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Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described.

Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators

in addition to single-hadron operators is emphasized, necessitating the use of a new stochastic

method of treating the low-lying modes of quark propagationwhich exploits Laplacian Heaviside

quark-field smearing. A new glueball operator is tested and computing the mixing of this glueball

operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.

Some of our initial results show warning signs about extracting high-lying resonance energies

using only single-hadron operators.
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1. Introduction

In a series of papers[1, 2, 3, 4, 5, 6], we have been striving tocompute the finite-volume
stationary-state energies of QCD using Markov-chain MonteCarlo integration of the QCD path
integrals formulated on a space-time lattice. Such calculations are very challenging. The use
of carefully designed quantum field operators is crucial foraccurate determinations of low-lying
energies. To study a particular state of interest, the energies of all states lying below that state
must first be extracted, and as the pion gets lighter in lattice QCD simulations, more and more
multi-hadron states lie below the masses of the excited resonances. The evaluation of correlations
involving multi-hadron operators contains new challengessince not only must initial to final time
quark propagation be included, but also final to final time quark propagation for a large number
of times must be incorporated. The masses and widths of resonances must be deduced from the
discrete spectrum of finite-volume stationary states for a range of box sizes.

To compute the QCD stationary-state energies, the matricesCi j (t) of temporal correlations of
sets of single-hadron and multi-hadron operators are estimated using the Monte Carlo method. For
anN×N matrix, theN eigenvalues ofC(t0)−1/2C(t)C(t0)−1/2 tend to exp(−Ek(t − t0)) for larget
and fixedt0, where the decay ratesEk are theN lowest-lying stationary-state energies that can be
produced from the vacuum by the operators used. To compute the correlations involving isoscalar
mesons and good multi-hadron operators, quark propagationfrom all spatial sites on one time slice
to all spatial sites on another time slice are needed, and propagation from the sink time to the sink
time are needed for a large number of sink times. A new method known as the stochastic LapH
method[6] has been introduced to make such computations accurate and practical in large volumes.

2. The Stochastic LapH method

Finding better ways to stochastically estimate slice-to-slice quark propagators is crucial to the
success of our excited-state hadron spectrum project at lighter pion masses. We have developed
and tested a new scheme which combines a new way of smearing the quark field with a new way
of introducing noise and dilution projectors. The new quark-field smearing scheme, here called
Laplacian Heaviside (LapH), has been described in Ref. [7] and is defined by

ψ̃(x) = Θ
(

σ2
s + ∆̃

)
ψ(x), (2.1)

where∆̃ is the three-dimensional covariant Laplacian in terms of the stout-smeared gauge field and
σs is the smearing parameter. The gauge-covariant Laplacian operator is ideal for smearing the
quark field since it is one of the simplest operators that locally averages the field in such a way that
all relevant symmetry transformation properties of the original field are preserved. LetV∆ denote
the unitary matrix whose columns are the eigenvectors of∆̃, and letΛ∆ denote a diagonal matrix
whose elements are the eigenvalues of∆̃ such that̃∆ = V∆ Λ∆ V†

∆ . The LapH smearing matrix is
then given byS =V∆ Θ

(
σ2

s +Λ∆
)

V†
∆ . LetVs denote the matrix whose columns are in one-to-one

correspondence with the eigenvectors associated with theNv lowest-lying eigenvalues of−∆̃ on
each time slice. Then our LapH smearing matrix is well approximated by the Hermitian matrix
S =Vs V†

s . Evaluating the temporal correlations of our hadron operators requires combining Dirac
matrix elements associated with various quark linesQ. Since we construct our hadron operators
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out of covariantly-displaced, smeared quark fields, each and every quark line involves the following
product of matrices:

Q = D( j)
S M−1

S D(k)†, (2.2)

whereD(i) is a gauge-covariant displacement of typei.

An exact treatment of such a quark line is very costly and wasteful. Given our use of the Monte
Carlo method to evaluate the path integrals over the gauge link variables, the statistical errors in
our estimates of the hadron correlators are ultimately limited by the statistical fluctuations arising
from the gauge-field sampling. Thus, we only need to estimatethe quark lines to an accuracy
comparable to the gauge noise from the Monte Carlo method. Such estimates can be obtained with
far fewer inversions than required by an exact treatment of the quark lines.

