific decays B0

s → D−s π
+ and B̄0

s → D+
s π
−.

Evidence of mixing has also been obtained in the D0–D̄0 system. The present world averages [57],

xD0 ≡
∆MD0

ΓD0

= −(0.63 +0.19
−0.20)%, yD0 ≡

∆ΓD0

2ΓD0

= −(0.75± 0.12)%, (56)

confirm the SM expectation of a very slow oscillation, compared with the decay rate.

5.3 Mixing constraints on the CKM matrix
Long-distance contributions arising from intermediate hadronic states completely dominate the D0–D̄0

mixing amplitude and are very sizeable in the K0–K̄0 case, making it difficult to extract useful infor-
mation on the CKM matrix. The situation is much better for B0 mesons, owing to the dominance of
the short-distance top contribution, which is known to next-to-leading-order (NLO) in the strong cou-
pling [99,100]. The main uncertainty stems from the hadronic matrix element of the ∆B = 2 four-quark
operator

〈B̄0 | (b̄γµ(1− γ5)d) (b̄γµ(1− γ5)d) |B0〉 ≡ 8
3 M

2
B ξ

2
B, (57)

which is characterized through the non-perturbative parameter [101] ξB(µ) ≡
√

2 fB

√
BB(µ). Present

lattice calculations obtain the ranges [102] ξ̂Bd
= (216 ± 15) MeV, ξ̂Bs = (266 ± 18) MeV and

ξ̂Bs/ξ̂Bd
= 1.258 ± 0.033, where ξ̂B ≈ αs(µ)−3/23ξB(µ) is the corresponding renormalization-group-

invariant quantity. Using these values, the measured mixings in (54) and (55) imply

|V∗tbVtd| = 0.0084± 0.0006 , |V∗tbVts| = 0.040± 0.003 ,
|Vtd|
|Vts|

= 0.214± 0.006 . (58)

The last number takes advantage of the smaller uncertainty in the ratio ξ̂Bs/ξ̂Bd
. Since |Vtb| ≈ 1,

B0
d,s mixing provides indirect determinations of |Vtd| and |Vts|. The resulting value of |Vts| is in per-

fect agreement with Eq. (30), satisfying the unitarity constraint |Vts| ≈ |Vcb|. In terms of the (ρ, η)
parametrization of Eq. (40), one obtains

√
(1− ρ)2 + η2 =





∣∣∣∣
Vtd

λVcb

∣∣∣∣ = 0.91± 0.07,

∣∣∣∣
Vtd

λVts

∣∣∣∣ = 0.95± 0.03.

(59)

The uncertainties in all these determinations are dominated by the theoretical errors on the hadronic
matrix elements. Therefore, they are not improved by the recent precise LHCb measurement of ∆MB0

s
.
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6 CP-violation
While parity and charge conjugation are violated by the weak interactions in a maximal way, the prod-
uct of the two discrete transformations is still a good symmetry of the gauge interactions (left-handed
fermions←→ right-handed antifermions). In fact, CP appears to be a symmetry of nearly all observed
phenomena. However, a slight violation of the CP symmetry at the level of 0.2% is observed in the
neutral kaon system and more sizeable signals of CP-violation have been established at the B factories.
Moreover, the huge matter–antimatter asymmetry present in our Universe is a clear manifestation of
CP-violation and its important role in the primordial baryogenesis.

The CPT theorem guarantees that the product of the three discrete transformations is an exact
symmetry of any local and Lorentz-invariant quantum field theory preserving microcausality. A violation
of CP thus requires a corresponding violation of time reversal. Since T is an anti-unitary transformation,
this requires the presence of relatively complex phases between different interfering amplitudes.

The electroweak SM Lagrangian only contains a single complex phase δ13 (η). This is the sole
possible source of CP-violation and, therefore, the SM predictions for CP-violating phenomena are quite
constrained. The CKM mechanism requires several necessary conditions in order to generate an observ-
able CP-violation effect. With only two fermion generations, the quark-mixing mechanism cannot give
rise to CP-violation; therefore, for CP-violation to occur in a particular process, all three generations
are required to play an active role. In the kaon system, for instance, CP-violation can only appear at the
one-loop level, where the top quark is present. In addition, all CKM matrix elements must be non-zero
and the quarks of a given charge must be non-degenerate in mass. If any of these conditions were not
satisfied, the CKM phase could be rotated away by a redefinition of the quark fields. CP-violation ef-
fects are then necessarily proportional to the product of all CKM angles, and should vanish in the limit
where any two (equal-charge) quark masses are taken to be equal. All these necessary conditions can be
summarized as a single requirement on the original quark mass matrices M′u and M′d [103]:

