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Abstract

Production of deuterons and antideuterons was studied by the NA49 experiment in the 23.5%

most central Pb+Pb collisions at the top SPS energy of
√
s
NN

=17.3 GeV. Invariant yields for d and

d were measured as a function of centrality in the center-of-mass rapidity range −1.2 < y < −0.6.

Results for d(d) together with previously published p(p) measurements are discussed in the context

of the coalescence model. The coalescence parameters B2 were deduced as a function of transverse

momentum pt and collision centrality.

PACS numbers: 25.75.Dw



I. INTRODUCTION

Studies of antideuteron and deuteron production in heavy-ion collisions are attractive for

many reasons. Enhanced antimatter production in central nucleus-nucleus collisions rela-

tive to p + p was proposed as one of the experimental signatures for formation of a new

state of strongly interacting nuclear matter - the Quark-Gluon Plasma. [1–3]. If antibaryon

abundances are not in equilibrium or not strongly affected by annihilation after chemical

freeze-out, some of the initial enhancement may survive till the final stage of the collision

process. However, at SPS energies baryon rich nuclear matter is created at high temper-

atures (µB ≈ 250 MeV and T ≈ 160 MeV in central Pb+Pb collisions at 158A GeV [4]).

In a hadronic medium of such temperature and baryon density, reaction rates involving an-

tibaryons will be high due to annihilation and multi-pion fusion processes [5–7] . Thus any

antimatter enhancement from the partonic phase or its transition to the hadronic phase is

likely to survive only if freeze-out occurs right after the phase transition.

At the late stage of the fireball evolution, when the hadronic matter is diluted enough

such that secondary inelastic collisions cease, the observed clusters are formed from nucleons.

The process of nucleosynthesis in strongly interacting systems heated to more than 100 MeV

was extensively studied over the past years for species ranging from A=2 to A=7 [8–13].

Recently, the formation of (anti)hypernuclei was observed in Au+Au collisions by the E864

experiment at AGS energies [14] and by the STAR collaboration at RHIC [15].

In a simplified coalescence approach [16, 17], (anti)nucleon bound states are formed from

(anti)nucleons which are close in momentum and configuration space. Their production is

usually characterized by the coalescence factor BA which relates the invariant yield of a

cluster of size A to the Ath power of the proton yield. The B2 parameter for deuterons

was found to be approximately constant in heavy-ion collisions at beam energies below

1A GeV as well as in all proton-induced reactions. However, at higher collision energies

(more than several GeV per nucleon) the diameter of the source created in central collisions

is much larger than the deuteron size due to expansion of the reaction zone, and the cluster

production process becomes sensitive to the details of the phase-space distribution of the

constituents. In particular, a strong collective radial flow (the average transverse velocity

is about 0.5c at SPS energies [18]) produces correlations between the production point in

space-time and the momentum of the clusters. Thus, an interplay between the flow velocity



profile and the nucleon density distribution may result in different shapes of transverse

momentum spectra for composites and single nucleons [19]. A comparative analysis of the

production of clusters made of nucleons and antinucleons might therefore provide insight

into the details of the fireball evolution and the nucleon phase-space distribution at kinetic

freeze-out. The production rate of composites should depend on the spatial distribution of

their constituents. If the p suffer from annihilation in the dense baryonic matter, this could

therefore be reflected in the impact parameter dependence of the d yield [20]. Moreover,

because of the additional annihilation cross section, d are expected to decouple from their

source at much lower hadron density than d and therefore their freeze-out volume is expected

to be larger. In summary, the study of d and d production provides an alternate method

for extracting information about the source size [21, 22] which is complementary to the

femtoscopy approach.

Recently, NA49 reported [23] on p production at midrapidity in centrality selected Pb+Pb

collisions at 158A GeV. In the following we extended this study of antimatter to the inves-

tigation of heavier systems. This paper reports our measurement of d and d invariant yields

around midrapidity in the same reaction.

The paper is organized as follows. The next section gives an overview of the NA49

experimental set-up. Details of the data analysis procedure are described in Section III. In

Section IV we present and discuss the results on d and d production in mid-central Pb+Pb

collisions. A summary is given in the last section.

II. EXPERIMENTAL SETUP

The NA49 apparatus was designed as a large acceptance magnetic spectrometer to study

nucleus-nucleus collisions in the SPS energy range. The NA49 setup covers about 50%

of the final state phase space for Pb+Pb reactions at a beam energy of 158A GeV. The

detector provides precise tracking and robust particle identification. A full description of

the apparatus components can be found in Ref. [24].