Random noise vectorsη whose expectations satisfyE(ηi) = 0 andE(ηiη∗
j ) = δi j are useful

for stochastically estimating the inverse of a large matrixM as follows. Assume that for each ofNR

noise vectors, we can solve the following linear system of equations:MX(r) = η (r) for X(r). Then
X(r) = M−1η (r), andE(Xiη∗

j ) = M−1
i j so that a Monte Carlo estimate ofM−1

i j is given byM−1
i j ≈

limNR→∞
1

NR
∑NR

r=1X(r)
i η (r)∗

j . Unfortunately, this equation usually produces stochasticestimates with
variances which are much too large to be useful. Variance reduction is done bydiluting the noise
vectors. A given dilution scheme can be viewed as the application of a complete set of projection
operatorsP(a). Defineη [a]

k = P(a)
kk′ ηk′ , and further defineX[a] as the solution ofMikX[a]

k = η [a]
i , then

we have

M−1
i j ≈ lim

NR→∞

1
NR

NR

∑
r=1

∑
a

X(r)[a]
i η (r)[a]∗

j . (2.3)

The use ofZ4 noise ensures zero variance in the diagonal elementsE(ηiη∗
i ).

The effectiveness of the variance reduction depends on the projectors chosen. With LapH
smearing, noise vectorsρ can be introducedonly in the LapH subspace. The noise vectorsρ now
have spin, time, and Laplacian eigenmode number as their indices. Color and space indices get
replaced by Laplacian eigenmode number. Again, each component ofρ is a randomZ4 variable so
thatE(ρ) = 0 andE(ρρ†) = Id. Dilution projectorsP(b) are now matrices in the LapH subspace.
In the stochastic LapH method, a quark line on a gauge configuration is evaluated as follows:

Q = D( j)
S M−1

S D(k)†,

= D( j)
S M−1VsV

†
s D(k)†,

= ∑b D( j)S M−1VsP(b)P(b)†V†
s D(k)†,

= ∑b D( j)S M−1VsP(b)E(ρρ†)P(b)†V†
s D(k)†,

= ∑b E
(
D( j)S M−1VsP(b)ρ (D(k)VsP(b)ρ)†

)
. (2.4)

For a noise vector labelled by indexr, displaced-smeared-diluted quark source and quark sink
vectors can be defined by

ρ (r)[b]( j) = D( j)VsP
(b)ρ (r), (2.5)

ϕ (r)[b]( j) = D( j)
S M−1 VsP

(b)ρ (r), (2.6)
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and each quark line on a given gauge configuration can be estimated using

Quv ≈
1

NR

NR

∑
r=1

∑
b

ϕ (r)[b]( j)
u ρ (r)[b](k)∗

v , (2.7)

where the subscriptsu,v are compound indices combining space, time, color, and spin.
Our dilution projectors are products of time dilution, spindilution, and Laph eigenvector dilu-

tion projectors. For each type (time, spin, Laph eigenvector) of dilution, we studied four different
dilution schemes. LetN denote the dimension of the space of the dilution type of interest. For time
dilution, N = Nt is the number of time slices on the lattice. For spin dilution, N = 4 is the number
of Dirac spin components. For Laph eigenvector dilution,N = Nv is the number of eigenvectors
retained. The four schemes we studied are defined below:

P(a)
i j = δi j , a= 0, (no dilution)

P(a)
i j = δi j δai, a= 0, . . . ,N−1 (full dilution)

P(a)
i j = δi j δa,⌊Ki/N⌋ a= 0, . . . ,K−1, (block-K)

