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Search for squarks and gluinos using final states with jets and missing transverse
momentum with the ATLAS detector in

√
s= 7 TeV proton-proton collisions

The ATLAS Collaboration

Abstract

CERN-PH-EP-2011-145, Submitted to Physics Letters B

A search for squarks and gluinos in events containing jets, missing transverse momentum and no electrons or muons is presented.
The data were recorded in 2011 by the ATLAS experiment in

√
s = 7 TeV proton-proton collisions at the Large Hadron Collider.

No excess above the Standard Model background expectation is observed in 1.04 fb−1 of data. Gluino and squark masses below
700 GeV and 875 GeV respectively are excluded at the 95% confidence level in simplified models containing only squarks of the
first two generations, a gluino octet and a massless neutralino. The exclusion limit increases to 1075 GeV for squarks andgluinos of
equal mass. In MSUGRA/CMSSM models with tanβ = 10,A0 = 0 andµ > 0, squarks and gluinos of equal mass are excluded for
masses below 950 GeV. These limits extend the region of supersymmetric parameter space excluded by previous measurements.

1. Introduction

Many extensions of the Standard Model (SM) include heavy
coloured particles, some of which could be accessible at the
Large Hadron Collider (LHC) [1]. The squarks and gluinos of
supersymmetric (SUSY) theories [2] are one class of such par-
ticles. This Letter presents a new ATLAS search for squarks
and gluinos in final states containing only jets and large miss-
ing transverse momentum. This final state can be generated
by a large number ofR-parity conserving models [3] in which
squarks, ˜q, and gluinos, ˜g, can be produced in pairs{g̃g̃, q̃q̃, q̃g̃}
and can decay via ˜q→ qχ̃0

1 andg̃→ qq̄χ̃0
1 to weakly interacting

neutralinos,̃χ0
1, which escape the detector unseen. The analysis

presented here is based on a purely hadronic selection; events
with reconstructed electrons or muons are vetoed to avoid over-
lap with a related ATLAS search [4]. This updated analysis
uses 1.04 fb−1of data recorded in 2011 and extends the sensi-
tivity of the previous search described in Ref. [5] by including
final state topologies with at least four jets, rather than three as
before. The statistical analysis benefits from an improved tech-
nique which uses a combined likelihood fit across all the control
regions used to determine the background contributions, inor-
der to take into account correlations among the measurements.
The search strategy is optimised for maximum discovery reach
in the (mg̃,mq̃)-plane for a set of simplified models in which
all other supersymmetric particles (except for the lightest neu-
tralino) are assigned masses beyond the reach of the LHC. Cur-
rently, the most stringent limits on squark and gluino masses
are obtained at the LHC [4, 5, 6].

2. The ATLAS Detector and Data Samples

The ATLAS detector [7] is a multipurpose particle physics
apparatus with a forward-backward symmetric cylindrical ge-

ometry and nearly 4π coverage in solid angle.1 The layout
of the detector is dominated by four superconducting mag-
net systems, which comprise a thin solenoid surrounding the
inner tracking detectors and three large toroids supporting a
large muon spectrometer. The calorimeters are of particu-
lar importance to this analysis. In the pseudorapidity region
|η| < 3.2, high-granularity liquid-argon (LAr) electromagnetic
(EM) sampling calorimeters are used. A steel-scintillatortile
calorimeter provides hadronic coverage over|η| < 1.7. The
end-cap and forward regions, spanning 1.5 < |η| < 4.9, are
instrumented with LAr calorimetry for both EM and hadronic
measurements.

The data used in this analysis were collected in the first half
of 2011 with the LHC operating at a centre-of-mass energy
of 7 TeV. Application of beam, detector and data-quality re-
quirements resulted in a total integrated luminosity of 1.04±
0.04 fb−1 [8]. The main trigger required events to contain a
leading jet with a transverse momentum (pT), above 75 GeV
and missing transverse momentum above 45 GeV. The trig-
ger used an energy scale calibrated for electromagnetic objects.
The details of the trigger specifications varied throughoutthe
data-taking period, partly as a consequence of the rapidly in-
creasing LHC luminosity. The efficiency of the trigger is> 98
% for events selected by the offline analysis. The average num-
ber of proton-proton interactions per bunch crossing in thedata
sample was approximately six.

