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Abstract

Using data recorded in 2011 with the ATLAS detector at the Large Hadron Collider, a search for evidence of extra
spatial dimensions has been performed through an analysis of the diphoton final state. The analysis uses data corre-
sponding to an integrated luminosity of 2.12 fb−1 of

√
s = 7 TeV proton-proton collisions. The diphoton invariant mass

(mγγ) spectrum is observed to be in good agreement with the expected Standard Model background. In the large extra
dimension scenario of Arkani-Hamed, Dimopoulos and Dvali, the results provide 95% CL lower limits on the fundamental
Planck scale between 2.27 and 3.53 TeV, depending on the number of extra dimensions and the theoretical formalism
used. The results also set 95% CL lower limits on the lightest Randall-Sundrum graviton mass of between 0.79 and
1.85 TeV, for values of the dimensionless coupling k/MPl varying from 0.01 to 0.1. Combining with previously published
ATLAS results from the dielectron and dimuon final states, the 95% CL lower limit on the Randall-Sundrum graviton
mass for k/MPl = 0.01 (0.1) is 0.80 (1.95) TeV.

1. Introduction

The enormous difference between the Planck scale and
the electroweak scale is known as the hierarchy problem.
A prominent class of new physics models addresses the
hierarchy problem through the existence of extra spatial
dimensions. In this paper, we search for evidence of extra
dimensions within the context of the models of Arkani-
Hamed, Dimopoulos, and Dvali (ADD) [1] and of Ran-
dall and Sundrum (RS) [2]. In these models, gravity can
propagate in the higher-dimensional bulk, giving rise to a
so-called Kaluza-Klein (KK) tower of massive spin-2 gravi-
ton excitations (KK gravitons, G). Due to their couplings
to Standard Model (SM) particle-antiparticle pairs, KK
gravitons can be investigated in proton-proton (pp) colli-
sions at the Large Hadron Collider (LHC) via a variety of
processes, including virtual graviton exchange as well as
direct graviton production through gluon-gluon fusion or
quark-antiquark annihilation.

The ADD model [1] postulates the existence of n flat ad-
ditional spatial dimensions compactified with radius R, in
which only gravity propagates. The fundamental Planck
scale in the (4 + n)-dimensional spacetime, MD, is re-

lated to the apparent scale MPl by Gauss’ law: M
2

Pl =
Mn+2

D Rn, where MPl = MPl/
√
8π is the reduced Planck

scale. The mass splitting between subsequent KK states is
of order 1/R. In the ADD model, resolving the hierarchy
problem requires typically small values of 1/R, giving rise
to an almost continuous spectrum of KK graviton states.

While processes involving direct graviton emission de-
pend on MD, effects involving virtual gravitons depend
on the ultraviolet cutoff of the KK spectrum, denoted

MS . The effects of the extra dimensions are typically
parametrized by ηG = F/M4

S , where ηG describes the
strength of gravity in the presence of the extra dimensions
and F is a dimensionless parameter of order unity reflect-
ing the dependence of virtual KK graviton exchange on
the number of extra dimensions. Several theoretical for-
malisms exist in the literature, using different definitions
of F and, consequently, of MS :

F = 1, (GRW) [3]; (1)

F =

{

log
(

M2

S

ŝ

)

n = 2
2

n−2 n > 2
, (HLZ) [4]; (2)

F = ± 2

π
, (Hewett) [5]; (3)

where
√
ŝ is the center-of-mass energy of the parton-parton

collision. Effects due to ADD graviton exchange would
be evidenced by a non-resonant deviation from the SM
background expectation. Collider searches for ADD vir-
tual graviton effects have been performed at HERA [6],
LEP [7], the Tevatron [8], and the LHC [9, 10]. Recent
diphoton results from CMS are the most restrictive so far,
setting limits on MS in the range of 2.3 to 3.8 TeV [10].
The RS model [2] posits the existence of a fifth di-

mension with “warped” geometry, bounded by two (3+1)-
dimensional branes, with the SM fields localized on the
so-called TeV brane and gravity originating on the other,
dubbed the Planck brane, but capable of propagating in
the bulk. Mass scales on the TeV brane, such as the
Planck mass describing the observed strength of gravity,
correspond to mass scales on the Planck brane as given
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by MD = MPle
−kπrc , where k and rc are the curvature

scale and compactification radius of the extra dimension,
respectively. The observed hierarchy of scales can there-
fore be naturally reproduced in this model, if krc ≈ 12 [11].
KK gravitons in this model would have a mass splitting of
order 1 TeV and would appear as new resonances. The
phenomenology can be described in terms of the mass of
the lightest KK graviton excitation (mG) and the dimen-
sionless coupling to the SM fields, k/MPl. It is theoreti-
cally preferred [11] for k/MPl to have a value in the range
from 0.01 to 0.1. The most stringent experimental lim-
its on RS gravitons are from the LHC. For k/MPl= 0.1,
∼1 fb−1 ATLAS results from G → ee/µµ exclude gravi-
tons below 1.63 TeV [12], assuming leading order (LO)
cross section predictions, and a recent 2.2 fb−1 G → γγ
result from CMS excludes gravitons below 1.84 TeV [10],
using next-to-leading order (NLO) cross section values.
These results have surpassed the limits from searches at
the Tevatron [13] and earlier searches at the LHC [14].
The diphoton final state provides a sensitive channel for