The primary lead beam was extracted from the CERN Super Proton Synchroton (SPS)

and delivered to NA49 through the H2 beam line in the SPS North Area. The intensity of

the beam (delivered in spills 4.8 s long) was typically 105/s. The beam was defined within

the experiment by a set of Cherenkov and scintillation counters placed along 35 m of the



beam path upstream from the nominal target position. The transverse diameter of the beam

spot on the target, as measured by three multi-wire proportional beam position detectors

(BPDs), was about 1 mm. The target was a lead foil of 337 mg/cm2 thickness (1.5% of a

Pb interaction length). The interaction trigger required a valid beam signal plus a collision

centrality tag based on the measurement of projectile spectator energy registered in the

zero-degree calorimeter VCAL which was placed 23 m downstream of the target.

Charged reaction products originating from the interaction vertex are recordeed by four

gas Time Projection Chambers (TPCs). Two Vertex TPCs (VTPC), serving mainly for

momentum analysis, are located inside two superconducting dipole magnets, which provide

a magnetic field with a total bending power of about 9 Tm. The two Main TPCs (MTPC),

with about 27 m3 gas volume each, are positioned behind the magnets on each side of

the beam line. These TPCs are optimized for energy loss (dE/dx) measurements with a

precision of 4% for minimum ionizing particles (mip).

Two Time-of-Flight (TOF) arrays (walls), positioned behind the MTPCs at ≈ 14 m

from the interaction vertex, are the main detector systems used in this analysis for the

identification of charged hadrons of momenta up to 10 GeV/c. The TOF setup provides

rapidity coverage of about 0.8 units in the mid-rapidity region and transverse momentum

coverage up to pt = 2.5 GeV/c. Each wall consists of 891 pixels made of 2.5 cm thick plastic

scintillators with transverse dimensions of 6, 7 and 8 cm (horizontal) by 3.4 cm (vertical).

Each pixel is viewed by one phototube of 1.4 inch diameter glued to the side of the pixel.

The phototube outputs (typically 1.5 Volts high for a charge = 1 mip passing through the

pixel) are divided into two equal parts and digitized by TDCs and ADCs for time-of-flight

and energy loss measurements, respectively. The least count of the FASTBUS LeCroy TDCs

was set to 25 ps. Pixels are assembled in groups of 11 (as stacks in the vertical direction) in

light-protected cassettes.

A 0.5 mm thick quartz Cherenkov counter S1 placed 34 m upstream of the target provided

the common start signals and the gates to the TDCs and ADCs, respectively. For a beam

of lead nuclei S1 has an intrinsic time resolution about 30 ps. The overall time resolution

achieved with the TOF system was σ ≈ 60 ps and allows for a 5σ p/d separation up to a

momentum of p = 10 GeV/c.



III. DATA ANALYSIS

A. Data sets

A high statistics sample of Pb+Pb collisions at beam energy of 158A GeV was collected

during the year 2000 run period. A total of 2.4 · 106 events were recorded with an online

event trigger selecting the 23.5% most central collisions.

TABLE I: Summary of the data sets used in the analysis. The number of events employed are

given together with the fraction of the total cross-section (in percent) and corresponding average

number of wounded nucleons 〈Nw〉 per event derived from the VENUS model.

centrality 〈Nw〉 Nevents

0-23.5% 265 2,400,000

0-12.5% 315 1,240,000

12.5-23.5% 211 1,160,000

To study the centrality dependence of the d and d yields the data set was divided into

two centrality classes (see Table I for detail). For each centrality selection, the correspond-

ing number of wounded nucleons Nw as well as the percentage of the total cross-section

were obtained from the Glauber model approach using a simulation with the VENUS event

generator [25, 26].

B. Time of flight reconstruction

The analysis procedure starts with the calibration of all TOF pixels: time-zero offsets

T0, ADC gains, and pedestals were determined. All reconstructed tracks in the TPCs

with assigned momentum were extrapolated towards the TOF detectors and all possible

associations between the track extrapolations and the calibrated TOF hits were found. For

each TOF hit the raw TDC count was then corrected for the light propagation time in the

scintillator according to the position of the point from which the light originated, and for

the amplitude-dependent time-walk effect in the discriminator. The correction was as large

as 50 ps/cm and 30 ps for the light propagation time and time-walk effect, respectively.