3. Object Reconstruction

The requirements used to select jets and leptons (objects)
are chosen to give sensitivity to a range of SUSY models. Jet

1 ATLAS uses a right-handed coordinate system with its originat the nomi-
nal interaction point in the centre of the detector and thez-axis along the beam
pipe. Cylindrical coordinates (r, φ) are used in the transverse plane,φ being the
azimuthal angle around the beam pipe. The pseudorapidityη is defined in terms
of the polar angleθ asη = − ln tan(θ/2).
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candidates are reconstructed using the anti-kt jet clustering al-
gorithm [9, 10] with a distance parameter of 0.4. The inputs
to this algorithm are three-dimensional clusters of calorime-
ter cells [11] seeded by those with energy significantly above
the measured noise. Jet momenta are constructed by perform-
ing a four-vector sum over these cell clusters, treating each as
an (E, ~p) four-vector with zero mass. These jets are corrected
for the effects of calorimeter non-compensation and inhomo-
geneities by usingpT andη-dependent calibration factors based
on Monte Carlo (MC) and validated with extensive test-beam
and collision-data studies [12]. Furthermore, the reconstructed
jet is modified such that the jet direction points to the primary
vertex, defined as the vertex with the highest summed trackp2

T,
instead of the geometrical centre of the ATLAS detector. Only
jet candidates with corrected transverse momentapT > 20 GeV
are subsequently retained. For 84% of the data used, a tempo-
rary electronics failure in the LAr barrel calorimeter created a
dead region in the second and third longitudinal layers, approx-
imately 1.4× 0.2 in ∆η × ∆φ, in which on average 30% of the
incident jet energy is lost. The impact on the reconstruction ef-
ficiency for pT > 20 GeV jets is found to be negligible. If any
of the four leading jets fall into this region the event is rejected,
causing a loss of signal acceptance which is smaller than 15%
for the models considered here.

Electron candidates are required to havepT > 20 GeV, have
|η| < 2.47, and pass the ‘medium’ shower shape and track se-
lection criteria of Ref. [13]. Muon candidates [13] are required
to havepT > 10 GeV and|η| < 2.4. Since no use is made of
tau-lepton candidates in this analysis, in the following the term
lepton will refer only to electrons and muons.

The measurement of the missing transverse momentum two-
dimensional vector~P miss

T (and its magnitudeEmiss
T ) is then

based on the transverse momenta of all electron and muon can-
didates, all jets which are not also electron candidates, and all
calorimeter clusters with|η| < 4.5 not associated to such ob-
jects.

Following the steps above, overlaps between candidate jets
with |η| < 2.8 and leptons are resolved using the method of
Ref. [14] as follows. First, any such jet candidate lying within
a distance∆R =

√

(∆η)2 + (∆φ)2 = 0.2 of an electron is dis-
carded: then any electron or muon candidate remaining within
a distance∆R= 0.4 of any surviving jet candidate is discarded.
Next, all jet candidates with|η| > 2.8 are discarded. Thereafter,
the electron, muon and jet candidates surviving this procedure
are considered as “reconstructed”, and the term “candidate” is
dropped.

4. Event Selection

Following the object reconstruction described above, events
are discarded if they contain any electrons or muons withpT >

20 GeV, or any jets failing quality selection criteria designed to
suppress detector noise and non-collision backgrounds (see e.g.
Ref. [15]).

These selections include a veto on leading jets (withpT >

100 GeV and|η| < 2) which have a low fraction (< 0.05) of their

Signal Region ≥ 2-jet ≥ 3-jet ≥ 4-jet High mass

Emiss
T > 130 > 130 > 130 > 130

Leading jetpT > 130 > 130 > 130 > 130

Second jetpT > 40 > 40 > 40 > 80

Third jet pT – > 40 > 40 > 80

Fourth jetpT – – > 40 > 80

∆φ(jet, ~P miss
T )min > 0.4 > 0.4 > 0.4 > 0.4

Emiss
T /meff > 0.3 > 0.25 > 0.25 > 0.2

meff > 1000 > 1000 > 500/1000 > 1100

Table 1: Criteria for admission to each of the five overlapping signal regions
(meff , Emiss