CP violation ⇐⇒ Im{det[M′uM
′†
u ,M

′
dM

′†
d ]} 6= 0. (60)

Without performing any detailed calculation, one can make the following general statements on
the implications of the CKM mechanism of CP-violation:

– Owing to unitarity, for any choice of i, j, k, l (between 1 and 3),

Im[VijV
∗
ikVlkV

∗
lj ] = J

3∑

m,n=1

εilmεjkn, (61)

J = c12c23c
2
13s12s23s13 sin δ13 ≈ A2λ6η < 10−4 . (62)

Any CP-violation observable involves the product J [103]. Thus, violations of the CP symmetry
are necessarily small.

– In order to have sizeable CP-violating asymmetries A ≡ (Γ − Γ)/(Γ + Γ), one should look for
very suppressed decays, where the decay widths already involve small CKM matrix elements.

– In the SM, CP-violation is a low-energy phenomenon, in the sense that any effect should disappear
when the quark mass difference mc −mu becomes negligible.

– B decays are the optimal place for CP-violation signals to show up. They involve small CKM
matrix elements and are the lowest-mass processes where the three quark generations play a direct
(tree-level) role.

The SM mechanism of CP-violation is based on the unitarity of the CKM matrix. Testing the
constraints implied by unitarity is then a way to test the source of CP-violation. The unitarity tests in
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Fig. 5: Experimental constraints on the SM unitarity triangle [104].

Eqs. (36) and (37) involve only the moduli of the CKM parameters, while CP-violation has to do with
their phases. More interesting are the off-diagonal unitarity conditions:

V∗udVus + V∗cdVcs + V∗tdVts = 0 ,

V∗usVub + V∗csVcb + V∗tsVtb = 0 , (63)

V∗ubVud + V∗cbVcd + V∗tbVtd = 0 .

These relations can be visualized by triangles in a complex plane that, owing to Eq. (61), have the same
area |J |/2. In the absence of CP-violation, these triangles would degenerate into segments along the
real axis.

In the first two triangles, one side is much shorter than the other two (the Cabibbo suppression
factors of the three sides are λ, λ and λ5 in the first triangle, and λ4, λ2 and λ2 in the second one). This
is why CP effects are so small for K mesons (first triangle), and why certain asymmetries in Bs decays
are predicted to be tiny (second triangle). The third triangle looks more interesting, since the three sides
have a similar size of about λ3. They are small, which means that the relevant b-decay branching ratios
are small, but once enough B mesons have been produced, the CP-violation asymmetries are sizeable.
The present experimental constraints on this triangle are shown in Fig. 5, where it has been scaled by
dividing its sides by V∗cbVcd. This aligns one side of the triangle along the real axis and makes its length
equal to 1; the coordinates of the three vertices are then (0, 0), (1, 0) and (ρ̄, η̄) ≈ (1− λ2/2) (ρ, η).

We have already determined the sides of the unitarity triangle in Eqs. (41) and (59), through two
CP-conserving observables: |Vub/Vcb| and B0

d,s mixing. This gives the circular regions shown in Fig. 5,
centered at the vertices (0, 0) and (1, 0). Their overlap at η 6= 0 establishes that CP is violated (assuming
unitarity). More direct constraints on the parameter η can be obtained from CP-violating observables,
which provide sensitivity to the angles of the unitarity triangle (α+ β + γ = π):

α ≡ arg

[
−VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (64)

6.1 Indirect and direct CP-violation in the kaon system
Any observable CP-violation effect is generated by the interference between different amplitudes con-
tributing to the same physical transition. This interference can occur either through meson–antimeson
mixing or via final-state interactions, or by a combination of both effects.