Finally, an event-by-event global time offset (≈40-50 ps on average) was determined as the



mean of the distribution of the differences between the measured and calculated arrival time

for pions selected by their energy loss dE/dx in the TPCs (15 to 30 π’s per wall in an event

depending on the collision centrality). The achieved overall time resolution of the TOF

system was about 60 ps.

The squared mass m2 was calculated from the reconstructed momentum p, the flight path

to the TOF detector l and the measured time-of-flight t as

m2 =
p2

c2

(

c2t2

l2
− 1

)

(1)

where c denotes the speed of light.

C. Event and track selection

In the following we discuss the event selection criteria as well as the track and TOF hit

quality cuts which were applied during the analysis. In order to eliminate the background

from non-target interactions an offline cut on the vertex z coordinate along the beam line was

imposed. The difference between the z-position reconstructed from tracks and the nominal

(survey) target position was required to be less than 1 cm (±4σ deviation, with σ being the

RMS of the vertex z distribution). The fraction of events rejected by this cut was about

0.5%.

Track candidates were required to have a valid momentum fit result and dE/dx mea-

surement. In order to reduce the contamination by background tracks from secondary in-

teractions in the material or decays inside the TPC, the following track quality criteria were

applied:

1. Tracks were accepted if they had points in the MTPC and in at least one of the

VTPCs, and the length of the MTPC track segment was longer than 1.5 m.

2. Both vertical and horizontal deviations from the vertex position, after back extrapo-

lation to the z position of the target, were required to be less than 1 cm.

An additional set of quality cuts was imposed to reject those TOF hits that have poorly

reconstructed time of flight:

1. Candidates were rejected if two or more tracks in the event hit the same scintillator.



2. A distance greater than 1 mm from the pixel’s edges was required for the position of

a TOF hit to account for mismatches between TPC tracks and TOF signals due to

multiple scattering and TPC-TOF misalignment.

3. A cut on the energy deposited in a scintillator was applied to reduce background under

the (anti)deuteron mass peak due to false TOF hits and interactions of γs associated

to the interactions. The ADC value normalized to minimum ionizing particles was

required to be within 0.8 < ADC/ADCmip < 1.4.

The fraction of the TOF hits remaining after all the quality cuts was found to be 67%.

D. Identification of deuterons and antideuterons

Particle identification is done in two steps by combining measurements of time-of-flight

from the TOF detector and dE/dx from the MTPCs. First, the allowed values of dE/dx

were limited to

dE/dx < dE/dxBB(p) + kσ(p),

where dE/dxBB(p) is the most probable value as taken from a momentum dependent param-

eterization of the Bethe-Bloch curve for deuterons, and σ(p) is the corresponding resolution

in dE/dx. The parameter k was set to 3 and 2 for d and d, respectively. As illustrated

in Fig. 1 (left panel) for the momentum bin 7 < p < 8 GeV/c such a cut reduces the

contribution of pions and kaons to the d (d). The resulting m2-distributions for positively

and negatively charged particles after applying the previously described quality and dE/dx

PID cuts show clear d and d peaks (Fig. 1, right panel). The entire track sample of d(d)

was divided into transverse momentum bins of 0.15 GeV/c width; the three highest pt bins

were combined into a wider one because of lack of statistics. In each pt bin candidates

are selected by a ±3σ window in m2 around the nominal position. The raw yields were

determined by summing the histogram bin contents within the mass window. The back-

ground contamination under the d (d) peak was evaluated by fitting the m2-distribution to

a sum of a Gaussian signal and an exponential background. Figure 2 shows mass squared

distributions along with the combined (Gauss + exponential) fits for d for three pt bins.

The background contamination is weakly dependent on pt and amounts to less than 3% for

deuterons, but reaches ≈ 45% for d. The statistical error of the raw d yields was calculated
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FIG. 1: (Color online) a) dE/dx versus m2 for positively charged particles in the momentum

interval 7 < p < 8 GeV/c. The dashed ellipse illustrates the region populated by deuterons; the

PID upper-limit dE/dx cut is indicated by the horizontal line. b) m2-distributions for both charges

around the m2
d position for momenta from 4 to 10 GeV/c (dE/dx PID cut for d(d) was applied).

The arrow indicates the nominal m2 position for d(d).

as
√
N =

√

Nd + Nbkg, where Nd and Nbkg are the number of d and background counts,

respectively.

E. Corrections

The raw yields were weighted by correction factors which account for the geometrical

acceptance and for the losses due to the applied track quality and dE/dx PID cut.

