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In this article, we present an ongoing lattice study of thgdsiYukawa model, in the regime
of strong-Yukawa coupling, using overlap fermions. We stigated the phase structure in this
regime by computing the Higgs vacuum expectation valuebgrekploring the finite-size scaling
behaviour of the susceptibility corresponding to the magagon. Our preliminary results indi-
cate the existence of a second-order phase transition vilee¥iukawa coupling becomes large
enough, at which the Higgs vacuum expectation value vagiahd the susceptibility diverges.
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1. Introduction

Inrecent years, there have been interests in the possiiskeeze of heavy extra-generation fermions
(mass> 600 GeV) beyond the standard model (SM). Such heavy fermdoms consequence of
strong-Yukawa couplings. Their presence in hature rem@aifge examined by experimental data
that will be collected at the LHC. An important consequenta dth fermion generation is the
substantial enhancement the amount of CP violatipn [1]gédrare values of the Yukawa cou-
pling may also lead to the formation of bound states whichregface the role of the Higgs boson
in unitarising the WW scattering proceg$ [2,[B, 4]. Such anade is clearly of nonperturbative
nature and motivates the use of lattice field theory as agiiatiple and nonperturbative tool for
this research avenue. Lattice investigations at small andenate values of the bare Yukawa cou-
pling showed [[p] that the lower Higgs boson mass bound isigiyoaffected by the presence of
a heavy 4th fermion generation when compared to resultgwsiphysical value of the top quark
mass [B[]7]. Still, in these simulations no signs of bountestavere observed, as expected.

However, lattice simulations have also revealed the exigtef an interesting phase structure of
the model at large values of the Yukawa couplifg[d, $,[IpAR1[1B [1#[15]. These simulations,
performed around 1990, were lacking an exact chiral symymatrthe lattice and the results of
these works are therefore not easy to interpret and to coriagbhe SM. Recently, exact lattice
chiral symmetry [16] were established and, in fact, latizaulations employing this lattice chiral
symmetry confirmed the phase structure at strong bare Yukawpgling [17,[1B] as found in the
earlier studies.

In this work we further explore the phase structure of adattthirally invariant Higgs-Yukawa
model at large values of the Yukawa coupling. Our main aino istart a systematic investigation,
whether the phase transitions between the symmetric phabkevanishing vacuum expectation
value (VEV)v = 0 and the broken phase with> 0 are governed by critical exponents that dif-
fer from the (Gaussian) one of the SM. This is a highly nowdti question. In particular, it
can be shown that the lattice Higgs-Yukawa model in the lmhiinfinite bare Yukawa coupling
reduces to a pure scalar non-lineasmodel [$,[9,[10[17[ 18] with again Gaussian critical expo-
nents. Hence, the most interesting and important questiowhether at large but finite value of
the Yukawa-coupling a new and non-trivial universalitysda&merges. We emphasise that a quan-
titative determination of critical exponents of the phasmsitions in the strong Yukawa coupling
region using chiral invariant lattice fermions was nevdemipted before. The above potential of
nonperturbative physics at large Yukawa couplings matwatearly such an investigation.

2. Simulation details

The discretisation of the scalar field theory leads to thmadivith lattice spacing set to 1)
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wherea labels the four components of the scalar fielllss the number of the space-time dimen-
sions,my is the bare mass any is the bare quartic self-coupling. For practical lattiomsiations,
it is convenient to perform the change of variables

1—2A —2dk
¢ = \/ﬁ(ﬂ n% = ) )\0 =
wherek is the hopping parameter. This renders the lattice scaldrtfieory to the Ising form

Sp= -2k g+ |0 d A e 17, (2.3)
XH X

which is more suitable for exploring the phase structure.
In this work, we use the overlap operat@f®” in the lattice fermion action

S =W.#Y, where .4 = 72 + P, ® diaglyy,yy) Py +P_ diagiyr.yy) PP,  (2.4)

(Y [ P+igt
qJ_(b’)’andq)_((po—icp?')' (2.5)

The chiral projectors are defined as

with

pi:li_w” ﬁi:li_w” %:%<1_%_@(ov)>’ (2.6)

wherep is the radius of the circle of eigenvalues in the complex @lafithe free overlap operator.
We also setw =y =V, to ensure that the fermion determinants are positive defini

Our simulations have been performed at tweoalues,k = 0.00 and 006, with the bare Yukawa
couplingy in the range between 14 and 25. The bare scalar quartic ugpi)lis fixed to infinity,
which results in the largest possible Higgs m&E|[H, 6, 7]alnsady accumulated data with reason-
able statistics for the volumes & 16, 12 x 24 and 18 x 32. In generating dynamical scalar field
configurations, we use the polynomial HMC (pHMC) algorithb§], treating the weight factor as
an observable[J20]. We have found that high degrees of pafyals (~ 180 for 16 x 32 lattices)
are necessary in order to obtain reasonable statisticarang for the weight factor. For each set
of the bare couplings, we carry out 1000 pHMC trajectorieprecondition the fermion matrix
and to thermalise the simulation. Our measurements aregbdgarmed on~ 2000 thermalised
trajectories.