T andpT in GeV). All variables are defined in Section 4. Themeff is
defined with a variable number of jets, appropriate to each signal region. In the
high mass selection, all jets withpT > 40 GeV are used to compute themeff
value used in the final cut, but theEmiss

T definition is unchanged. The∆φ cut is
only applied up to the third leading jet.

pT carried by charged tracks, and a requirement that the leading
jets all have consistent timing information from the calorime-
ters. Events are also rejected if the reconstructed primaryvertex
is associated with fewer than five tracks.

In order to achieve maximal reach over the (mg̃,mq̃)-plane,
five signal regions are defined. Squarks typically generate
at least one jet in their decays, for instance through ˜q →
qχ̃0

1, while gluinos typically generate at least two, for instance
throughg̃→ qq̄χ̃0

1. Processes contributing to ˜qq̃, q̃g̃ andg̃g̃ fi-
nal states therefore lead to events containing at least two,three
or four jets, respectively. Cascade decays of heavy particles
tend to increase the final state multiplicity. Four signal re-
gions characterized by increasing jet multiplicity requirements
are therefore defined as shown in Table 1, with the leading jet
having pT > 130 GeV, and other jetspT > 40 GeV. The ef-
fective mass,meff, is calculated as the sum ofEmiss

T and the
magnitudes of the transverse momenta of the two, three or four
highestpT jets used to define the signal region. Two four-jet
signal regions are defined requiringmeff > 500 GeV (opti-
mised for small mass differences between SUSY mass states)
andmeff > 1000 GeV (optimised for higher mass differences).
In addition, a fifth ‘high mass’ signal region is derived fromthe
four-jet sample, with more stringent requirements on thepT of
the non-leading jets (> 80 GeV) and onmeff (> 1100 GeV),
in order to give maximal reach in the SUSY mass spectrum.
For this latter signal region the transverse momenta of all jets
with pT > 40 GeV are used to computemeff . In Table 1,
∆φ(jet, ~P miss

T )min is the smallest of the azimuthal separations be-

tween~P miss
T and jets withpT > 40 GeV (all reconstructed jets

up to a maximum of three, in descending order ofpT). Re-
quirements on∆φ(jet, ~P miss

T )min andEmiss
T /meff are designed to

reduce the background from multi-jet processes.

5. Backgrounds, Simulation and Normalisation

Standard Model background processes contribute to the
event counts in the signal regions. The dominant sources are:
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W+jets, Z+jets, top pair, single top, and multi-jet produc-
tion. Non-collision backgrounds have been found to be neg-
ligible. The majority of theW+jets background is composed of
W → τν events, orW → eν, µν events in which no electron or
muon candidate is reconstructed. The largest part of theZ+jets
background comes from the irreducible component in which
Z → νν̄ decays generate largeEmiss

T . Hadronicτ decays in
tt̄ → bb̄τνqqand single top events can also generate largeEmiss

T
and pass the jet and lepton requirements at a non-negligible
rate. The multi-jet background in the signal regions is caused
by misreconstruction of jet energies in the calorimeters leading
to apparent missing transverse momentum, as well as by neu-
trino production in semileptonic decays of heavy quarks. Ex-
tensive validation of the MC simulation against data has been
performed for each of these background sources and for a wide
variety of control regions.

In order to estimate the backgrounds in a consistent fashion,
five control regions (CRs) are defined for each of the five sig-
nal regions (SRs), giving 25 CRs in total. The orthogonal CR
event selections are designed to provide uncorrelated datasam-
ples enriched in particular background sources. Each ensemble
of one SR and five CRs constitutes a different ‘channel’ of the
analysis. The CR selections are optimised to maintain adequate
statistical weight, while minimising as far as possible thesys-
tematic uncertainties arising from extrapolation to the SR. The
purities of the CRs for the main background processes in which
they are enriched exceed 50% in all cases.

