

B_c studies at LHCb

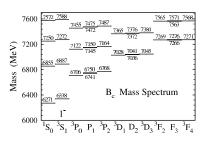
Jibo HE (on behalf of the LHCb collaboration)

LAL, Orsay

QWG 2011
October 4th-7th 2011, GSI, Darmstadt, Germany

- Introduction
- \bigcirc B_c^+ mass measurement
- \bigcirc B_c^+ cross section measurement
- 4 Observation of $B_c^+ o J/\psi(\mu^+\mu^-)\pi^+\pi^-\pi^+$
- Prospects & Conclusion

QWG 2011

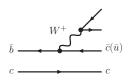

2/27

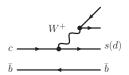
Jibo HE (LAL, Orsay) B_c studies at LHCb

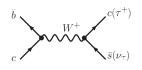
B_c spectrum

- B_c : Mesons formed by two different heavy flavor quarks, the \bar{b} quark and the c quark ¹
 - Unique in the Standard Model because the top quark is too heavy and decays before forming any bound states
- B_c spectrum
 - Estimated using potential models
- \bullet B_c^+ mass
 - ► Potential models: 6.2-6.4 GeV/c²

 (CERN-2005-005), and refs. therein
 - pQCD: 6326⁺²⁹₋₉ MeV/c²
 N. Brambilla & A. Vairo, [PRD 62, 094019 (2000)]
 - Lattice QCD: 6278(6)(4) MeV/c²
 TWQCD, [arXiv:0704.3495]
 - PDG'10: 6277 ± 6 MeV/c²

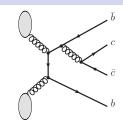

3/27


S.Godfrey, [PRD 70, 054017 (2004)]


Charge conjugates implied in this presentation

B_c decays

- B_c mesons' decays
 - Excited states (below BD threshold), decay through the Strong or EM interactions into B_c⁺
 - Ground state B_c⁺: decay only weakly
- B_c⁺ decay modes
 - $ar{b}
 ightarrow ar{c}W^+$, e.g., $J/\psi\pi^+$, $J/\psi\pi^+\pi^-\pi^+$, $J/\psi\ell^+\nu_\ell$
 - $c \rightarrow sW^+$, e.g., $B_s^0\pi^+$, $B_s^0\ell^+\nu_\ell$
 - $car{b}
 ightarrow W^+$, e.g., $ar{K}^{*0}K^+$, ϕK^+ , $au^+ v_ au$
- B_c⁺ lifetime predictions
 - Inclusive rates or ∑(exclusive rates)
 - au $au(B_c^+)_{
 m SR}=0.48\pm0.05~{
 m ps}$ V. V. Kiselev, et. al, [NPB 585, 353 (2000)]
 - ► PDG'10: 0.45 ± 0.04 ps



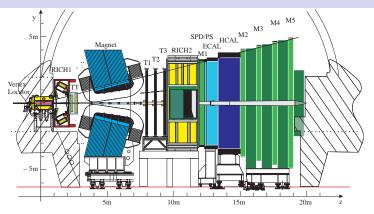
B_c production

• B_c production

- ▶ Difficult to generate at e⁺e⁻ colliders
- At hadron colliders, B_c generated mainly through $gg \to B_c + b + \bar{c}$

B_c⁺ production rate

► Theoretical prediction c.-H.Chang, et al., [PRD 71, 074012 (2005)]


-	$ (^{1}S_{0})_{1}\rangle$	$ (^{3}S_{1})_{1}\rangle$	$ (^{1}S_{0})_{8}g\rangle$	$ (^{3}S_{1})_{8}g\rangle$	$ (^{1}P_{1})_{1}\rangle$	$ (^{3}P_{0})_{1}\rangle$	$ (^{3}P_{1})_{1}\rangle$	$ (^{3}P_{2})_{1}\rangle$
LHC ²	71.1	177.	(0.357, 3.21)	(1.58, 14.2)	9.12	3.29	7.38	20.4
TEVATRON	5.50	13.4	(0.0284, 0.256)	(0.129, 1.16)	0.655	0.256	0.560	1.35

- ★ $\sigma(^3S_1)/\sigma(^1S_0) \sim 2.5$
- ★ Color octets and 1st P-wave contributions are small
- * $\sigma(B_c^+)_{\rm LHC}/\sigma(B_c^+)_{\rm Tevatron} \sim {\sf O}(10)$
- $\sigma(2S)/\sigma(1S)$ would be $|R_{2S}(0)/R_{1S}(0)|^2 \approx 0.6$
- Considering the contributions of the decays of these states, $\sigma(B_c^+)\sim$ 0.9 μ b for $\sqrt{s}=$ 14 TeV; or \sim 0.4 μ b for $\sqrt{s}=$ 7 TeV