Correction factors for the limited geometrical coverage of the detector system were ob-

tained from a GEANT-based Monte Carlo simulation. Figure 3 shows the NA49 TOF
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acceptance for d(d) in terms of transverse momentum pt and center-of-mass rapidity y. The

bin size was taken to be ∆y=0.1 by ∆pt=25 MeV/c, and all the bins at the edges of the

acceptance were rejected to avoid a very large correction factor. The acceptance drops down

to about 6% at pt > 0.6 GeV/c. Monte Carlo studies with simulated tracks embedded

into real data showed that the tracking reconstruction efficiency in the phase-space region

covered by the TOF detector is above 98%. All remaining corrections were determined from

the data in bins of pt. For each centrality bin the corrections for multihits were obtained by

determining the fraction of tracks rejected by the requirement that only a single one hits a

scintillator. This correction shows less than 3% variation with centrality and is on average

11% and 8% for the 0-12.5% and 12.5-23.5% most central events, respectively. The losses

due to the geometrical fiducial cut (1 mm edge cut) were determined averaged over all cen-
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tralities. This correction accounts for about 9% losses. The corrections (about 15%) due to

the pulse height constraint (0.8 < ADC/ADCmip < 1.4) were determined for the deuteron

sample and applied for both d and d. The corrections for the losses due to the DCA cut

(≈ 2%) were also determined from the DCA distributions of the deuteron candidates.

F. Systematic errors

The systematic errors of the d and d yields originate mainly from the uncertainties of par-

ticle identification and efficiency correction factors. In general, each particular contribution

to the overall systematic error was estimated by varying the characteristic selection criteria,

i.e., by loosening some cut or making it tighter. The contributions of the following selection

criteria were studied: the dE/dx identification cut, the pulse height and geometrical cuts

for selecting TOF hits and the DCA cut for selecting tracks. The uncertainty arising from

the PID procedure for d (including background subtraction) introduces a systematic error

of the order of 13%. The DCA cut contributed ≈ 5% to the overall systematic error. The

error associated with the TOF efficiency correction for d was found to be 9%.

The overall systematic error, obtained as the quadratic sum of all contributions, was



estimated to be 17% for d and 10% for d.

IV. RESULTS AND DISCUSSION

A. Transverse momentum distributions

Figure 4 (a,b) shows the invariant yields of d and d for centrality selected Pb+Pb collisions

as a function of transverse momentum pt. The yields are averaged over the center-of-mass

rapidity interval −1.2 < y < −0.6. The data for the most central bin are shown to scale,

while each successive distribution was divided by an additional factor of ten for clarity of

presentation. We have also analyzed p and p yields in the same centrality selected event

samples. A detailed description of the analysis procedure for (anti)protons can be found

elsewhere [23]. The invariant distributions for p and p measured in the rapidity interval

−0.5 < y < −0.1 are shown in Fig.4 (c,d). The yields agree with the previously published

data [23] within 12%, the observed difference is mainly due to feed-down corrections from

weak decays which are now based on the recent experimental data on Λ(Λ) production from

the NA49 experiment [27, 28]. Numerical values of the transverse momentum spectra are

given in Table II.

Calculations using the microscopic transport model UrQMD [29] suggest that, due to

annihilation in dense baryon matter, a considerable difference between the pt distributions

of anticlusters compared to those of clusters is expected. If annihilation of antimatter in

the fireball medium affects d production, then one would expect d losses to be larger at

midrapidity and at low pt [30], resulting in a hardening of the pt spectra of d compared to

those for d. On the other hand, the NA49 measurements of mid-rapidity p(p) spectra [23]

show little difference between transverse distributions of p and p for all centralities, leading to

the conclusion that the pt dependence (if any) of annihilation losses for antiprotons is small

at 158A GeV. A similar behavior is also observed for the lambdas and antilambdas [28].

The experimental deuteron distributions were fitted to an exponential function in mt

(shown by curves in Fig. 4 (a))

1

pt

d2N

dptdy
=

dN/dy

T (m + T )
exp

(

−mt −m

T

)

(2)

where dN/dy and T are two fit parameters, mt =
√

p2t + m2 is the transverse mass and m
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0-12.5% most central collisions are shown to scale, results for the centrality intervals 12.5 - 23.5 %

and 0 - 23.5 % are divided by factors 10 and 102 respectively.

the deuteron rest mass.