For each channel, measurements in the CRs are used to de-
rive background expectations in the SR through the use of
‘transfer factors’ equivalent to the ratios of expected event
counts in the CRs and SR, derived independently of the data ob-
servations in the CR and SR. Some uncertainties, such as those
arising in MC simulation from the jet energy scale and physics
modelling, are reduced in the transfer factors. The combined
likelihood fit across all control regions ensures that the back-
ground estimates are consistent for all processes, taking into
account contamination of the CRs by multiple SM processes.

The likelihood function is built by the Poisson probability
density function (pdf) describing the SR and the CRs and a pdf
describing the systematic uncertainties:

L(n|µ, b, θ) = PSR × PWR × PTR × PZRa × PZRb × PQR × CSyst.

The mean of the Poisson pdfs in the CRs are defined as

λi(µ, b, θ) = µ ·CSR→iR(θ) +
∑

j

C jR→iR(θ) · b jR

where the indexj runs over the background control regions.µ
is the signal strength,b jR is the background j in Region R and
C jR−>S Rthe transfer factor of process j from region R to the SR.
The termsCQR→QR, CWR→WR,CZRa,b→ZRa,b, CTR→TR are by con-
struction all equal to 1. Since the fit is not over-constrained
in CR2, CR3 and CR4, where there is a single estimate of
the background, the fit output matches the observed number of
events in these regions by construction. This is not the case
in CR1a and CR1b which both estimate the same background
process, and a best fit number is produced in these regions.

The transfer factors are obtained from a combination of data
and MC inputs. Those for multi-jet processes are estimated us-
ing a data-driven technique based upon the smearing of jets in
a low Emiss

T data sample (‘seed’ events withEmiss
T /
√

ΣpT (jet) <
0.6 GeV1/2) with jet response functions tuned by comparison
with multi-jet dominated data control regions [5]. For the
Z+jets,W+jets and top quark processes they are derived from
MC. For each channel a likelihood fit is performed to the ob-
served event counts in the five CRs, taking into account corre-
lations in the systematic uncertainties in the transfer factors.

The irreducible background fromZ(νν̄)+jets events is es-
timated using control regions enriched in related processes
with similar kinematics: events with isolated photons and jets
[16] and events due toZ(ee/µµ)+jets (control regions denoted
‘CR1a’ and ‘CR1b’ respectively). The reconstructed momen-
tum of the photon or the lepton-pair system is added to~P miss

T to
obtain an estimate of theEmiss

T observed inZ(νν̄)+jets events.
The results from both control regions are found to be in good
agreement, and both are used in the final fit. The small ad-
ditional background contributions arising fromZ decays to
misidentified charged leptons, and misidentified photon events,
are estimated using the same control regions with appropriate
transfer factors.

The background from multi-jet processes is determined using
control regions (CR2) in which the cut on∆φ(jet, ~P miss

T )min is

reversed and tightened:∆φ(jet, ~P miss
T )min < 0.2. This selects

events in which~P miss
T is aligned with one of the three leading

jets in the transverse plane. Such a topology is characteristic of
events containing mismeasured jets, or neutrino emission from
heavy flavour decays within jets. A separate control region is
used to estimate the additional multi-jet background generated
by events affected by the temporarily dead region in the barrel
EM calorimeter; this result is added to the multi-jet background
estimate obtained from CR2.

The background fromW(ℓν)+jets production is estimated
from samples of events with a lepton (ℓ), Emiss

T > 130 GeV
and a transverse mass of the (ℓ,Emiss

T ) system between 30 GeV
and 100 GeV, i.e. consistent with theW mass (control regions
CR3). A veto against jets arising fromb-quark decays, based
on a tagging procedure exploiting both impact parameter and
secondary vertex information, is applied to remove events con-
taining top quarks. In this CR, leptons are treated as jets for the
computation of the kinematic variables.

The background from top quark production is estimated us-
ing the same selection as forW(ℓν)+jets events, but replacing
theb-jet veto with ab-tag requirement (control regions CR4).
This enhances the population of events containing top quarkde-
cays relative to that of directW production events. The result-
ing transfer factors include the contribution from events where
both top quarks decay semi-leptonically, as well as events due
to single top production.