The flavour-specific decays K0 → π−`+ν` and K̄0 → π+`−ν̄` provide a way to measure the
departure of the K0–K̄0 mixing parameter |p/q| from unity. In the SM, the decay amplitudes satisfy
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|A(K̄0 → π+`−ν̄`)| = |A(K0 → π−`+ν`)| and therefore

δL ≡
Γ(KL → π−`+ν`)− Γ(KL → π+`−ν̄`)
Γ(KL → π−`+ν`) + Γ(KL → π+l−ν̄`)

=
|p|2 − |q|2
|p|2 + |q|2 =

2 Re(ε̄K)

(1 + |ε̄K|2)
. (65)

The experimental measurement [13], δL = (3.32± 0.06)× 10−3, implies

Re(ε̄K) = (1.66± 0.03)× 10−3 , (66)

which establishes the presence of indirect CP-violation generated by the mixing amplitude.

If the flavour of the decaying meson P is known, any observed difference between the decay rate
Γ(P → f) and its CP conjugate Γ(P̄ → f̄) would indicate that CP is directly violated in the decay
amplitude. One could study, for instance, CP asymmetries in decays such as K± → π±π0 where the
pion charges identify the kaon flavour; no positive signal has been found in charged kaon decays. Since
at least two interfering contributions are needed, let us write the decay amplitudes as

A[P → f ] = M1 eiφ1 eiδ1 + M2 eiφ2 eiδ2 , A[P̄ → f̄ ] = M1 e−iφ1eiδ1 + M2 e−iφ2eiδ2 , (67)

where φi denote weak phases, δi strong final-state phases andMi the moduli of the matrix elements. The
rate asymmetry is given by

ACP
P→f ≡

Γ[P → f ]− Γ[P̄ → f̄ ]

Γ[P → f ] + Γ[P̄ → f̄ ]
=

−2M1M2 sin (φ1 − φ2) sin (δ1 − δ2)

|M1|2 + |M2|2 + 2M1M2 cos (φ1 − φ2) cos (δ1 − δ2)
. (68)

Thus, to generate a direct CP asymmetry one needs: (i) at least two interfering amplitudes, which
should be of comparable size in order to get a sizeable asymmetry; (ii) two different weak phases
[sin (φ1 − φ2) 6= 0]; and (iii) two different strong phases [sin (δ1 − δ2) 6= 0].

Direct CP-violation has been sought in decays of neutral kaons, where K0–K̄0 mixing is also
involved. Thus, both direct and indirect CP-violation need to be taken into account simultaneously. A
CP-violation signal is provided by the ratios:

η+− ≡
A(KL → π+π−)

A(KS → π+π−)
= εK + ε′K , η00 ≡

A(KL → π0π0)

A(KS → π0π0)
= εK − 2ε′K . (69)

The dominant effect from CP-violation in K0–K̄0 mixing is contained in εK, while ε′K accounts for
direct CP-violation in the decay amplitudes:

εK = ε̄K + iξ0, ε′K =
i√
2
ω (ξ2 − ξ0) , ω ≡ Re(A2)

Re(A0)
ei(δ2−δ0) , ξI ≡

Im(AI)

Re(AI)
. (70)

Here AI and δI are the decay amplitudes and strong phase shifts of isospin I = 0, 2 (these are the only
two values allowed by Bose symmetry for the final 2π state). Although ε′K is strongly suppressed by the
small ratio |ω| ≈ 1/22 [44], a non-zero value has been established through very accurate measurements,
demonstrating the existence of direct CP-violation in K decays [105–108]:

Re(ε′K/εK) =
1

3

(
1−

∣∣∣∣
η00
η+−

∣∣∣∣
)

= (16.8± 1.4)× 10−4 . (71)

In the SM the necessary weak phases are generated through the gluonic and electroweak penguin di-
agrams shown in Fig. 6, involving virtual up-type quarks of the three generations in the loop. These
short-distance contributions are known to NLO in the strong coupling [109, 110]. However, the the-
oretical prediction involves a delicate balance between the two isospin amplitudes and is sensitive to
long-distance and isospin-violating effects. Using chiral perturbation theory techniques [111–113], one
finds Re(ε′K/εK) = (19 +11

−9 )× 10−4 [44], in agreement with (71) but with a large uncertainty.

16

A. PICH

134



u, d, s


u, c, t


d   
s
 W


g, γ, Z


q =
 q 


Fig. 6: The ∆S = 1 penguin diagrams.