The small available statistics and resulting limited pt range for d data makes the deter-

mination of the slope parameters for d less accurate. Thus only the dN/dy parameter was

allowed to vary when the d spectra were fitted and merely a qualitative comparison of the

shape of the spectra is possible. As one can see in Fig. 4 (b), the fits of d spectra with slope

parameters fixed to the values obtained from the d distributions from the same collision

centrality (Fig. 4 (a)) appear to describe the d data well. In Fig. 5, the d/d ratio for the

0-23% centrality bin is plotted as a function of pt. The ratio shows little variation with

pt within the errors. A fit with a constant yields an overall d/d ratio of (2.2 ± 0.2) · 10−3.
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Since no difference in shapes of d and d spectra was observed, a likely conclusion is that the

dynamical properties of the formation process are the same for d and d production. There

is also no indication of extra reduction of the d yield at low pt due to annihilation.

The fit parameters dN/dy for the d and d spectra in different centrality bins are tabulated

in Table II. The fraction of the yield integrated using Eq. 2 over the unmeasured pt range

is ≈7% for d and 55% for d.

The slope parameter T for deuterons is 406±12 MeV and 391±12 MeV for the 0 - 12.5 %

and 12.5 - 23.5 % most central collisions, respectively. It tends to increase with increasing

centrality indicating increase of collective transverse flow. In Ref. [13] we reported yields and

slopes for deuterons from the 1996 minimum bias data set of Pb+Pb collisions at 158A GeV,

subdivided into 6 centrality bins. These measurements for deuterons were obtained in the

rapidity range −0.9 < y < −0.4, and only tracks with px > 0 were used. Taking into account

the different rapidity intervals for both measurements (an increase of 15% in dN/dy and a

decrease of about 5% in T is expected when going from y= −0.65 to y= −0.9), the overall

agreement of the present results with our previously published data is satisfactory.



TABLE II: dN/dy for d and d obtained from fits with Eq. (2) in centrality selected Pb+Pb collisions

at 158A GeV in the rapidity interval −1.2 < y < −0.6. Errors are statistical only.

centrality deuterons antideuterons

0 - 12.5 % 0.33 ± 0.02 (8.1 ± 1.1) · 10−4

12.5 - 23.5 % 0.25 ± 0.02 (5.6 ± 1.0) · 10−4

0 - 23.5 % 0.3± 0.01 (6.9 ± 1.0) · 10−4

The invariant pt spectra of d(d) are harder than those of p(p) [23] (typical Tp ≈ 290−300

MeV). As was pointed out in [19, 22], the characteristic change of the slope with the particle

mass is sensitive to the interplay between the density and flow velocity profiles in the source

at freeze-out. The observed increase of the inverse slope parameter T of about 30% for d

supports a box-like density profile.

B. Rapidity distributions and total yields

Yields of d and d as a function of rapidity for the 23.5 % most central Pb+Pb collisions

are shown in Fig. 6. There is a difference between the shapes of the rapidity spectra for

d and d. The observed distinction can be traced back to the longitudinal distributions

of their constituents. Data on p and p production in centrality selected Pb+Pb collisions

at 158A GeV were recently published by NA49 [32]. For collisions of all centralities, the

proton rapidity distributions have a dip at midrapidity in contrast to the peak observed

for antiprotons. Since the abundance of (anti)clusters (of mass number A) is proportional

to the (anti)nucleon phase-space density raised to Ath power, the effect of the difference

in the shapes of the rapidity distributions is even more pronounced for the composites. In

Fig. 6 two Gaussian distributions are plotted for d. The dotted line represents the simplest

expectation from the coalescence model, namely a Gaussian with a width which is smaller by

a factor of
√

2 than that for antiprotons for the centrality class 0-23% [32]. The integral of

this distribution is equal to that of the second Gaussian (shown by the dashed line), whose

parameters, i.e. the width and total yield were calculated based on the measured points

(two unknown parameters and only two measured points). The calculated parameters were

found to be 2.4 · 10−3 for the 4π-yield and 0.95 for the width. The width of the rapidity
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FIG. 6: (Color online) Rapidity distributions for d (squares) and d (circles) produced in the 23.5 %

most central Pb+Pb collisions at 158A GeV. The solid symbols indicate the measured data points,

the open symbols are reflected at midrapidity. The curves represent the results of different fits

motivated by a coalescence approach (see text).

distribution for antideuterons is close to that observed for antiprotons (σp ≈ 0.93 − 1.03)

in the centrality range under study [32]. For d production the coalescence model predicts a

parabolic dependence on rapidity based on that measured for protons [32]. The integral of

the parabolic parameterization for d yields 2.8 ± 0.1.