The LHCb detector

Geometry acceptance

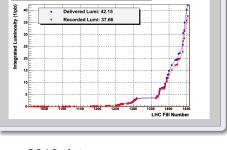
1.9< η < 4.9, unique coverage

Vertex Locator

 $\sigma_{PV,x/y}\sim$ 10 $\mu\text{m},\,\sigma_{PV,z}\sim$ 60 $\mu\text{m};\,\sigma_{L}\sim$ 250 μm

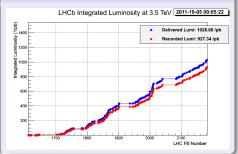
Tracking system (TT, T1-T3)

 $\Delta p/p$: 0.35%-0.55%


Muon system (M1-M5)

 $arepsilon(\mu
ightarrow \mu)$ \sim 97%, mis-ID rate $(h
ightarrow \mu)$ \sim 2%

The LHCb data-taking

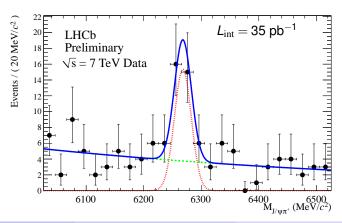

$2010 (37 \text{ pb}^{-1} \text{ recorded})$

LHCb Integrated Lumi over Fill Number at 3.5 TeV

2011-02-16 16:25:28

2011 (927 pb^{-1} recorded so far)

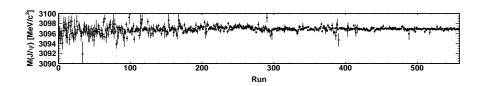
- 2010 data B_c^+ mass measurement B_c^+ production measurement
- 2011 data Observation of $B_c^+ o J/\psi 3\pi$



Jibo HE (LAL, Orsay) B_C studies at LHCb QWG 2011 7 / 27

 B_c^+ mass measurement [CERN-LHCb-CONF-2011-027]

B_c^+ mass measurement


- Based on ~ 35 pb⁻¹ of data collected in 2010.
- Cut biased selection. Signal yield, 28±7
- Fit Model
 - Signal: Gaussian
 - Background: Exponential

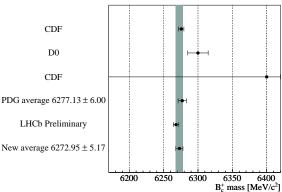
Momentum scale calibration

• Momentum scale calibrated using large sample of $J/\psi(\mu^+\mu^-)$ and checked with Υ , D^0 , K^0_S , and $\psi(2S) \to J/\psi\pi^+\pi^-$

10 / 27

Jibo HE (LAL, Orsay) B_C studies at LHCb QWG 2011

Systematics


Source of uncertainty	Value [MeV/c ²]		
Mass fitting:			
Background model	0.32		
Signal model	0.07		
Momentum scale calibration:			
Average momentum scale	0.23		
η dependence of momentum scale	0.44		
Detector description:			
Energy loss correction	0.11		
Detector alignment:			
Vertex detector (track slopes)	0.06		
Quadratic sum	0.61		

B_c^+ mass result

Preliminary result

$$M(B_c^+) = 6268.0 \pm 4.0 \text{(stat)} \pm 0.6 \text{(syst)} \text{ MeV/}c^2$$

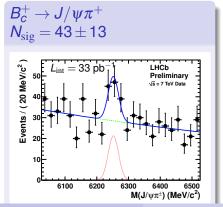
Comparison with PDG

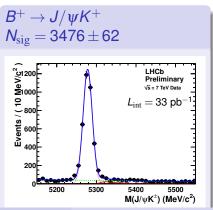
 Uncertainty dominated by statistics, will be improved with 2011 data.