Since Re(ε′K/εK)� 1, the ratios η+− and η00 provide a measurement of εK = |εK| eiφε [13]:

|εK| = 1
3(2|η+− |+ |η00 |) = (2.228± 0.011)× 10−3, φε = (43.51± 0.05)◦ , (72)

in perfect agreement with the semileptonic asymmetry δL. In the SM, εK receives short-distance contri-
butions from box diagrams involving virtual top and charm quarks, which are proportional to

εK ∝
∑

i,j=c,t

ηij Im[VidV
∗
isVjdV

∗
js]S(ri, rj) ∝ A2λ6η̄{ηttA

2λ4(1− ρ̄) + Pc}. (73)

The first term shows the CKM dependence of the dominant top contribution, Pc accounts for the charm
corrections [114] and the short-distance QCD corrections ηij are known to NLO [99, 100, 115]. The
measured value of |εK| determines a hyperbolic constraint in the (ρ̄, η̄) plane, shown in Fig. 5, taking
into account the theoretical uncertainty in the hadronic matrix element of the ∆S = 2 operator [34, 44].

6.2 CP asymmetries in B decays
The semileptonic decays B0 → X−`+ν` and B̄0 → X+`−ν̄` provide the most direct way to measure the
amount of CP-violation in the B0–B̄0 mixing matrix, through

aqsl ≡
Γ(B̄0

q → X−`+ν`)− Γ(B0
q → X+l−ν̄`)

Γ(B̄0
q → X−`+ν`) + Γ(B0

q → X+l−ν̄`)
=
|p|4 − |q|4
|p|4 + |q|4 ≈ 4 Re(ε̄B0

q
)

≈ |Γ12|
|M12|

sinφq ≈
|∆ΓB0

q
|

|∆MB0
q
| tanφq. (74)

This asymmetry is expected to be tiny because |Γ12/M12| ∼ m2
b/m

2
t � 1. Moreover, there is an

additional GIM suppression in the relative mixing phase φq ≡ arg (−M12/Γ12) ∼ (m2
c − m2

u)/m2
b,

implying a value of |q/p| very close to 1. Therefore, aqsl could be very sensitive to new CP phases
contributing to φq. The present measurements give [13, 57]

Re(ε̄B0
d
) = (−0.1± 1.4)× 10−3, Re(ε̄B0

s
) = (−2.9± 1.5)× 10−3. (75)

The non-zero value of Re(ε̄B0
s
) originates in a recent D0 measurement [116] claiming the like-sign

dimuon charge asymmetry to be 3.9σ larger than the SM prediction [117, 118]. However, this is not
supported by the measured CP asymmetries in B0

s → J/ψφ [119–121] and B0
s → J/ψf0(980) [119],

which are in good agreement with the SM expectations.

The large B0–B̄0 mixing provides a different way to generate the required CP-violating interfer-
ence. There are quite a few non-leptonic final states that are reachable from both B0 and B̄0. For these
flavour non-specific decays, the B0 (or B̄0) can decay directly to the given final state f , or do it after the
meson has been changed to its antiparticle via the mixing process; i.e. there are two different amplitudes,
A(B0 → f) and A(B0 → B̄0 → f), corresponding to two possible decay paths. CP-violating effects
can then result from the interference of these two contributions.
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The time-dependent decay probabilities for the decay of a neutral B meson created at the time
t0 = 0 as a pure B0 (B̄0) into the final state f (f̄ ≡ CP f ) are

Γ[B0(t)→ f ] ∝ 1
2 e−ΓB0 t (|Af |2 + |Āf |2) {1 + Cf cos (∆MB0t)− Sf sin (∆MB0t)},

Γ[B̄0(t)→ f̄ ] ∝ 1
2 e−ΓB0 t (|Āf̄ |2 + |Af̄ |2) {1− Cf̄ cos (∆MB0t) + Sf̄ sin (∆MB0t)} , (76)

where the tiny ∆ΓB0 corrections have been neglected and we have introduced the notation

Af ≡ A[B0 → f ], Āf ≡ −A[B̄0 → f ], ρ̄f ≡ Āf/Af ,

Af̄ ≡ A[B0 → f̄ ], Āf̄ ≡ −A[B̄0 → f̄ ], ρf̄ ≡ Af̄/Āf̄ , (77)

Cf ≡
1− |ρ̄f |2
1 + |ρ̄f |2

, Sf ≡
2 Im((q/p)ρ̄f )

1 + |ρ̄f |2
, Cf̄ ≡ −

1− |ρf̄ |2
1 + |ρf̄ |2

, Sf̄ ≡
−2 Im((p/q)ρf̄ )

1 + |ρf̄ |2
.