Rough estimates for the total (anti)cluster yields were made in the framework of a sta-

tistical hadron gas model (HGM) [33]. A total yield of 2.5 and 4.6 · 10−3 was predicted in

the 5% most central Pb+Pb collisions at 158A GeV for d and d, respectively. Assuming the

yield of clusters to scale with the number of wounded nucleons (Nw changes by a factor of

about 1.4 from 5% to 23.5% centrality of collisions), the difference between data and the

HGM estimates is below 40% for both d and d.
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FIG. 7: (Color online) dN/dy divided by the average number of wounded nucleons 〈Nw〉 for d and

d for Pb+Pb collisions at 158A GeV.

C. Centrality dependence of d and d yields

In Fig. 7 the invariant yield of d and d normalized to the number of wounded nucleons

〈Nw〉 is plotted as a function of 〈Nw〉. The previously published NA49 results for deuterons

from the year 1996 minimum bias data set [13] (blue circles) are also shown. Within the

experimental errors, the centrality dependence (if any) of the d yield per Nw appears to be

weak in mid-central Pb+Pb collisions. Also the normalized yield for d shows little variation

in the entire centrality range. This behavior can be understood as an indication of some

degree of saturation in the density distribution of both nucleons and antinucleons achieved

in mid-central Pb+Pb collisions at the top SPS energy.



D. Coalescence

A combined analysis of the invariant yield spectra of composites and (anti)nucleons has

been performed in the framework of a coalescence approach. This approach [16, 17] relates

the invariant yield of Z-charged A-clusters (A denotes the atomic mass number and P the

momentum) to the product of the yields of protons (p) and neutrons (n) as

EA

d3NA

d3P
= BA

(

Ep

d3Np

d3p

)Z (

En

d3Nn

d3p

)A−Z

(3)

The (unmeasured) yield of neutrons is usually considered to be equal to that of protons;

such an assumption seems quite reasonable at SPS energies [31]. Thermal models of cluster

production [34, 35] predict the coalescence parameter BA to be inversely proportional to

the volume of the particle source. Such models assume the same freeze-out conditions for

matter and antimatter in chemical and thermal equilibrium. More advanced (hydrodynam-

ically motivated) calculations, which implement collective expansion of the reaction zone

within the density matrix approach [22] demonstrated a close relation of the characteristic

(coalescence) radii to those obtained from 2-particle correlation (HBT) analysis.

Since there is no overlap between the TOF acceptances for (anti)protons and

(anti)deuterons (the rapidity coverage of the NA49 TOF detector at 158A GeV is −1.2 <

y < −0.6 for d(d) and −0.5 < y < −0.1 for p(p)), the (anti)proton spectra measured by TOF

were extrapolated to y = −0.9. The normalization scaling factors for the pt spectra were

determined using a Gaussian rapidity distribution for antiprotons and a parabolic function

for protons. The function parameters were fitted to the experimental data [32]. The shape of

the pt spectra, however, remained unchanged; this assumption is based on the results of [32]

which demonstrate that within |y| < 1 there is no significant variation in the transverse

shape parameters of p(p) production. In Fig. 8 (numerical values are given in Table III) the

coalescence factors B2 for d(d) as calculated from Eq. (3) and averaged over the pt interval

0 - 0.9 GeV/c are plotted as a function of 〈Nw〉 for two centrality selected event samples.

The B2 parameters for the A=2 nuclei and antinuclei agree within the errors; so the most

likely conclusion is that the effective coalescence volumes for clusters and anticlusters are

similar. The strong centrality dependence of B2 might be explained as an increase of the

tranverse size of the source in more central collisions since in the centrality range under

study B2 approximately scales inversely with Nw.



TABLE III: Coalescence parameters B2 as calculated from Eq. 3 and averaged over the pt interval

0 - 0.9 GeV/c for d and d in centrality selected Pb+Pb collisions at 158A GeV in the rapidity

interval −1.2 < y < −0.6. Errors are statistical only.

centrality 0 - 12.5% 12.5 - 23.5%

〈Nw〉 315± 24 211 ± 19

B2 (GeV2c−3) deuterons (7.5± 0.4) · 10−4 (11.4 ± 0.5) · 10−4

B2 (GeV2c−3) antideuterons (8.3± 1.1) · 10−4 (11.6 ± 2.0) · 10−4
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FIG. 8: (Color online) Coalescence parameter B2 for d and d calculated from Eq. 3 in centrality

selected Pb+Pb collisions at 158A GeV.