3. Thescalar vacuum expectation value

We first measure the scalar VEV to probe the phase structuresi®ulations have been performed
without external sources, therefore a naive computatidghe¥EV would always lead to vanishing
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Figure1: Bare scalar VEV at twa values WithA = oo.

results in finite volume. In this work, we follow the procedun Refs. [2]1[32[ 23] to project the
scalar fields on the direction of magnetisation

1/2
1 . . .

m= - (z ¢ |2> (V4 is the 4-dimensional volumg (3.1)
4 \ orx

then compute the VEV. This “projected” VEV coincides witlethcalar VEV in the infinite-volume
limit, and its introduction in finite volume is equivalent tmupling the scalar fields to external
sources[[23].

The results for the bare VEV, computed from the above prmjagirocedure, are shown in F@l..l

It is clear that there is a phase transition wiydrecomes large, at which the system enters a sym-
metric phase. These plots also indicate that the valye-of.i; at which the phase transition occurs
grows withk. This agrees with the qualitative predictions from thersgraoupling expansior] [P5],
the largeN; expansion[[17] and an exploratory numerical study usinglapeermions [1B].

4. Finite-size scaling of the magnetisation susceptibility

In order to determine the order of the phase transition efeskin the last section, we investigate the
finite-size scaling behaviour of the susceptibility copmsding to the magnetisation. It is defined
as

X = Va ({m?) — (m)(m)) (4.1)

whereV, andmare defined in Eq[(3.1). This quantity diverges at the @itfpints in the infinite-
volume limit. Finite-size effects result in the crossovesn this bulk behaviour to the finite-
volume scaling behaviour in lattice calculations. In theinity of a would-be second-order phase

IWe are currently computing the Goldstone wavefunction meratisation to obtain the renormalised Higgs

VEV [p4].
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Figure 2: Susceptibility at twa values at various volumes with = oo,

transition, the solution of the renormalisation group eiui(RGE) in finite volume predictg [26]

XLs Y = gtLs’), with t = (y/(Yert — Ae/LE) — 1), (4.2)
whereg is a universal functionls is the spatial volumey,: is the critical Yukawa coupling at
which the phase transition occurs in the infinite-volumeitlirA, is a phenomenological parame-
ter, v andy are the universal critical exponents (anomalous dimesgjandb is the shift expo-
nent [27].

For each of the twa values in our simulations, we perform a simultaneous fit efdata for the
susceptibility at all volumes, to the partly-empirical iaula [28]

B 2y —V/2
x=A1{Ls2/V+A273 (v~ Yer — Aq/L2) } , (4.3)

whereA; 34 are unknown phenomenological coefficients. They are détechn together withy,

¥, Yerit @ndb, from the fits. For our best procedure, the fit rangey afe (14.5,19.5) for k = 0,
and(14,22) for k = 0.06. The extractegi, ¥, v andb are presented in Tab[¢ 1. For comparison
with the scaling behaviour in the regime where the Yukawgtings are weak and perturbative,
we also list the predictions from the mean-field calculatiothe O(4) scalar model. We use these
fit results to obtain the susceptibility as a functionyatccording to Eq.[(4]3). This is plotted with
our data points in Fid] 2. We also use the same fit results tsteaiyLs "/ andtLY", to examine
the finite-size scaling behaviour of E{. (4.2). The outcoriihis test is shown in Fid] 3.

Our data, as presented in Fifjs. 2 §hd 3, establish evidentieefexistence of a second-order phase
transition in the strong-Yukawa coupling regime. To furthevestigate the nature of this strong-
Yukawa symmetric phase, we have to perform more detailediestion the critical exponents and
the spectrum. As demonstrated by the results collectedbteh y is almost consistent with the
corresponding mean-field prediction for tt¢4) scalar model, whiles exhibits a more significant
deviation from it. By varying the fit ranges min a reasonable interval for the above finite-size
scaling analysis, the shifts Wi and the critical exponent are not statistically distinguishable.
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Figure 3: The scaling behaviour of susceptibility at twovalues WithA = oo,

On the other handy can change by 11% and become almost consistent with the value in the
O(4) scalar model. We have also tried incorporating logarithsttume effects in Eq.[(413) by
replacing the coefficierdy with A4[1+ c Log(Ls)] (c is an unknown parameter). This procedure
leads to no statistically significant variation of the @it exponentsy andy.

5. Summary and outlook

In this article, we present an ongoing numerical invesiigabf the phase structure of the strong-
Yukawa model on the lattice. Using overlap fermions whicspest exact lattice chiral symmetry,
and performing simulations at various volumes, enable expdore the details of the phase struc-
ture. From our computation of the scalar VEV and the studyheffinite-size scaling behaviour
of the magnetisation susceptibility, we obtain strong emimk that there exists a symmetric phase
in the strong-Yukawa coupling regime, and that the tramsibbetween this phase and the broken
phase is of second-order nature. At the moment, we cannetrdiete if the critical exponents for
this phase transition are different from those in the weakavwa regime.

We are currently generating large lattices Y2448) which will allow us to have more precise
extraction of the critical exponents. These lattices wilbaenable us to control the infinite-volume
extrapolations in our future calculation for spectral cfitées.

k =0.00 k =0.06 | O(4) scalar model
Yerit | 16.574+0.06 | 18.11+0.06 N/A
y | 1.02+0.02 | 1.08+0.01 1
v | 057+0.03 | 0.66+0.02 0.5
b | 205+0.20 | 2.044+0.20 N/A

Table 1: The critical Yukawa couplingc;it, the critical exponentg, v, and the shift exponeftdetermined
from the best fits to the finite-volume scaling function. Thes are statistical only. Predictions from the
mean-field calculation in th®(4) scalar model are also listed.
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