this search due to the clean experimental signature, excel-
lent diphoton mass resolution, and modest backgrounds,
as well as a branching ratio for graviton decay to dipho-
tons that is twice the value of that for graviton decay to
any individual charged-lepton pair. In this letter, we re-
port on a search in the diphoton final state for evidence
of extra dimensions, using a data sample corresponding to
an integrated luminosity of 2.12 fb−1 of

√
s = 7 TeV pp

collisions, recorded during 2011 with the ATLAS detector
at the LHC. The measurement of the diphoton invariant
mass spectrum is interpreted in both the ADD and RS
scenarios.

2. The ATLAS Detector

The ATLAS detector [15] is a multipurpose particle
physics instrument with a forward-backward symmetric
cylindrical geometry and near 4π solid angle coverage1.
Closest to the beamline are tracking detectors to measure
the trajectories of charged particles, including layers of
silicon-based detectors as well as a transition radiation
tracker using straw-tube technology. The tracker is sur-
rounded by a thin solenoid that provides a 2 T magnetic
field for momentum measurements. The solenoid is sur-
rounded by a hermetic calorimeter system, which is par-
ticularly important for this analysis. A system of liquid-
argon (LAr) sampling calorimeters is divided into a cen-
tral barrel calorimeter and two endcap calorimeters, each
housed in a separate cryostat. Fine-grained LAr electro-
magnetic (EM) calorimeters, segmented in three longitu-
dinal layers, are used to precisely measure the energies of

1ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point in the centre of the detector and the
z-axis along the beam pipe. Cylindrical coordinates (r, φ) are used in
the transverse plane, φ being the azimuthal angle around the beam
pipe. The pseudorapidity η is defined in terms of the polar angle θ
by η = − ln tan(θ/2).

electrons, positrons and photons for |η| < 3.2. Most of the
EM shower energy is collected in the second layer, which
has a granularity of ∆η × ∆φ = 0.025 × 0.025. The first
layer is segmented into eight strips per middle-layer cell in
the η direction, extending over four middle-layer cells in
φ, designed to separate photons from π0 mesons. A pre-
sampler, covering |η| < 1.81, is used to correct for energy
lost upstream of the calorimeter. The regions spanning
1.5 < |η| < 4.9 are instrumented with LAr calorimetry
also for hadronic measurements, while an iron-scintillator
tile calorimeter provides hadronic coverage in the range
|η| < 1.7. A muon spectrometer consisting of three super-
conducting toroidal magnet systems, tracking chambers,
and detectors for triggering lies outside the calorimeter
system.

3. Trigger and Data Selection

The analysis uses data collected between March and
September 2011 during stable beam periods of 7 TeV pp
collisions. Selected events had to satisfy a trigger requir-
ing at least two photon candidates with transverse energy
Eγ

T > 20 GeV and satisfying a set of requirements, referred
to as the “loose” photon definition [16], which includes
requirements on the leakage of energy into the hadronic
calorimeter as well as on variables that require the trans-
verse width of the shower, measured in the second EM
calorimeter layer, be consistent with the narrow width ex-
pected for an EM shower. The loose definition is designed
to have high photon efficiency, albeit with reduced back-
ground rejection. The trigger was essentially fully efficient
for high mass diphoton events passing the final selection
requirements.

Events were required to have at least one primary col-
lision vertex, with at least three reconstructed tracks. Se-
lected events had to have at least two photon candidates,
each with Eγ

T > 25 GeV and pseudorapidity |ηγ | < 2.37,
with the exclusion of 1.37 < |ηγ | < 1.52, the transition
region between the barrel and endcap calorimeters. As
described in more detail in Ref. [16], photon candidates
included those classified as unconverted photons, with no
associated track, or photons which converted to electron-
positron pairs, with one or two associated tracks. The two
photons were required to satisfy several quality criteria
and to lie outside detector regions where their energy was
not measured in an optimal way. The two photon can-
didates each had to satisfy a set of stricter requirements,
referred to as the “tight” photon definition [16], which in-
cluded a more stringent selection on the shower width in
the second EM layer and additional requirements on the
energy distribution in the first EM calorimeter layer. The
tight photon definition was designed to increase the purity
of the photon selection sample by rejecting most of the
remaining jet background, including jets with a leading
neutral hadron (mostly π0 mesons) that decay to a pair of
collimated photons.
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The isolation transverse energy Eiso
T for each photon

was calculated [16] by summing over the cells of both
the EM and hadronic calorimeters that surround the pho-
ton candidate within an angular cone of radius ∆R =
√

(η − ηγ)2 + (φ− φγ)2 < 0.4, after removing a central
core that contains most of the energy of the photon. To
reduce the jet background further, an isolation require-
ment was applied, requiring that each of the two leading
photons satisfied Eiso

T < 5 GeV. An out-of-core energy cor-
rection was applied, to make Eiso

T essentially independent
of Eγ

T. An ambient energy correction, based on the mea-
surement of low transverse momentum jets [17], was also
applied, on an event-by-event basis, to remove the con-
tributions from the underlying event and from “pileup”,
which results from the presence of multiple pp collisions
within the same or nearby bunch crossings.
For events with more than two photon candiates passing

all the selection requirements, the two photons with the
highest Eγ

T values were considered. The diphoton invariant
mass had to exceed 140 GeV. A total of 6846 events were
selected.