Our measurement of B2 along with other recent experimental results on the coalescence

parameter for antideuterons [36–40] is shown in Fig. 9. Taking into account the variety of

experimental conditions for the B2 measurements (energy, centrality and pt interval), the

experimental data indicate that there is no substantial decrease of the coalescence parameter

in the region of
√
s
NN

from 17.3 to 200 GeV. This implies that the transverse size of the

emitting source for d at kinetic freeze-out depends only weakly on
√
s
NN

in this energy



10
-3

10
-2

10 10
2

d
–

√sNN(GeV)

B-
2 

(G
eV

2 /c
3 )

Central collisions

E864 Au+Pb

NA44 Pb+Pb
NA52 Pb+Pb
NA49 Pb+Pb

STAR Au+Au
BRAHMS Au+Au
PHENIX Au+Au
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collision energies.

domain.

V. SUMMARY

In this paper we present results on d and d production in the 23.5 % most central Pb+Pb

collisions at 158A GeV. Antideuterons were measured in the rapidity range −1.2 < y < −0.6

and transverse momentum interval 0 < pt < 0.9 GeV/c. A qualitative comparison of the pt

distributions for d and d showed close similarity of spectral shapes at all studied collision

centralities. Thus no obvious effects of annihilation in the fireball medium were observed.

The rapidity density normalized to the number of wounded nucleons exhibits no centrality

dependence for either d or d. A difference was observed in the shapes of the rapidity

distributions for d (convex) and d (concave). The 4π yields were estimated from a Gaussian

and parabolic fit for d and d, respectively. The extracted coalescence parameters for d

and d near midrapidity agree with each other within errors, implying a similar freeze-out

configuration for matter and antimatter.
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VI. APPENDIX

Tables IV,V,VI and VII list the invariant transverse momentum spectra d2N/(ptdptdy) in

GeV−2c2 for d, d, p and p, respectively, in centrality selected Pb+Pb collisions at 158A GeV.

TABLE IV: Transverse momentum spectra d2N/(ptdptdy) in GeV−2c2 for deuterons in centrality

selected Pb+Pb collisions at 158A GeV averaged over the rapidity interval −1.2 < y < −0.6.

pt 0-12.5% 12.5-23.5% 0-23.5%

0.10 (3.568 ± 0.13) · 10−1 (2.780 ± 0.12) · 10−1 (3.205 ± 0.12) · 10−1

0.30 (3.360 ± 0.97) · 10−1 (2.667 ± 0.089) · 10−1 (3.041 ± 0.093) · 10−1

0.50 (3.097 ± 0.12) · 10−1 (2.520 ± 0.11) · 10−1 (2.832 ± 0.11) · 10−1

0.70 (2.814 ± 0.15) · 10−1 (2.204 ± 0.14) · 10−1 (2.533 ± 0.14) · 10−1

0.90 (2.301 ± 0.13) · 10−1 (1.830 ± 0.12) · 10−1 (2.084 ± 0.12) · 10−1

1.10 (1.865 ± 0.11) · 10−1 (1.424 ± 0.095) · 10−1 (1.662 ± 0.10) · 10−1

1.30 (1.468 ± 0.11) · 10−1 (1.076 ± 0.090) · 10−1 (1.288 ± 0.10) · 10−1

1.50 (0.991 ± 0.085) · 10−1 (0.776 ± 0.081) · 10−1 (0.892 ± 0.083) · 10−1

1.70 (0.732 ± 0.076) · 10−1 (0.521 ± 0.066) · 10−1 (0.634 ± 0.072) · 10−1

1.90 (0.454 ± 0.057) · 10−1 (0.345 ± 0.053) · 10−1 (0.404 ± 0.055) · 10−1

2.10 (0.339 ± 0.053) · 10−1 (0.264 ± 0.045) · 10−1 (0.306 ± 0.049) · 10−1

TABLE V: Transverse momentum spectra d2N/(ptdptdy) in GeV−2c2 for antideuterons in centrality

selected Pb+Pb collisions at 158A GeV averaged over the rapidity interval −1.2 < y < −0.6.

pt 0-12.5% 12.5-23.5% 0-23.5%

0.075 (9.33 ± 2.5) · 10−4 (6.67 ± 2.4) · 10−4 (8.00 ± 1.7) · 10−4

0.225 (8.84 ± 1.8) · 10−4 (7.42 ± 1.8) · 10−4 (7.91 ± 1.3) · 10−4

0.375 (9.01 ± 2.2) · 10−4 (4.64 ± 1.6) · 10−4 (7.07 ± 1.4) · 10−4

0.675 (4.92 ± 1.9) · 10−4 (4.17 ± 2.0) · 10−4 (4.21 ± 1.4) · 10−4



TABLE VI: Transverse momentum spectra d2N/(ptdptdy) in GeV−2c2 for protons in centrality

selected Pb+Pb collisions at 158A GeV averaged over the rapidity interval −0.5 < y < −0.1.