MC simulation samples are used to develop the analysis,
determine the transfer factors used to estimate theW+jets,
Z+jets and top quark backgrounds, and assess the sensitivity
to specific SUSY signal models. Samples of multi-jet events
from quantum-chromodynamic (QCD) processes are generated
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with PYTHIA [17], using theMRST2007LO* modified leading-
order parton distribution functions (PDFs) [18]. Production
of top quark pairs is simulated withMC@NLO [19, 20] (with a
top quark mass of 172.5 GeV) and the Next-to-Leading Or-
der (NLO) PDF setCTEQ6.6 [21]. Single top production is
also simulated withMC@NLO [22, 23]. Samples ofW and Z/γ∗

events with accompanying jets are generated withALPGEN [24]
and PDF setCTEQ6L1 [25]. Fragmentation and hadroniza-
tion for the ALPGEN and MC@NLO samples is performed with
HERWIG [26, 27], usingJIMMY [28] for the underlying event.
SUSY signal samples are generated withHERWIG++ [29], nor-
malised using NLO cross sections determined withPROSPINO

[30]. The MC samples are produced using ATLAS parame-
ter tunes [31] and are processed through aGEANT4 [32] based
detector simulation [33]. Corrections are applied for small dif-
ferences in reconstruction efficiencies, energy scales and res-
olutions between data and MC. Varying pile-up conditions as
a function of the instantaneous luminosity are taken into ac-
count by reweighting the simulated events according to the
mean number of interactions per bunch crossing observed in
the data. Multi-jet MC samples, presented here in some figures
for illustrative purposes only, are normalised to a sample of di-
jet events with∆φ(jet, ~P miss

T )min < 0.4. In all other cases the
best available NLO or Next-to-NLO theoretical cross-section
calculations were used.

6. Systematic Uncertainties

Systematic uncertainties arise from the use of the transfer
factors relating observations in the control regions to back-
ground expectations in the signal regions, and from the mod-
elling of the SUSY signal. For the transfer factors derived from
MC, the primary common sources of systematic uncertainty are
the jet energy scale and resolution, physics modelling and re-
construction performance in the presence of pile-up.

The jet energy scale uncertainty has been measured from
the complete 2010 data set using the procedure described in
Ref. [12]. It depends uponpT, η and proximity to adjacent jets,
and on average amounts to around 4%. The jet energy resolu-
tion measured with 2010 data [34] is applied to the MC jets,
with the difference between the re-calibrated and nominal MC
resolution taken as the systematic uncertainty. Additional con-
tributions are added to both of these uncertainties to take into
account of the impact of pile-up at the relatively high luminosity
delivered by the LHC in the 2011 run. Both in-time pile-up, i.e.
multiple collisions within the same bunch crossing, and out-of-
time pile-up, which arises from the detector response to neigh-
bouring bunch crossings, have effects on jet energy measure-
ments. These were studied in detail as a function of the average
number of collisions per bunch crossing and by comparing data
recorded with 75 and 50 ns bunch spacing. A worsening in the
jet energy resolution in the forward region is observed when
moving from 75 to 50 ns operation; a systematic uncertainty
of 0.07× pT is therefore applied to jets with|η| > 2.8, used
for the Emiss

T calculation. The combined effects of in-time and
out-of-time pile-up on the jet energy scale are accounted for by
an additional conservative systematic uncertainty of up to7%

depending on|η| andpT. All these uncertainties are propagated
to the Emiss

T measurement. The impact of in-time pile-up on
other aspects of the selection was also investigated and found
to be negligible as expected given the high energies of the jets
entering the signal samples.

The dominant modelling uncertainty in MC predictions for
the signal region and control regions arises from the treatment
of jet radiation,which affects the calculation ofmeff. In order
to assess this uncertainty, the main backgrounds are estimated
using alternative generators (ALPGEN rather thanMC@NLO for tt̄
production) or reduced jet multiplicity (ALPGEN processes with
0–4 partons instead of 0–5 partons forW/Z+jets production).
The impact of renormalisation and factorisation scale variations
and PDF uncertainties was also studied. Differences in the ab-
solute expectations for the numbers of events in the SR and CR
as high as 100% are observed for specific processes; the im-
pact on the ratios used in the transfer factors is, however, much
smaller (differences∼<40%, channel dependent).