CP invariance demands that the probabilities of CP-conjugate processes are identical. Thus, CP
conservation requires Af = Āf̄ , Af̄ = Āf , ρ̄f = ρf̄ and Im((q/p)ρ̄f ) = Im((p/q)ρf̄ ), i.e. Cf = −Cf̄
and Sf = −Sf̄ . Violation of any of the first three equalities would be a signal of direct CP-violation.
The fourth equality tests CP-violation generated by the interference of the direct decay B0 → f and the
mixing-induced decay B0 → B̄0 → f .

For B0 mesons
q

p

∣∣∣∣
B0

q

≈
√
M∗12

M12
≈

V∗tbVtq

VtbV
∗
tq

≡ e−2iϕMq , (78)

where ϕMd = β + O(λ4) and ϕMs = −βs + O(λ6). The angle β is defined in Eq. (64), while βs ≡
arg [−(VtsV

∗
tb)/(VcsV

∗
cb)] = λ2η +O(λ4) is the equivalent angle in the B0

s unitarity triangle, which is
predicted to be tiny. Therefore, the mixing ratio q/p is given by a known weak phase.

An obvious example of final states f that can be reached from both the B0 and the B̄0 are CP
eigenstates; i.e. states such that f̄ = ζff (ζf = ±1). In this case, Af̄ = ζfAf , Āf̄ = ζf Āf , ρf̄ = 1/ρ̄f ,
Cf̄ = Cf and Sf̄ = Sf . A non-zero value of Cf or Sf then signals CP-violation. The ratios ρ̄f and ρf̄
depend in general on the underlying strong dynamics. However, for CP self-conjugate final states, all
dependence on the strong interaction disappears if only one weak amplitude contributes to the B0 → f
and B̄0 → f transitions [122, 123]. In this case, we can write the decay amplitude as Af = MeiϕDeiδs ,
with M = M∗ and ϕD and δs weak and strong phases. The ratios ρ̄f and ρf̄ are then given by

ρf̄ = ρ̄∗f = ζf e
2iϕD . (79)

The modulus M and the unwanted strong phase cancel out completely from these two ratios; ρf̄ and
ρ̄f simplify to a single weak phase, associated with the underlying weak quark transition. Since |ρf̄ | =
|ρ̄f | = 1, the time-dependent decay probabilities become much simpler. In particular, Cf = 0 and there
is no longer any dependence on cos (∆MB0t). Moreover, the coefficients of the sinusoidal terms are then
fully known in terms of CKM mixing angles only: Sf = Sf̄ = −ζf sin [2(ϕMq + ϕD)] ≡ −ζf sin (2Φ).
In this ideal case, the time-dependent CP-violating decay asymmetry

Γ[B̄0(t)→ f̄ ]− Γ[B0(t)→ f ]

Γ[B̄0(t)→ f̄ ] + Γ[B0(t)→ f ]
= −ζf sin (2Φ) sin (∆MB0t) (80)

provides a direct and clean measurement of the CKM parameters [124].

When several decay amplitudes with different phases contribute, |ρ̄f | 6= 1 and the interference
term will depend both on CKM parameters and on the strong dynamics embodied in ρ̄f . The leading
contributions to b̄→ q̄′q′q̄ are either the tree-level W exchange or penguin topologies generated by gluon
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Table 3: CKM factors and relevant angle Φ for some B decays into CP eigenstates.

Decay Tree-level CKM Penguin CKM Exclusive channels Φ

b̄→ c̄cs̄ Aλ2 −Aλ2 B0
d → J/ψKS , J/ψKL β

B0
s → D+

s D−s , J/ψφ −βs
b̄→ s̄ss̄ −Aλ2 B0

d → KSφ,KLφ β

B0
s → φφ −βs

b̄→ d̄ds̄ −Aλ2 B0
s → KSKS ,KLKL −βs

b̄→ c̄cd̄ −Aλ3 Aλ3(1− ρ− iη) B0
d → D+D−, J/ψπ0 ≈ β

B0
s → J/ψKS , J/ψKL ≈ −βs

b̄→ ūud̄ Aλ3(ρ+ iη) Aλ3(1− ρ− iη) B0
d → π+π−, ρ0π0, ωπ0 ≈ β + γ

B0
s → ρ0KS,L, ωKS,L, π

0KS,L 6= γ − βs
b̄→ s̄sd̄ Aλ3(1− ρ− iη) B0

d → KSKS ,KLKL, φπ
0 0

B0
s → KSφ,KLφ −β − βs

(γ,Z) exchange. Although of higher order in the strong (electroweak) coupling, penguin amplitudes are
logarithmically enhanced by the virtual W loop and are potentially competitive. Table 3 contains the
CKM factors associated with the two topologies for different B decay modes into CP eigenstates.