4. Monte Carlo Simulation Studies

Monte Carlo (MC) simulations were performed to study
the detector response for various possible signal models,
as well as to perform some SM background studies. All
MC events were simulated [18] with the ATLAS detector
simulation based on geant4 [19] and using ATLAS pa-
rameter tunes [20], and were processed through the same
reconstruction software chain as used for the data. The
MC events were reweighted to mimic the pileup conditions
observed in the data.
SM diphoton production was simulated with

PYTHIA [21] version 6.424 and MRST2007LOMOD [22]
parton distribution functions (PDFs). The PYTHIA
events were reweighted as a function of diphoton invariant
mass to the differential cross section predicted by the
NLO calculation of DIPHOX [23] version 1.3.2. The
reweighting factor varied from ≈ 1.6 for a diphoton mass
of 140 GeV, decreasing smoothly to unity for large masses.
For the DIPHOX calculation, the renormalization scale
and the initial and final factorization scales of the model
were all set to the diphoton mass. The various scales were
varied by a factor of two both up and down, compared to
this central value, to evaluate systematic uncertainties.
The PDFs were chosen following the recommendations
of the PDF4LHC working group [24], with MSTW2008
NLO PDFs [25] used for the NLO predictions, and
CTEQ6.6 [26] and MRST2007LOMOD [22] used for
systematic comparisons.
SHERPA [27] version 1.2.3 was used with CTEQ6L [26]

PDFs to simulate the various ADD scenarios for a variety
of MS values. Due to the interference between the SM
and gravity-mediated contributions, it is necessary to sim-
ulate events according to the full differential cross section
as a function of the diphoton mass. A generator-level cut

was applied to restrict the signal simulation to diphoton
masses above 200 GeV. The ADD MC samples were used
to determine the signal acceptance (A) and selection effi-
ciency (ǫ). The acceptance, defined as the percentage of
diphoton signal events with the two highest ET photons
passing the applied Eγ

T and ηγ cuts, varied somewhat for
the various ADD implementations and fell from typical
values of ≈ 20% for MS = 1.5 TeV down to ≈ 15% for
MS = 3 TeV, due mostly to the variations in the ηγ dis-
tributions. The selection efficiency, for events within the
detector acceptance, was found to be ≈ 70%.
RS model MC signal samples were produced using the

implementation of the RS model in PYTHIA [21] ver-
sion 6.424, which is fully specified by providing the val-
ues of mG and k/MPl. MC signal samples were pro-
duced for a range of mG and k/MPl values, using the
MRST2007LOMOD [22] PDFs. The products of A × ǫ
for the RS signal models were in the range ≈ (53− 60)%,
slowly rising with increasing graviton mass. The recon-
structed shape of the graviton resonance was modeled
by convolving the graviton Breit-Wigner lineshape with
a double-sided Crystal Ball (CB) function to describe
the detector response. The natural width of the Breit-
Wigner was fixed according to the expected theoretical
value, which varies as the square of k/MPl. The values of
the width increase, for k/MPl = 0.1, from ≈ 8 GeV up
to ≈ 30 GeV for mG values from 800 GeV to 2200 GeV,
respectively. The parameters of the CB function, which
includes a Gaussian core to model the detector resolution
matched to exponential functions on both sides to model
the modest non-Gaussian tails, were determined by fitting
to the reconstructed MC signals. The fitted values of σ of
the Gaussian core approached a value of ≈ 1% for highmG

values, as expected given the current value of the constant
term in the EM calorimeter energy resolution, and were
found to be independent of k/MPl. The EM energy reso-
lution has been verified in data using Z → ee decays [28],
and MC used to describe the modest differences between
the response to photons versus electrons. The fitted values
of the CB parameters varied smoothly with mG. Fitting
this mass dependence provided a signal parametrization
that was used to describe signals with any values of mG

and k/MPl.