P(a)
i j = δi j δa, i modK a= 0, . . . ,K−1, (interlace-K)

wherei, j = 0, . . . ,N−1, and we assumeN/K is an integer. We use a triplet (T, S, L) to specify a
given dilution scheme, where “T” denotes time, “S” denotes spin, and “L” denotes Laph eigenvector
dilution. The schemes are denoted by 1 for no dilution, F for full dilution, and BK and IK for
block-K and interlace-K, respectively. For example, full time and spin dilution with interlace-
8 Laph eigenvector dilution is denoted by (TF, SF, LI8). Introducing diluted noise in this way
produces correlation functions with significantly reducedvariances, yielding nearly an order of
magnitude reduction in the statistical error over previousmethods. The volume dependence of
this new method was found to be very mild, allowing the methodto be useful on large lattices.
For all forward-time quark lines, we use dilution scheme (TF, SF, LI8), and for all same-sink-time
quark lines, we use (TI16, SF, LI8). Interlacing in time makes the calculation of a large number of
sink-to-sink diagrams possible with a feasibly small number of Dirac matrix inversions. The use
of dilution projectors that interlace in time is perhaps themost important factor behind the success
of the stochastic LapH method.

Details on how the temporal correlations of hadron operators are evaluated are given in Ref. [6].
A very useful feature of the method is the fact that the hadroncorrelators completely factorize into a
function associated with the sink time slicetF , and another function associated with the source time
slice t0. Summations over color, spin, and spatial sites at the source can be completely separated
from the color, spin, and spatial summations at the sink. Thestochastic LapH method leads to com-
plete factorization of hadron sources and sinks in temporalcorrelations, which greatly simplifies
the logistics of evaluating correlation matrices involving large numbers of operators. Implementing
the Wick contractions of the quark lines is also straightforward. Contributions from different Wick
orderings within a class of quark-line diagrams differ onlyby permutations of the noises at either
the source or the sink.

3. First results

Our first results for the isovector mass spectrum on a large 243 × 128 anisotropic lattice are
shown in Fig. 1. The pion mass is aboutmπ ∼ 390 MeV here. These results are not finalized
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Figure 1: Masses of the isovector mesons in terms of the nucleon mass using the stochastic LapH method
with 170 gauge configurations on a 243×128 anisotropic lattice. The pion mass is aboutmπ ∼ 390 MeV.
In the irrep labels, the letters with numerical subscripts refer to the point groupOh irreps, the subscriptsg
andu refer to even and odd parity, respectively, and the superscripts± refer toG-parity. Only single-hadron
operators were used with dilution scheme(TF,SF,LI8). The shaded region indicates the threshold locations
for multi-hadron energy levels. We emphasize that extractions of energies in the shaded regions could be
complicated by “false plateaux” unless multi-hadron operators are used.

since only single-hadron operators were used. The threshold locations for multi-hadron energy
levels, assuming the interaction energies are small, are indicated by the shaded region. Extractions
of energies in the shaded regions can only be considered reliable if multi-hadron operators are
used, in addition to the single-hadron operators. The inclusion of the multi-hadron operators is in
progress.

Some initial results that incorporate multi-hadron operators are shown in Fig. 2. A 2×2 cor-
relation matrix was evaluated involving a single-siteρ-meson operator and a total isospinI = 1 ππ
operator in aP-wave with minimal relative momentum. The stochastic LapH method enables very
accurate estimates of all elements (both diagonal and off-diagonal) of this correlation matrix such
that diagonalization can be done. The effective masses associated with the diagonalized correlator
are shown in Fig. 2. Theρ operator dominates the lowest-lying level, while theππ operator domi-
nates the first-excited state. Although the mixing of the operators is small, it is not negligible. This
is certainly a warning about the dangers of extracting high-lying resonance energies using only
single-hadron operators.