Jibo HE (LAL, Orsay) B_c studies at LHCb QWG 2011 12 / 27

 B_c^+ cross section measurement [CERN-LHCb-CONF-2011-017]

B_c^+ cross section measurement


- ullet Based on \sim 33 pb $^{-1}$ data collected in 2010
- Use fully reconstructed $B_c^+ \to J/\psi(\mu^+\mu^-)\pi^+$, relatively clean. Large control sample $B^+ \to J/\psi K^+$ available.
- Measure


$$\frac{\sigma(B_c^+) \times BR(B_c^+ \to J/\psi \pi^+)}{\sigma(B^+) \times BR(B^+ \to J/\psi K^+)} = \varepsilon_{\text{rel}} \times \frac{N(B_c^+)}{N(B^+)}$$

for $p_T(B) > 4$ GeV/c and $\eta \in (2.5, 4.5)$

Extraction of $N(B_c^+)$ and $N(B^+)$

- Lifetime unbiased event selection (& trigger), as similar as possible between $B_c^+ \to J/\psi \pi^+$ and $B^+ \to J/\psi K^+$
- ullet Cabibbo suppressed background $B^+ o J/\psi \pi^+$ considered for $B^+ o J/\psi K^+$
- 43 \pm 13 $B_c^+ o J/\psi(\mu^+\mu^-)\pi^+$ signal

Ratio of production cross section

- Total efficiencies computed from MC, binned in (p_T, η) to reduce the dependence on theoretical model
- Systematics dominated by B_c^+ lifetime (0.453 \pm 0.041) ps, will be reduced after a better lifetime measurement
- Preliminary result

$$\frac{\left(\frac{\sigma(B_c^+)\times BR(B_c^+\to J/\psi\pi^+)}{\sigma(B^+)\times BR(B^+\to J/\psi K^+)} = (2.2\pm0.8|_{\text{stat.}}\pm0.2|_{\text{sys.}})\% \right) }{\text{for } \rho_{\text{T}}(B) > 4 \text{ GeV/}c \text{ and } \eta \in (2.5,4.5) }$$

 This result will be superseded by a measurement using data collected in 2011 (~10 times more statistics) very soon.

4□ > <</p>
4□ > <</p>
4□ >
4□ >
5
9
0

16 / 27

Jibo HE (LAL, Orsay) B_C studies at LHCb QWG 2011

Observation of
$$B_c^+ \to J/\psi(\mu^+\mu^-)\pi^+\pi^-\pi^+$$

[CERN-LHCb-CONF-2011-040]

Jibo HE (LAL, Orsay) B_c studies at LHCb QWG 2011 17 / 27

Observation of $B_c^+ o J/\psi(\mu^+\mu^-)\pi^+\pi^-\pi^+$

- ullet Based on \sim 300 pb $^{-1}$ data collected in 2011
- Cut based pre-selection + S/B likelihood-ratio discrimination
- Use $B^+ o J/\psi \pi^+ \pi^- K^+$ as control channel
- Measure

$$\frac{BR(B_c^+ \to J/\psi \pi^+ \pi^- \pi^+)}{BR(B_c^+ \to J/\psi \pi^+)} = \varepsilon_{\rm rel} \times \frac{N(B_c^+ \to J/\psi \pi^+ \pi^- \pi^+)}{N(B_c^+ \to J/\psi \pi^+)}$$

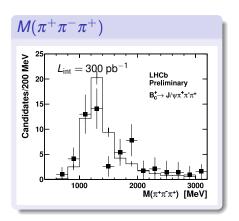
◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ⊙

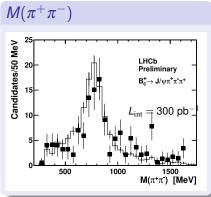
Signal yields

- $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$, 58 ± 10, 6.8 σ , first observation
- $B_c^+ \to J/\psi \pi^+$, 163 ± 16

Ratio of branching ratios

- Total efficiencies computed from MC.
- Systematics
 - $p_{\rm T}(B_c^+)$ spectrum, 9%
 - Trigger simulation, 4%
 - ▶ B_c⁺ lifetime, 3%
 - Background shape, 2.2%
- Preliminary result

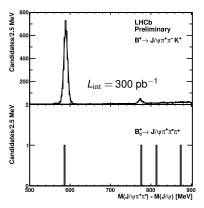

$$\left(\frac{BR(B_c^+ o J/\psi \pi^+ \pi^- \pi^+)}{BR(B_c^+ o J/\psi \pi^+)} = 3.0 \pm 0.6|_{
m stat.} \pm 0.4|_{
m sys.}\right)$$


Theoretical predictions:

- ► ~ 1.5 by A. Rakitin & S. Koshkarev, [PRD 81, 014005 (2010)]
- ho \sim 2.3 by A. K. Likhoded & A. V. Luchinsky, [PRD 81, 014015 (2010)]