5. Background Evaluation

The largest background for this analysis is the irre-
ducible background due to SM γγ production. The shape
of the diphoton invariant mass spectrum from this back-
ground was estimated using MC, reweighting the PYTHIA
samples to the differential cross section predictions of
DIPHOX.
Another significant background component is the re-

ducible background that includes events in which one or
both of the reconstructed photon candidates result from
a different physics object being misidentified as a pho-
ton. This background is dominated by γ + jet (j) and jj
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events, with one or two jets faking photons, respectively.
Backgrounds with electrons faking photons, such as the
Drell-Yan production of electron-positron pairs as well as
W/Z + γ and tt̄ processes, were verified using MC to be
small after the event selection and were neglected. Several
background-enriched control samples were defined in order
to determine the shape of the reducible background using
data-driven techniques. In all control samples, the two
photon candidates were required to pass the same isola-
tion cut as for the signal selection, since removing the iso-
lation requirement was seen to modify the diphoton mass
spectrum. The first control sample contained those events
where one of the photon candidates passed the tight re-
quirement applied for the signal selection. However, the
other photon candidate was required to fail the tight pho-
ton identification definition, but to pass the loose require-
ment; the latter restriction was applied to avoid any trigger
bias, as the trigger required two loose photons. This sam-
ple is enriched in γ + j events, where the photon passed
the tight requirement and a jet passed the loose one, and
also in jj events where both photon candidates were due
to jets. A second control sample, dominated by jj events,
was similarly defined, but both photon candidates were re-
quired to fail the tight photon identification while passing
the loose definition.
The diphoton invariant mass distributions were com-

pared for these control samples. To check for any kine-
matic bias, the control sample with one tight and one loose
photon candidate was further divided, with the γj (jγ)
subsample being defined as the case with the tight pho-
ton being the photon candidate with the highest (second
highest) transverse energy. The diphoton invariant mass
distributions of all three control subsamples were found to
be consistent with each other, within statistical uncertain-
ties. The sum of the control samples was used to provide
the best estimate of the reducible background shape. Vari-
ations among the subsamples were taken into account as
a source of systematic uncertainty in the reducible back-
ground prediction.
The data control samples have relatively few events

in the high diphoton mass signal region. It was there-
fore necessary to extrapolate the reducible background
shape to higher masses, which was done by fitting with
a smooth function of the form f(x) = p1 × xp2+p3 log x,
where x = mγγ and pi are the fit parameters. This func-
tional form has been used in previous ATLAS resonance
searches [12, 29], and describes well the shape of the con-
trol data samples.
The total background, calculated as the sum of the ir-

reducible and reducible components, was normalized to
the number of data events in a low mass control region
with diphoton masses between 140 and 400 GeV, in which
possible ADD and RS signals have been excluded by pre-
vious searches. The fraction of the total background in
this region that is due to the irreducible background is
defined as the purity of the sample. The purity (p) was
determined by three complementary methods. The most

precise measurement resulted from a method previously
used in References [30, 31] that examines the Eiso

T values
of the two photon candidates. Templates for the Eiso

T dis-
tributions of true photons and of fake photons from jets
were both determined from the data. The shape for fake
photons was found using a sample of photon candidates
that failed at least one of a subset of several of the se-
lection requirements used for the tight photon definition.
The shape for photons was found from the tight photon
sample, after subtracting the fake photon shape normal-
ized to match the number of candidates with large values
(greater than 10 GeV) of Eiso

T . In addition, for jj events,
due to the observed significant (≈ 20%) correlation be-
tween the Eiso

T values of the two photon candidates, a two-
dimensional template was formed using events in which
both photon candidates failed the tight identification. An
extended maximum likelihood fit to the two-dimensional
distribution formed from the Eiso

T values of the two photon
candidates was performed in order to extract the contri-
butions from γγ, γj, jγ, and jj events. The fit was per-
formed using the photon and fake photon Eiso

T templates,
as well as the two-dimensional jj template. The resul-
tant value of the purity in the low mass control region was
p = 71+5

−9%. The uncertainty was determined by varying
the subset of tight selection criteria failed by fake photon
candidates, and then repeating the purity determination.
Cross checks using either the DIPHOX prediction for the
absolute normalization of the irreducible component, or
fitting the shapes of the irreducible and reducible back-
grounds to the data in the low mass control region, yielded
consistent, but less precise results. The result from the iso-
lation method was therefore used as the best estimate of
the purity, and the total SM background prediction was
set equal to the sum of the irreducible and reducible com-
ponents, weighted appropriately by this purity value and
normalized to data in the low mass control region.

6. Systematic Uncertainties

Systematic uncertainties in the DIPHOX prediction for
the shape of the irreducible background were obtained by
varying the scales of the model and the PDFs, while keep-
ing the overall normalization fixed in the low mass control
region in which the total background prediction was nor-
malized to the data. The resultant systematic uncertain-
ties range from a few percent at low masses, up to ≈ 15%
for diphoton masses of ≈ 2 TeV. Systematic uncertain-
ties in the reducible background shape were obtained by
comparing the results of the extrapolation fit for the vari-
ous control data subsamples, in each case maintaining the
overall normalization to the data in the low mass control
region. The resultant uncertainties increase from ≈ 5% for
low masses to ≈ 100% at a mass of ≈ 2 TeV.