Additional uncertainties considered, for specific processes,
include those arising from photon and lepton trigger efficiency,
reconstruction efficiency, energy scale and resolution (CR1a,
CR1b, CR3 and CR4),b-tag/veto efficiency (CR3 and CR4),
photon acceptance and backgrounds (CR1a) and the limited
size of MC samples (all CRs). Uncertainties on the multi-jet
transfer factors are dominated by the modelling of the non-
Gaussian tails of the response function. Other sources, includ-
ing the limited number of data events, and uncertainties on the
Gaussian part of the response functions, are also considered.

Systematic uncertainties on the expected SUSY signal are es-
timated by varying the factorisation and renormalisation scales
in PROSPINO between half and twice their default values and by
considering the PDF uncertainties provided byCTEQ6. Uncer-
tainties are calculated for individual production processes (q̃q̃,
g̃g̃, andq̃g̃) and are typically∼35% in the vicinity of the limits
expected to be set by this analysis. Jet energy scale and resolu-
tion, and pile-up uncertainties on SUSY signal expectations are
typically smaller than 30–40%.

7. Results, Interpretation and Limits

The observed signal regionmeff distributions for each of the
channels used in this analysis are shown in Figure 1, together
with MC background expectations prior to using the likelihood
fitting procedure. The number of observed data events and the
number of SM events expected to enter each of the signal re-
gions, determined using the likelihood fit, are shown in Table 2.
The data are found to be in good agreement with the back-
ground expectation and no excess is observed. To illustratethe
procedure, the inputs and outputs of the combined likelihood fit
for the high mass channel are shown in Table 3.

Data from the five channels are used to set the limits, taking
the channel with the best expected limit at each point in param-
eter space. The limit for each channel is obtained by comparing
the observed numbers of signal events with those expected from
SM background plus SUSY signal processes, taking into ac-
count uncertainties in the expectation including those which are

4



Process
Signal Region

≥ 2-jet ≥ 3-jet
≥ 4-jet, ≥ 4-jet,

High mass
meff > 500 GeV meff > 1000 GeV

Z/γ+jets 32.3± 2.6± 6.9 25.5± 2.6± 4.9 209± 9± 38 16.2± 2.2± 3.7 3.3± 1.0± 1.3

W+jets 26.4± 4.0± 6.7 22.6± 3.5± 5.6 349± 30± 122 13.0± 2.2± 4.7 2.1± 0.8± 1.1

tt̄+ single top 3.4± 1.6± 1.6 5.9± 2.0± 2.2 425± 39± 84 4.0± 1.3± 2.0 5.7± 1.8± 1.9

QCD multi-jet 0.22± 0.06± 0.24 0.92± 0.12± 0.46 34± 2± 29 0.73± 0.14± 0.50 2.10± 0.37± 0.82

Total 62.4± 4.4± 9.3 54.9± 3.9± 7.1 1015± 41± 144 33.9± 2.9± 6.2 13.1± 1.9± 2.5

Data 58 59 1118 40 18

Table 2: Fitted background components in each SR, compared with the number of events observed in data. TheZ/γ+jets background is constrained with control
regions CR1a and CR1b, the QCD multi-jet,W and top quark backgrounds by control regions CR2, CR3 and CR4, respectively. In each case the first (second)
quoted uncertainty is statistical (systematic). Background components are partially correlated and hence the uncertainties (statistical and systematic) on the total
background estimates do not equal the quadrature sums of theuncertainties on the components.