Determining meson masses in the interesting scalar isoscalar sector will ultimately involve
including a scalar glueball operator, so we began looking into the feasibility of such calculations.
LapH quark-field smearing involves the covariant spatial Laplacian ∆̃. The eigenvalues of the
Laplacian are invariant under rotations and gauge transformations so are appropriate for a scalar
glueball operator. The lowest-lying eigenvalue was studied, as well as other functions of the eigen-
values. We found that any combination of the low-lying eigenvalues worked equally well for
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Figure 2: Effective masses corresponding to the diagonal elements ofthe rotated 2× 2 correlator ma-
trix involving a single-siteρ-meson operator and anI = 1 ππ operator in aP-wave with minimal relative
momentum. Theρ operator dominates the lowest-lying level (left), while the ππ operator dominates the
first-excited state (right). Although the mixing of the operators is small, it is not negligible. These results
were obtained on 584 configurations of the 243×128 lattice with pion massmπ ∼ 240 MeV.
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Figure 3: Comparison of the effective mass associated with the correlator of the standard smeared plaquette
glueball operator (left) with that of our new glueball operator G∆ defined in the text (right). The similarity
of the two results shows that the new glueball operator is just as useful as the familiar smeared plaquette for
studying the scalar glueball. These effective masses do notreach a plateau at the glueball mass since various
ππ states and other multi-hadron states have smaller energiesthan the glueball mass. These results were
obtained using 584 configs of the 243 ensemble for pion massmπ ∼ 240 MeV.

studying the scalar glueball. In particular, the operator defined byG∆(t) = −Tr(Θ(σ2
s + ∆̃)∆̃(t))

was used. The effective mass associated with this operator is compared to that of the smeared pla-
quette glueball operator in Fig. 3. The similarity of the results shows thatG∆ is just as useful as the
familiar smeared plaquette for studying the scalar glueball.

Effective masses corresponding to the diagonalized 4×4 correlator matrix involving a scalar
isoscalar single-site quark-antiquark meson operator, the new glueball operatorG∆, and twoI = 0
ππ operators in anSwave (one with zero relative momentum and the other with minimal nonzero
relative momentum) are shown in Fig. 4. Mixing of these operators is sizeable. Moreππ operators
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Figure 4: Effective masses corresponding to the diagonal elements ofthe rotated 4×4 correlator matrix
involving a scalar isoscalar single-site quark-antiquarkmeson operator, the new glueball operatorG∆, and
two I = 0 ππ operators in anSwave (one with zero relative momentum and the other with minimal nonzero
relative momentum). Mixing of these operators is sizeable.More ππ operators must be included to reliably
extract the glueball mass. These results were obtained on 100 configurations of a 163×128 lattice with pion
massmπ ∼ 390 MeV.

must be included to reliably extract the glueball mass.

4. Conclusion

A new method of stochastically estimating the low-lying effects of quark propagation was pro-
posed which allows accurate determinations of temporal correlations of single-hadron and multi-
hadron operators in lattice QCD. The method enables accurate treatment of hadron correlators
involving quark propagation from all spatial sites on one time slice to all spatial sites on another
time slice. Contributions involving quark lines originating at the sink timetF and terminating at the
same sink timetF are easily handled, even for a large number oftF times.

The effectiveness of the method can be traced to two of its keyfeatures: the use of noise dilu-
tion projectors that interlace in time and the use ofZN noise in the subspace defined by the Laplacian
Heaviside quark-field smearing. Introducing noise in the LapH subspace results in greatly reduced
variances in temporal correlations compared to methods that introduce noise on the entire lattice.
Although the number of Laplacian eigenvectors needed to span the LapH subspace rises linearly
with the spatial volume, we found that the number of inversions of the Dirac matrix needed for
a target accuracy was remarkably insensitive to the latticevolume, once a sufficient number of
dilution projectors were introduced.

In addition to increased efficiency, the stochastic LapH method has other advantages. The
method leads to complete factorization of hadron sources and sinks in temporal correlations, which
greatly simplifies the logistics of evaluating correlationmatrices involving large numbers of opera-
tors. Implementing the Wick contractions of the quark linesis also straightforward. Contributions
from different Wick orderings within a class of quark-line diagrams differ only by permutations of
the noises at the source.

The results presented here demonstrate that the stochasticLapH method is useful for accu-
rately estimating all of the temporal correlations needed for a full study of the QCD stationary-
state energy spectrum, which we are currently pursuing. A new glueball operator was tested and
computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-
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pion operators was shown to be feasible. Some of our initial results showed warning signs about
extracting high-lying resonance energies using only single-hadron operators.

This work was supported by the U.S. NSF under awards PHY-0510020, PHY-0653315, PHY-
0704171, PHY-0969863, and PHY-0970137, and through TeraGrid/XSEDE resources provided by
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