The systematic uncertainty on the shape of the total
background was obtained by adding in quadrature the un-
certainties on the shapes of the irreducible and reducible
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background components, weighted appropriately to ac-
count for the purity. In addition, there is a contribution,
which is roughly constant with a value of ≈ 10% for dipho-
ton masses above 800 GeV, introduced by varying the pu-
rity value within its uncertainty. An additional overall un-
certainty of ≈ 2% was included due to the finite statistics
of the data sample in the low mass control region.
The total background systematic uncertainty starts at

≈ 2% for mγγ = 140 GeV, rises to ≈ 15% by 700 GeV and
then increases slowly up to almost 20% for the highestmγγ

values, above 2 TeV.
Systematic uncertainties on the signal yields were eval-

uated separately for the ADD and RS models. Since the
differences were small, for simplicity the higher value was
taken and applied to both models. The systematic un-
certainties considered for the signal yield include the 3.7%
uncertainty on the integrated luminosity [32], and a 1% un-
certainty to account for the limited signal MC statistics. A
value of 1% for the uncertainty on the bunch crossing iden-
tification (BCID) efficiency accounts for the ability of the
Level 1 trigger hardware to pick the correct BCID when
signal pulse saturation occurs in the trigger digitization.
In addition, a value of 2% was applied for the uncertainty
on the efficiency of the diphoton trigger. An uncertainty
of 2.5% was applied due to the influence of pileup on the
signal efficiency. Finally, a value of 4.3% was taken to
account for the uncertainty in the selection and identifi-
cation of the pair of photons, including uncertainties due
to the photon isolation cut, the description of the detector
material, the tight photon identification requirements, and
extrapolation to the high photon ET values typical of the
signal models. Uncertainties due to the current knowledge
of the EM energy scale and resolution were verified to have
a negligible impact. Adding all effects in quadrature, the
total systematic uncertainty on the signal yields was 6.7%.
Uncertainties in the theoretical signal cross sections

due to PDFs and due to the NLO approximation were
considered. The uncertainties due to PDFs range from
≈ 10− 15% for ADD models and from ≈ 5 − 10% for RS
models. The authors of Refs. [33, 34] have privately up-
dated their calculations of the NLO signal cross sections
for 14 TeV, and provided k-factors to the LHC experi-
ments to scale from LO to NLO cross section values for
the case of 7 TeV pp collisions. The NLO k-factor values,
evaluated in our case for |ηγ | < 2.5, have some modest de-
pendence on the diphoton mass as well as on MS for the
ADD model, and on the k/MPl value for the RS model.
However, the variations are within the theoretical uncer-
tainty. For simplicity, therefore, constant values of 1.70
and 1.75 were assumed for the ADD and RS models, re-
spectively, and an uncertainty in the k-factor value of ±0.1
was assigned to account for the variations.

7. Results and Interpretation

Figure 1 shows the observed invariant mass distribution
of diphoton events, with the predicted SM background su-

perimposed as well as ADD and RS signals for certain
choices of the model parameters. The reducible back-
ground component is shown separately, in addition to the
total background expectation, which sums the reducible
and irreducible contributions. The shaded bands around
each contribution indicate the corresponding uncertainty.
The bottom plot of Figure 1 shows the statistical signifi-
cance, measured in standard deviations and based on Pois-
son distributions, of the difference between the data and
the expected background in each bin. The significance
was calculated and displayed as detailed in Ref. [35], and
plotted as positive (negative) where there was an excess
(deficit) in the data in a given bin. Table 1 lists, in bins
of diphoton mass, the expected numbers of events for the
irreducible and reducible background components, as well
as for the total background, and also the numbers of ob-
served data events. Both Figure 1 and Table 1 demon-
strate that there is agreement between the observed mass
distribution and the expectation from the SM backgrounds
over the entire diphoton mass range; no evidence is seen
for either resonant or non-resonant deviations which would
indicate the presence of a signal due to new physics. An
analysis using the BUMPHUNTER [36] tool found that
the probability, given the background-only hypothesis, of
observing discrepancies at least as large as observed in the
data was 0.28, indicating quantitatively the good agree-
ment between the data and the expected SM background.
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Figure 1: The observed invariant mass distribution of diphoton
events, superimposed with the predicted SM background and ex-
pected signals for ADD and RS models with certain choices of pa-
rameters. The bin width is constant in log(mγγ ). The bin-by-bin
significance of the difference between data and background is shown
in the lower panel.