The gold-plated decay mode is B0
d → J/ψKS . In addition to having a clean experimental sig-

nature, the two topologies have the same (zero) weak phase. The CP asymmetry then provides a clean
measurement of the mixing angle β, without strong-interaction uncertainties. Fig. 7 shows the most re-
cent BELLE measurement [125] of time-dependent b̄ → cc̄s̄ asymmetries for CP-odd (B0

d → J/ψKS ,
B0

d → ψ′KS , B0
d → χc1KS) and CP-even (B0

d → J/ψKL) final states. A very nice oscillation is man-
ifest, with opposite signs for the two different choices of ζf = ±1. Including the information obtained
from other b̄→ cc̄s̄ decays, one gets the world average [57]

sin (2β) = 0.68± 0.02. (81)

Fitting an additional cos (∆MB0t) term in the measured asymmetries results in Cf = 0.013 ± 0.017
[57], confirming the expected null result. An independent measurement of sin 2β can be obtained from
b̄ → ss̄s̄ and b̄ → dd̄s̄ decays, which only receive penguin contributions and, therefore, could be more
sensitive to new-physics corrections in the loop diagram. These modes give sin (2β) = 0.64±0.04 [57],
in perfect agreement with (81).

Eq. (81) determines the angle β up to a four-fold ambiguity. The time-dependent analysis of the
angular B0

d → J/ψK∗0 distribution and the Dalitz plot of B0
d → D̄0h

0 decays (h0 = π0, η, ω) allows
us to resolve the β ←→ 1

2π − β ambiguity (but not the β ←→ π + β), showing that negative cos (2β)
solutions are very unlikely [126,127]. The result fits nicely with all previous unitarity triangle constraints
in Fig. 5.

A determination of β + γ = π − α can be obtained from b̄ → ūud̄ decays, such as B0
d → ππ or

B0
d → ρρ. However, the penguin contamination, which carries a different weak phase, can be sizeable.

The time-dependent asymmetry in B0
d → π+π− shows indeed a non-zero value for the cos (∆MB0t)

term, Cf = −0.38± 0.06 [57], indicating the presence of an additional amplitude; then Sf = −0.65±
0.07 6= sin 2α. One could still extract useful information on α (up to 16 mirror solutions), using the
isospin relations among the B0

d → π+π−, B0
d → π0π0 and B+ → π+π0 amplitudes and their CP

conjugates [128]; however, only a loose constraint is obtained given the limited experimental precision
on B0

d → π0π0. Much stronger constraints are obtained from B0
d → ρρ because one can use the

additional polarization information of two vectors in the final state to resolve the different contributions.
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Fig. 7: Time-dependent asymmetries for (left) CP-odd (B0
d → J/ψKS , B0

d → ψ′KS , B0
d → χc1KS ; ζf = −1)

and (right) CP-even (B0
d → J/ψKL; ζf = +1) final states, measured by BELLE [125].

Moreover, the small branching fraction Br(B0
d → ρ0ρ0) = (0.73 + 0.27

− 0.28)×10−6 [13] implies a very small
penguin contribution. Additional information can be obtained from B0

d, B̄
0
d → ρ±π∓, although the final

states are not CP eigenstates. Combining all pieces of information results in [13, 104]

α = (89.0 + 4.4
− 4.2)◦ . (82)

The angle γ cannot be determined in b̄ → uūd̄ decays such as B0
s → ρ0KS because the colour

factors in the hadronic matrix element enhance the penguin amplitude with respect to the tree-level
contribution. Instead, γ can be measured through the tree-level decays B− → D0K− (b → cūs) and
B− → D̄0K− (b → uc̄s), using final states accessible in both D0 and D̄0 decays and playing with the
interference of both amplitudes [129–131]. The sensitivity can be optimized with Dalitz-plot analyses of
D0, D̄0 → KSπ

+π− decays. The extensive studies made by BABAR and BELLE result in [13, 104]

γ = (73 + 22
− 25)◦ . (83)

Mixing-induced CP-violation has also been sought in the decays B0
s → J/ψφ and B0

s → J/ψf0(980).
From the corresponding time-dependent CP asymmetries, LHCb has recently determined the angle [119]

βs = −(2± 5)◦ , (84)

in good agrement with the SM prediction βs ≈ ηλ2 ≈ 1◦.