Signal/ Control Region

CR1a CR1b CR2 CR3 CR4 SR

Data 8 7 34 15 12 18

Targeted background Z/γ+jets Z/γ+jets QCD multi-jet W+jets tt̄ + single top –

Transfer factor 0.374 0.812 0.063 0.196 0.372 –

FittedZ/γ+jets 8.3 5.8 0.7 0.5 0.0 3.3

Fitted QCD multi-jet – – 29.8 0.8 0.6 2.1

FittedW+jets – – 0.5 10.0 0.4 2.1

Fittedtt̄ + single top – 0.0 3.0 3.7 11.0 5.7

Fitted total background 8.3 5.9 34.0 15.0 12.0 13.1

Statistical uncertainty ±2.7 ±1.2 ±5.8 ±3.9 ±3.5 ±1.9

Systematic uncertainty ±0.6 ±1.7 ±0.1 ±0.1 ±0.2 ±2.5

Table 3: Numerical inputs (i.e. the observed numbers of events in data) to and outputs from the likelihood fit to the control regions for the high mass channel. Each
background process listed in the second row is measured using a control region, and the corresponding transfer factor islisted in the third row. An entry ‘–’ in rows
5–7 indicates that the process in that row is assumed not to contribute to the control region (based on Monte Carlo studies) and hence is excluded from the fit. All
numerical entries give event counts, with the exception of the transfer factors.

5



E
nt

rie
s 

/ 1
00

 G
eV

1

10

210

310

410

510

610  = 7 TeV)sData 2011 (
SM Total
QCD multijet
W+jets
Z+jets

 and single toptt
SM + SU(660,240,0,10)

-1
L dt = 1.04 fb∫

Dijet Channel

ATLAS

 [GeV] effm
0 500 1000 1500 2000 2500 3000

D
AT

A
 / 

M
C

0
0.5

1
1.5

2
2.5

E
nt

rie
s 

/ 1
00

 G
eV

1

10

210

310

410

510

 = 7 TeV)sData 2011 (
SM Total
QCD multijet
W+jets
Z+jets

 and single toptt
SM + SU(660,240,0,10)

-1
L dt = 1.04 fb∫

Three Jet Channel

ATLAS

 [GeV] effm
0 500 1000 1500 2000 2500 3000

D
AT

A
 / 

M
C

0
0.5

1
1.5

2
2.5

E
nt

rie
s 

/ 1
00

 G
eV

1

10

210

310

410

510  = 7 TeV)sData 2011 (
SM Total
QCD multijet
W+jets
Z+jets

 and single toptt
SM + SU(660,240,0,10)

-1
L dt = 1.04 fb∫

Four Jet Channel

ATLAS

 [GeV] effm
0 500 1000 1500 2000 2500 3000

D
AT

A
 / 

M
C

0
0.5

1
1.5

2
2.5

E
nt

rie
s 

/ 1
50

 G
eV

-110

1

10

210

310

410

510  = 7 TeV)sData 2011 (
SM Total
QCD multijet
W+jets
Z+jets

 and single toptt
SM + SU(660,240,0,10)

-1
L dt = 1.04 fb∫

Four Jet High Mass
Channel

ATLAS

 [GeV] effm
0 500 1000 1500 2000 2500 3000

D
AT

A
 / 

M
C

0
0.5

1
1.5

2
2.5

Figure 1: The observedmeff distributions in the signal regions for the≥ 2 jet channel (top left), the≥ 3 jet channel (top right) and the two≥ 4 jet channels (bottom
left), and for the high mass channel using the inclusive definition of meff (bottom right), after all the selection criteria but themeff cut. These plots also show the
expected SM contributions obtained from MC simulated samples prior to normalisation using the data-driven likelihoodmethod described in the text. The red
arrows indicate the lower bounds onmeff used in the final signal region selections. The expectation for a MSUGRA/CMSSM reference point withm0 = 660 GeV,
m1/2 = 240 GeV,A0 = 0, tanβ = 10 andµ > 0 is also shown. This reference point is also indicated by thestar on Figure 2. Below each plot the ratio of the
data to the SM expectation is provided. Black vertical bars show the statistical uncertainty from the data, while the yellow band shows the size of the systematic
uncertainties from the MC simulation.
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correlated between signal and background (for instance jeten-
ergy scale uncertainties). The impact of SUSY signal contam-
ination of the control regions is taken into account by applying
MC-derived model dependent correction factors∼ 0.97–1.02
to the resulting exclusion significance values. The excluded re-
gions are obtained using the CLs prescription [41].