Given the absence of evidence for a signal, 95% CL
upper limits were determined on the ADD and RS sig-
nal cross sections, using a Bayesian approach [37] with a
flat prior on the signal cross section. The systematic un-
certainties were incorporated as Gaussian-distributed nui-
sance parameters and integrated over.
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Mass Range Background Expectation Observed
(GeV) Irreducible Reducible Total Events

[140, 400] 4738± 180 1935± 97 6674 6674
[400, 500] 90.0± 8.5 19.9± 1.8 109.9± 9.2 102
[500, 600] 31.1± 4.0 5.8± 0.8 37.0± 4.2 36
[600, 700] 13.7± 2.3 2.0± 0.4 15.7± 2.4 16
[700, 800] 6.2± 1.2 0.8± 0.2 6.9± 1.3 9
[800, 900] 3.1± 0.4 0.3± 0.1 3.4± 0.5 5
[900, 1000] 1.6± 0.2 0.14± 0.05 1.8± 0.3 1
[1000, 1100] 1.0± 0.2 0.07± 0.03 1.0± 0.2 1
[1100, 1200] 0.50± 0.09 0.03± 0.02 0.54± 0.11 0
[1200, 1300] 0.29± 0.07 0.02± 0.01 0.31± 0.07 0
[1300, 1400] 0.14± 0.04 0.010± 0.005 0.15± 0.04 1
[1400, 1500] 0.13± 0.04 0.005± 0.003 0.14± 0.04 1
> 1500 0.18± 0.09 0.009± 0.006 0.19± 0.09 0

Table 1: The expected numbers of events for the irreducible and reducible background components and for the total background, as well
as the numbers of observed data events, in different diphoton mass bins. The first row, with masses from 140 to 400 GeV, corresponds to
the control region in which the total background was normalized to the corresponding number of observed events. The errors include both
statistical and systematic uncertainties. The errors on the irreducible and reducible background components do not include the contribution,
which is anti-correlated between the two background components, from the uncertainty on the purity. However, this contribution is included
in the errors listed for the total background.

To set limits on the ADD model, the number of observed
events with diphoton invariant mass in a high mass signal
region was compared with the expected total SM back-
ground. To optimise the expected limit, the ADD signal
search region was chosen as mγγ > 1.1 TeV. There are 2
observed events in this signal region, with a background
expectation of 1.33±0.26 events, where the uncertainty in-
cludes both statistical and systematic errors. The observed
(expected) 95% CL upper limit is 2.49 (1.94) fb for the
product of the cross section due to new physics multiplied
by the acceptance and efficiency. The cross section result
can be translated into limits on ηG and, subsequently, on
the parameter MS of the ADD model. As summarized in
Table 2, assuming a k-factor of 1.70, the 95% CL lower
limits on MS range between 2.27 and 3.53 TeV, depend-
ing on the number of extra dimensions assumed and the
ADD model implementation. LO results are also included
in Table 2, for reference.

To determine the limits on the RS model, the observed
invariant mass distribution was compared to templates of
the expected backgrounds and varying amounts of signal
for various graviton masses and k/MPl values. A likeli-
hood function was defined as the product of the Poisson
probabilities over all mass bins in the search region, defined
as mγγ > 500 GeV, where the Poisson probability in each
bin was evaluated for the observed number of data events
given the expectation from the template. The total signal
acceptance as a function of mass was propagated into the
expectation. The theory uncertainties were not included
in the limit calculation, but are indicated by showing the
theory prediction as a band with a width equal to the com-
bined theory uncertainty when plotting the results. The
resultant limits are summarized in Table 3. Using a con-

stant k-factor value of 1.75, the 95% CL lower limits from
the diphoton channel aremG > 0.79 (1.85) TeV for k/MPl

= 0.01 (0.1).

The RS model results can be combined with the previ-
ously published ATLAS results [12] from the dilepton final
state, where, assuming LO cross sections and k/MPl =
0.1, RS gravitons with masses below 1.51 (1.45) TeV were
excluded at 95% CL using data samples of 1.08 (1.21) fb−1

to search for G → ee (G → µµ). To ensure their statistical
independence, the selection cuts of the diphoton analysis
included a veto of any events which were also selected by
the 1.08 fb−1 G → ee analysis. In performing the combina-
tion, correlations were considered between the systematic
uncertainties in the γγ and ee channels. In the ee anal-
ysis [12], the background prediction was normalized such
that the expected and observed numbers of events in the
region of the Z peak agreed, eliminating the dependence
of the ee result on the measured integrated luminosity.
Therefore, the γγ and ee signal predictions were treated
as uncorrelated, since there should be no correlation in
the luminosity and efficiency uncertainties. The system-
atic uncertainty on the QCD dijet background was treated
as being correlated; however, this background was quite
small so the effect was minor. The PDF and scale uncer-
tainties were treated as correlated across all three channels,
and affect the irreducible background in the γγ channel as
well as the Drell-Yan background in the ee/µµ channels.
The left plot of Figure 2 shows the combined 95% CL up-
per limit on the product of the graviton production cross
section times the branching ratio for G → γγ/ee/µµ, ob-
tained using the same k-factor value of 1.75 for all three
channels. As summarized in Table 3, the combined 95%
CL lower limit is mG > 0.80 (1.95) TeV for k/MPl = 0.01
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k-factor GRW Hewett HLZ
Value Pos Neg n = 3 n = 4 n = 5 n = 6 n = 7

1 2.73 2.44 2.16 3.25 2.73 2.47 2.30 2.17
1.70 2.97 2.66 2.27 3.53 2.97 2.69 2.50 2.36

Table 2: 95% CL limits on the value of MS (in TeV) for various implementations of the ADD model, using both LO (k-factor = 1) and NLO
(k-factor = 1.70) theory cross section calculations.