pt 0-12.5% 12.5-23.5% 0-23.5%

0.05 (52.84 ± 0.90) (38.64 ± 0.54) (46.01 ± 0.73)

0.15 (50.74 ± 0.52) (36.82 ± 0.31) (44.04 ± 0.42)

0.25 (48.85 ± 0.48) (35.44 ± 0.29) (42.39 ± 0.39)

0.35 (44.41 ± 0.49) (31.19 ± 0.29) (38.05 ± 0.39)

0.45 (40.86 ± 0.49) (29.28 ± 0.29) (35.28 ± 0.39)

0.55 (37.11 ± 0.44) (26.06 ± 0.26) (31.79 ± 0.36)

0.65 (33.69 ± 0.40) (23.01 ± 0.23) (28.55 ± 0.32)

0.75 (28.19 ± 0.35) (18.69 ± 0.20) (23.62 ± 0.28)

0.85 (22.94 ± 0.30) (15.42 ± 0.18) (19.32 ± 0.24)

0.95 (17.72 ± 0.26) (12.09 ± 0.15) (15.01 ± 0.21)

1.05 (14.43 ± 0.22) (9.288 ± 0.15) (11.95 ± 0.18)

1.15 (11.12 ± 0.19) (7.138 ± 0.11) (9.205 ± 0.15)

1.25 (8.181 ± 0.16) (5.312 ± 0.089) (6.799 ± 0.12)

1.35 (5.874 ± 0.13) (3.950 ± 0.074) (4.947 ± 0.10)

1.45 (4.459 ± 0.11) (2.899 ± 0.061) (3.708 ± 0.086)

1.55 (3.083 ± 0.089) (1.901 ± 0.050) (2.557 ± 0.071)

1.65 (2.162 ± 0.079) (1.415 ± 0.045) (1.802 ± 0.063)

1.75 (1.535 ± 0.070) (1.028 ± 0.040) (1.291 ± 0.056)

1.85 (1.096 ± 0.064) (0.723 ± 0.036) (0.916 ± 0.050)

1.95 (0.749 ± 0.058) (0.477 ± 0.032) (0.618 ± 0.046)

2.05 (0.486 ± 0.051) (0.320 ± 0.029) (0.406 ± 0.040)



TABLE VII: Transverse momentum spectra d2N/(ptdptdy) in GeV−2c2 for antiprotons in centrality

selected Pb+Pb collisions at 158A GeV averaged over the rapidity interval −0.5 < y < −0.1.

pt 0-12.5% 12.5-23.5% 0-23.5%

0.05 (4.819 ± 0.24) (3.507 ± 0.15) (4.221 ± 0.20)

0.15 (4.548 ± 0.14) (3.323 ± 0.086) (3.991 ± 0.11)

0.25 (4.044 ± 0.12) (3.003 ± 0.074) (3.574 ± 0.097)

0.35 (3.694 ± 0.12) (2.654 ± 0.074) (3.223 ± 0.100)

0.45 (3.076 ± 0.11) (2.395 ± 0.071) (2.774 ± 0.094)

0.55 (2.743 ± 0.11) (2.054 ± 0.066) (2.434 ± 0.088)

0.65 (2.377 ± 0.099) (1.679 ± 0.059) (2.060 ± 0.079)

0.75 (1.871 ± 0.085) (1.377 ± 0.052) (1.649 ± 0.069)

0.85 (1.470 ± 0.074) (1.073 ± 0.045) (1.291 ± 0.060)

0.95 (1.226 ± 0.065) (0.833 ± 0.038) (1.046 ± 0.052)

1.05 (0.907 ± 0.056) (0.659 ± 0.033) (0.794 ± 0.045)

1.15 (0.743 ± 0.050) (0.500 ± 0.029) (0.632 ± 0.040)

1.25 (0.562 ± 0.045) (0.411 ± 0.027) (0.494 ± 0.037)

1.35 (0.401 ± 0.041) (0.304 ± 0.025) (0.358 ± 0.033)

1.45 (0.302 ± 0.038) (0.231 ± 0.024) (0.271 ± 0.031)
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