6.3 Global fit of the unitarity triangle
The CKM parameters can be more accurately determined through a global fit to all available measure-
ments, imposing the unitarity constraints and taking properly into account the theoretical uncertainties.
The global fit shown in Fig. 5 uses frequentist statistics and gives [104]

λ = 0.2254 + 0.0006
− 0.0010 , A = 0.801 + 0.026

− 0.014 , ρ̄ = 0.144 + 0.023
− 0.026 , η̄ = 0.343 + 0.015

− 0.014 . (85)

This implies J = (2.884 + 0.253
− 0.053) × 10−5, α = (90.9 + 3.5

− 4.1)◦, β = (21.84 + 0.80
− 0.76)◦ and γ = (67.3 + 4.2

− 3.5)◦.
Similar results are obtained by the UTfit group [132], using instead a Bayesian approach and a slightly
different treatment of theoretical uncertainties.

6.4 Direct CP-violation in B and D decays
The B factories have established the presence of direct CP-violation in several decays of B mesons. The
most significant signals are [13, 57]

ACP
B̄0

d→K−π+ = −0.098± 0.013, ACP
B̄0

d→K̄∗0η = 0.19± 0.05, ACP
B̄0

d→K∗−π+ = −0.19± 0.07,
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CB0
d→π+π− = −0.38± 0.06 , ACP

B−→K−DCP(+1)
= 0.24± 0.06 ,

ACP
B−→K−ρ0 = 0.37± 0.10 , ACP

B−→K−η = −0.37± 0.09 ,

ACP
B−→K−f2(1270) = −0.68 + 0.19

− 0.17 , ACP
B−→π−f0(1370) = 0.72± 0.22 . (86)

LHCb has also reported evidence for direct CP-violation in D decays [133]:

ACP
D0→K+K− −ACP

D0→π+π− = −0.82± 0.24 . (87)

Unfortunately, owing to the unavoidable presence of strong phases, a real theoretical understanding of the
corresponding SM predictions is still lacking. Progress in this direction is needed to perform meaningful
tests of the CKM mechanism of CP-violation and to pin down any possible effects from new physics
beyond the SM framework.

7 Rare decays
Complementary and very valuable information could also be obtained from rare decays, which in the SM
are strongly suppressed by the GIM mechanism. These processes are sensitive to new-physics contribu-
tions with a different flavour structure. Well-known examples are the kaon decay modes K± → π±νν̄
and KL → π0νν̄, where long-distance effects play a negligible role. The decay amplitudes are dominated
by short-distance loops (Z penguin, W box) involving the heavy top quark, but receive also sizeable con-
tributions from internal charm exchanges. The relevant hadronic matrix elements can be obtained from
K`3 decays, assuming isospin symmetry. The neutral decay is CP-violating and proceeds almost entirely
through direct CP-violation (via interference with mixing). Taking the CKM matrix elements from the
global fit, the predicted SM rates are [134–136]:

Br(K+ → π+νν̄)th = (0.78± 0.08)× 10−10 , Br(KL → π0νν̄)th = (2.4± 0.4)× 10−11 . (88)

On the experimental side, the charged kaon mode was already observed [137], while only an upper bound
on the neutral mode has been achieved [138]:

Br(K+ → π+νν̄) = (1.73+1.15
−1.05)× 10−10 , Br(KL → π0νν̄) < 2.6× 10−8 (90% CL). (89)

New experiments are under development at CERN [139] and J-PARC [140] for charged and neutral
modes, respectively, aiming to reach O(100) events and begin to seriously probe the new-physics po-
tential of these decays. Increased sensitivities could be obtained through the recent P996 proposal for a
K+ → π+νν̄ experiment at Fermilab and the higher kaon fluxes available at Project-X [141].