An interpretation of the results is presented in Figure 2 (left)
as a 95% confidence exclusion region in the (mg̃,mq̃)-plane for

a simplified set of SUSY models withm(χ̃0
1) = 0. In these

models the gluino mass and the masses of the squarks of the
first two generations are set to the values shown in the fig-
ure. All other supersymmetric particles, including the squarks
of the third generation, are decoupled by being given masses
of 5 TeV. The limits are reduced by decay chain kinematics if
m(χ̃0

1) is comparable to the squark or gluino mass.ISASUSY

from ISAJET [42] v7.80 is used to calculate the decay tables,
and to guarantee consistent electroweak symmetry breaking.

The results are also interpreted in the tanβ = 10, A0 = 0,
µ > 0 slice of MSUGRA/CMSSM2 [43] in Figure 2 (right).
These limits include the effects of the mass spectrum of the
SUSY particles on their decay chains. In regions of parameter
space with small mass splittings between states, the modelling
of initial state radiation can affect the signal significance. This
modelling is taken fromHERWIG without modification.

In the limit of light neutralinos, with the assumption that the
coloured sparticles are directly produced and decay directly to
jets andχ̃0

1, the limits on the gluino and squark masses are ap-
proximately 700 GeV and 875 GeV respectively for squark or
gluino masses below 2 TeV, rising to 1075 GeV if the squarks
and gluinos are assumed to be mass-degenerate. These limits
remain essentially unchanged if theχ̃0

1 mass is raised as high
as 200 GeV. In the case of a specific SUSY-breaking scenario,
i.e. CMSSM/MSUGRA with tanβ = 10, A0 = 0, µ > 0, the
limit on m1/2 reaches 460 GeV for low values ofm0, and equal
mass squarks and gluinos are excluded below 950 GeV. The use
of signal selections sensitive to larger jet multiplicities than in
[5] has improved the ATLAS reach at largem0. The five sig-
nal regions are used to set limits onσnew = σAǫ, for non-SM
cross-sections (σ) for which ATLAS has an acceptanceA and a
detection efficiency ofǫ [44]. The excluded values ofσnew are
22 fb, 25 fb, 429 fb, 27 fb and 17 fb, respectively, at the 95%
confidence level.

8. Summary

This Letter reports a search for new physics in final states
containing high-pT jets, missing transverse momentum and no
electrons or muons withpT > 20 GeV. Data recorded by the
ATLAS experiment a the LHC, corresponding to an integrated
luminosity of 1.04 fb−1 have been used. Good agreement is

2Five parameters are needed to specify a particular MSUGRA/CMSSM
model. They are the universal scalar mass,m0, the universal gaugino mass
m1/2, the universal trilinear scalar coupling,A0, the ratio of the vacuum expec-
tation values of the two Higgs fields, tanβ, and the sign of the higgsino mass
parameter,µ > 0 or< 0.

seen between the numbers of events observed in the five signal
regions and the numbers of events expected from SM sources.
The exclusion limits placed on non-SM cross sections impose
new constraints on scenarios with novel physics.

The results are interpreted in both a simplified model con-
taining only squarks of the first two generations, a gluino octet
and a massless neutralino, as well as in MSUGRA/CMSSM
models with tanβ = 10, A0 = 0 andµ > 0. In the sim-
plified model, gluino and squark masses below 700 GeV and
875 GeV respectively are excluded at the 95% confidence level
for squark or gluino masses below 2 TeV, with the limit increas-
ing to 1075 GeV for equal mass squarks and gluinos. In the
MSUGRA/CMSSM models, equal mass squarks and gluinos
are excluded below 950 GeV.
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Z. Zenonos122a,122b, S. Zenz14, D. Zerwas115, G. Zevi della Porta57, Z. Zhan32d, D. Zhang32b,ab, H. Zhang88, J. Zhang5,
X. Zhang32d, Z. Zhang115, L. Zhao108, T. Zhao138, Z. Zhao32b, A. Zhemchugov65, S. Zheng32a, J. Zhong151,a f , B. Zhou87,
N. Zhou163, Y. Zhou151, C.G. Zhu32d, H. Zhu41, J. Zhu87, Y. Zhu172, X. Zhuang98, V. Zhuravlov99, D. Zieminska61,
R. Zimmermann20, S. Zimmermann20, S. Zimmermann48, M. Ziolkowski141, R. Zitoun4, L. Živković34, V.V. Zmouchko128,∗,
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