$M(\pi^+\pi^-\pi^+)$ & $M(\pi^+\pi^-)$ distributions of B_c^+ signal

• Background subtracted invariant mass distributions (points with error bars) of $M(\pi^+\pi^-\pi^+)$ & $M(\pi^+\pi^-)$ consistent with $B_c^+ \to J/\psi a_1^+(1260)$, with $a_1^+(1260) \to \rho^0\pi^+$ in MC (histogram)

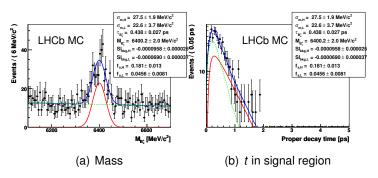


4 m > 4 m >

Jibo HE (LAL, Orsay) B_c studies at LHCb QWG 2011 21 / 27

$M(J/\psi\pi^+\pi^-) - M(J/\psi)$ distributions

- $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$
 - ▶ 1401 ± 38, $B^+ \to \psi(2S)K^+$
 - ▶ 71 ± 12, $B^+ \rightarrow X(3872)K^+$, see M. Needham's talk [slides]
- $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$


Jibo HE (LAL, Orsay) B_C studies at LHCb QWG 2011 22 / 27

Prospects & Conclusion

23 / 27

Prospects: Lifetime measurement with $B_c^+ o J/\psi \pi^+$

- Based on MC studies [CERN-LHCb-2008-077]
- Acceptance extracted from MC, two $p_T(B_c^+)$ bins (5-12, > 12 GeV/c) to reduce dependence on $p_T(B_c^+)$ distribution.
- Statistical uncertainty below 30 fs achievable with 1 fb⁻¹ of data
- Plots in high p_T bin:

Will also try data based acceptance extraction [CERN-LHCb-2007-053]

Jibo HE (LAL, Orsay) B_C studies at LHCb QWG 2011 24 / 27

Prospects Lifetime measurement with $B_c^+ o J/\psi \mu^+ X$

- $B_c^+ o J/\psi(\mu^+\mu^-)\mu^+v_\mu$, compared to $B_c^+ o J/\psi\pi^+$
 - ★ Larger branching ratio, ~1.9%
 - \star 3 μ in the final states, easier (relatively) to reduce background Lifetime unbiased selection would be possible
 - Contra
 - Missing energy caused by neutrino, partially reconstructed. Not easy to use MC-free method to estimate background.
 - ★ Need MC to correct the missing energy while calculating the lifetime
- Tight J/ψ selection, and a tight ρ_T cut on the bachelor μ .
- Expect \sim 4.7 K reconstructed $B_c^+ \to J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$ from 1 fb⁻¹ of data @ $\sqrt{s}=$ 7 TeV, will be used to measure lifetime.

QWG 2011

25 / 27

Jibo HE (LAL, Orsay) B_c studies at LHCb

Prospects More topics

- ullet $B_c^+ o J/\psi K^+, \, B_c^+ o \psi(2S)\pi^+$
- ullet $B_c^+ o B_s^0 \pi^+$
 - Self-tagged channel
 - With $B_s^0 o J/\psi \phi$ or $B_s^0 o D_s \pi$
 - Doable with 2011/2012 data
- Annihilation
 - ▶ Possible channel, e.g, $B_c^+ \to \bar{K}^{*0}K^+$, with branching ratio of O(10⁻⁶), c.f., S. Descotes-Genon, et al., [PRD 80, 114031 (2009)]
- Excited states
 - ▶ Possible to see $B_c(2S)$ states with 2011/2012 data.
 - ▶ $B_c^{*+} o B_c^+ \gamma$, very soft γ , difficult for LHCb
 - P-wave states, low cross section, small mass differences among four states

Conclusion

- Using $B_c^+ o J/\psi \pi^+$, B_c^+ mass and cross section measured with 2010 data collected by LHCb
- First observation of $B_c^+ o J/\psi \pi^+ \pi^- \pi^+$, 6.8 σ
- Prospects with 2011 data ($\sim 1 \text{ fb}^{-1}$)
 - ► Expect $\sim 600~B_c^+ \rightarrow J/\psi \pi^+$ signals, B_c^+ mass, production rate measurements will be updated, lifetime will be measured.
 - Expect $\sim 200~B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$ signals, may combine with $B_c^+ \to J/\psi \pi^+$ for a more precise measurements of the B_c^+ mass, lifetime, production rate.
 - Yield of $B_c^+ \to J/\psi \mu^\pm X$ one order of magnitude higher, will be used for lifetime measurement
 - Many more channels
 - Excited states
- Many things we can do about B_c, your suggestions on the most important points are always welcome.