(0.1). As shown in the right plot of Figure 2, the results
can be translated into a 95% CL exclusion in the plane of
k/MPl versus graviton mass.

k-Factor
Value

Channel(s)
Used

95% CL Limit [TeV]
k/MPl Value

0.01 0.03 0.05 0.1

1
G → γγ 0.74 1.26 1.41 1.79

G → γγ/ee/µµ 0.76 1.32 1.47 1.90

1.75
G → γγ 0.79 1.30 1.45 1.85

G → γγ/ee/µµ 0.80 1.37 1.55 1.95

Table 3: 95% CL lower limits on the mass (GeV) of the lightest RS
graviton, for various values of k/MPl. The results are shown for
the diphoton channel alone and for the combination of the diphoton
channel with the dilepton results of Ref. [12], using both LO (k-factor
= 1) and NLO (k-factor = 1.75) theory cross section calculations.

8. Summary

Using a dataset corresponding to 2.12 fb−1, an analysis
of the diphoton final state was used to set 95% CL lower
limits of between 2.27 and 3.53 TeV on the parameter MS

of the ADD large extra dimension scenario, depending on
the number of extra dimensions and the theoretical for-
malism used. The diphoton results also exclude at 95%
CL RS graviton masses below 0.79 (1.85) TeV for the di-
mensionless RS coupling k/MPl= 0.01 (0.1). Combining
with the previous ATLAS dilepton analyses further tight-
ens these limits to exclude at 95% CL RS graviton masses
below 0.80 (1.95) TeV for k/MPl= 0.01 (0.1).

9. Acknowledgements

We thank CERN for the very successful operation of
the LHC, as well as the support staff from our institutions
without whom ATLAS could not be operated efficiently.
We acknowledge the support of ANPCyT, Argentina;

YerPhI, Armenia; ARC, Australia; BMWF, Austria;
ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP,
Brazil; NSERC, NRC and CFI, Canada; CERN; CON-
ICYT, Chile; CAS, MOST and NSFC, China; COL-
CIENCIAS, Colombia; MSMT CR, MPO CR and VSC
CR, Czech Republic; DNRF, DNSRC and Lundbeck
Foundation, Denmark; ARTEMIS, European Union;
IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia;

BMBF, DFG, HGF, MPG and AvH Foundation, Ger-
many; GSRT, Greece; ISF, MINERVA, GIF, DIP and
Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS,
Japan; CNRST, Morocco; FOM and NWO, Netherlands;
RCN, Norway; MNiSW, Poland; GRICES and FCT, Por-
tugal; MERYS (MECTS), Romania; MES of Russia and
ROSATOM, Russian Federation; JINR; MSTD, Serbia;
MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF,
South Africa; MICINN, Spain; SRC and Wallenberg
Foundation, Sweden; SER, SNSF and Cantons of Bern
and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey;
STFC, the Royal Society and Leverhulme Trust, United
Kingdom; DOE and NSF, United States of America.
The crucial computing support from all WLCG part-

ners is acknowledged gratefully, in particular from CERN
and the ATLAS Tier-1 facilities at TRIUMF (Canada),
NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France),
KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1
(Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK)
and BNL (USA) and in the Tier-2 facilities worldwide.

References

References

[1] N. Arkani-Hamed, S. Dimopoulos, and G.R. Dvali, Phys. Lett.
B429, 263 (1998).

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).
[3] G. Giudice, R. Rattazzi, and J. Wells, Nucl. Phys. B544, 3

(1999).
[4] T. Han, J. Lykken, and R.-J. Zhang, Phys. Rev. D59, 105006

(1999).
[5] J. Hewett, Phys. Rev. Lett. 82, 4765 (1999).
[6] H1 Collaboration, Phys. Lett. B568, 35 (2003); ZEUS Collab-

oration, Phys. Lett. B591, 23 (2004).
[7] LEP Working Group LEP2FF/02-02 (2002); LEP Working

Group LEP2FF/03-01 (2003); ALEPH Collaboration, Eur.
Phys. J. C49, 411 (2007).

[8] D0 Collaboration, Phys. Rev. Lett. 102, 051601 (2009); D0
Collaboration, Phys. Rev. Lett. 103, 191803 (2009).

[9] CMS Collaboration, JHEP 1105, 085 (2011).
[10] CMS Collaboration, arXiv:1112.0688 (2011) (submitted to

Phys. Rev. Lett.).
[11] H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Rev. Lett.

84, 2080 (2000).
[12] ATLAS Collaboration, arXiv:1108.1582 (2011) (accepted by

Phys. Rev. Lett.).
[13] D0 Collaboration, Phys. Rev. Lett. 104, 241802 (2010); CDF

Collaboration, Phys. Rev. Lett. 107, 051801 (2011).
[14] CMS Collaboration, JHEP 1105, 093 (2011).
[15] ATLAS Collaboration, JINST 3, S08003 (2008).
[16] ATLAS Collaboration, Phys. Rev. D83, 052005 (2011).
[17] M. Cacciari, G. P. Salam, and S. Sapeta, JHEP 04, 065 (2010).
[18] ATLAS Collaboration, Eur. Phys. J. C70 (2010) 823.