Another promising mode is KL → π0e+e−. Owing to the electromagnetic suppression of the 2γ
CP-conserving contribution, this decay is dominated by the CP-violating one-photon emission ampli-
tude. It receives contributions from both direct and indirect CP-violation, which amount to a predicted
rate Br(KL → π0e+e−)th = (3.1 ± 0.9) × 10−11 [44], 10 times smaller than the present experimental
bound Br(KL → π0e+e−) < 2.8 × 10−10 (90% CL) [142]. Other interesting K decays are discussed
in [44].

The inclusive decay B̄ → Xsγ provides another powerful test of the SM flavour structure at
the quantum loop level. The present experimental world average [57] Br(B̄ → Xsγ)Eγ≥1.6 GeV =
(3.55 ± 0.26) × 10−4 agrees very well with the SM theoretical prediction [143] at the next-to-next-to-
leading-order (NNLO), Br(B̄→ Xsγ)th

Eγ≥1.6 GeV = (3.15± 0.23)× 10−4. Other interesting processes
with B mesons are B̄→ K(∗)`+`−, B̄0 → `+`− and B̄→ K(∗)νν̄ [34].
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8 Discussion
The flavour structure of the SM is one of the main questions still remaining in our understanding of weak
interactions. Although we do not know the reason for the observed family replication, we have learnt
experimentally that the number of SM generations is just three (and no more). Therefore, we must study
as precisely as possible the few existing flavours, to get some hints on the dynamics responsible for their
observed structure.

In the SM, all flavour dynamics originate in the fermion mass matrices, which determine the
measurable masses and mixings. The SM incorporates a mechanism to generate CP-violation, through
the single phase naturally occurring in the CKM matrix. This mechanism, deeply rooted in the unitarity
structure of V, implies very specific requirements for CP-violation to show up. The CKM matrix has
been thoroughly investigated in dedicated experiments, and a large number of CP-violating processes
have been studied in detail. At present, all flavour data seem to fit into the SM framework, confirming
that the fermion mass matrices are the dominant source of flavour-mixing phenomena. However, a
fundamental explanation of the flavour dynamics is still lacking.

The dynamics of flavour is a broad and fascinating subject, which is closely related to the as-yet
untested scalar sector of the SM. LHC has already excluded a broad range of Higgs masses, narrowing
down the SM Higgs hunt to the region of low masses between 115.5 and 127 GeV (95% CL) [144,145].
This is precisely the range of masses preferred by precision electroweak tests [4]. The discovery of a
neutral scalar boson in this mass range would provide a spectacular confirmation of the SM framework.

If the Higgs boson does not show up soon, we should look for alternative mechanisms of mass
generation, satisfying the many experimental constraints that the SM has successfully fulfilled so far.
The easiest perturbative way would be to enlarge the scalar sector with additional Higgs doublets, with-
out spoiling the electroweak precision tests. However, adding more scalar doublets to the Yukawa La-
grangian (4) leads to new sources of flavour-changing phenomena; in particular, the additional neutral
scalars acquire tree-level flavour-changing neutral couplings, which represent a major phenomenological
problem. In order to satisfy the stringent experimental constraints, these scalars should be either decou-
pled (very large masses above 10–50 TeV or tiny couplings) or have their Yukawa couplings aligned in
flavour space [146], which suggests the existence of additional flavour symmetries at higher scales. The
usual supersymmetric models with two scalar doublets avoid this problem through a discrete symmetry,
which only allows one of the scalars to couple to a given right-handed fermion [147]. However, the
presence of flavoured supersymmetric partners gives rise to other problematic sources of flavour and CP
phenomena, making it necessary to tune their couplings to be tiny (or zero) [148]. Models with dynam-
ical electroweak symmetry breaking also have difficulties in accommodating the flavour constraints in a
natural way. Thus, flavour phenomena impose severe restrictions on possible extensions of the SM.

New experimental input is expected from LHCb, BESS-III, the future Super-Belle and Super-B
factories and from several kaon (NA62, DAΦNE, K0TO, TREK, KLOD, OKA, Project-X) and muon
(MEG, Mu2e, COMET, PRISM) experiments. These data will provide very valuable information, com-
plementing the high-energy searches for new phenomena at LHC. Unexpected surprises may well be
discovered, probably giving hints of new physics at higher scales and offering clues to the problems of
fermion mass generation, quark mixing and family replication.
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