7

http://arxiv.org/abs/1112.0688
http://arxiv.org/abs/1108.1582


 [TeV]Gm
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

) 
[p

b]
γγ

+µµ
 e

e+
→

 B
 (

G
 

σ

-310

-210

-110

1

Expected limit
σ 1±Expected 
σ 2±Expected 

Observed limit
 = 0.1PlMk/
 = 0.05PlMk/
 = 0.03PlMk/
 = 0.01PlMk/

ATLAS
 = 7 TeVs

-1 L dt = 1.08 fb∫ee: 

-1 L dt = 1.21 fb∫: µµ

-1 L dt = 2.12 fb∫: γγ

 [TeV]Gm
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

) 
[p

b]
γγ

+µµ
 e

e+
→

 B
 (

G
 

σ

-310

-210

-110

1

 [TeV]Gm

0.5 0.6 0.7 0.8 1 2

P
l

M
k/

0

0.02

0.04

0.06

0.08

0.1

µµ+ee+γγATLAS 

Observed
Expected

σ 1±Expected 
σ 2±Expected γγATLAS 

µµATLAS ee+
γγCMS 
+eeγγCDF 

+eeγγD0 

-1 = 2.12 fbγγ
-1ee = 1.08 fb
-1 = 1.21 fbµµ

 = 7 TeVs

 L dt∫

ATLASRS 95% CL Exclusion

1.2 1.4 2 2.41.6 1.8

Figure 2: (Left) Expected and observed 95% CL limits from the combination of G → γγ/ee/µµ channels on σB, the product of the RS graviton
production cross section and the branching ratio for graviton decay via G → γγ/ee/µµ, as a function of the graviton mass. The theory curves
are drawn assuming a k-factor of 1.75. The thickness of the theory curve for k/MPl = 0.1 illustrates the theoretical uncertainties. (Right)
The RS results interpreted in the plane of k/MPl versus graviton mass, and including recent results from other experiments [10, 13]. The
region above the curve is excluded at 95% CL. In both figures, linear interpolations are performed between the discrete set of mass points for
which the dilepton limits were calculated in Ref. [12].

[19] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum.
Methods A506, 250 (2003).

[20] ATLAS Collaboration, ATL-PHYS-PUB-2010-014 (2010),
https://cdsweb.cern.ch/record/1303025.
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T. Göttfert98, S. Goldfarb86, T. Golling174, S.N. Golovnia127, A. Gomes123a,b, L.S. Gomez Fajardo41, R. Gonçalo75,
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S. Kotov98, V.M. Kotov64, A. Kotwal44, C. Kourkoumelis8, V. Kouskoura153, A. Koutsman158a, R. Kowalewski168,
T.Z. Kowalski37, W. Kozanecki135, A.S. Kozhin127, V. Kral126, V.A. Kramarenko96, G. Kramberger73, M.W. Krasny77,
A. Krasznahorkay107, J. Kraus87, J.K. Kraus20, A. Kreisel152, F. Krejci126, J. Kretzschmar72, N. Krieger54,
P. Krieger157, K. Kroeninger54, H. Kroha98, J. Kroll119, J. Kroseberg20, J. Krstic12a, U. Kruchonak64, H. Krüger20,
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S.Yu. Sivoklokov96, J. Sjölin145a,145b, T.B. Sjursen13, L.A. Skinnari14, H.P. Skottowe57, K. Skovpen106, P. Skubic110,
N. Skvorodnev22, M. Slater17, T. Slavicek126, K. Sliwa160, J. Sloper29, V. Smakhtin170, S.Yu. Smirnov95,
L.N. Smirnova96, O. Smirnova78, B.C. Smith57, D. Smith142, K.M. Smith53, M. Smizanska70, K. Smolek126,
A.A. Snesarev93, S.W. Snow81, J. Snow110, J. Snuverink104, S. Snyder24, M. Soares123a, R. Sobie168,j , J. Sodomka126,
A. Soffer152, C.A. Solans166, M. Solar126, J. Solc126, E. Soldatov95, U. Soldevila166, E. Solfaroli Camillocci131a,131b,
A.A. Solodkov127, O.V. Solovyanov127, N. Soni2, V. Sopko126, B. Sopko126, M. Sosebee7, R. Soualah163a,163c,
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Departamento de Ingenieŕıa Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of

19



Valencia and CSIC, Valencia, Spain
167 Department of Physics, University of British Columbia, Vancouver BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
169 Waseda University, Tokyo, Japan
170 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
171 Department of Physics, University of Wisconsin, Madison WI, United States of America
172 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
173 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
174 Department of Physics, Yale University, New Haven CT, United States of America
175 Yerevan Physics Institute, Yerevan, Armenia
176 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia
g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
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