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Abstract. The jet fragmentation function and transverse profile for jets with 25 GeV < pT jet < 500 GeV
and |ηjet| < 1.2 produced in proton-proton collisions with a center-of-mass energy of 7 TeV are presented.
The measurement is performed using data with an integrated luminosity of 36 pb−1. Jets are reconstructed
and their momentum measured using calorimetric information. The momenta of the charged particle con-
stituents are measured using the tracking system. The distributions corrected for detector effects are
compared with various Monte Carlo event generators and generator tunes. Several of these choices show
good agreement with the measured fragmentation function. None of these choices reproduce both the
transverse profile and fragmentation function over the full kinematic range of the measurement.

PACS. 13.87 -a

1 Introduction and Overview

This paper presents measurements of jet properties in
proton-proton (pp) collisions at a center of mass energy
of 7 TeV at the CERN LHC using the ATLAS detector.
Jets are identified and their momenta measured using the
calorimeters. Charged particles measured by the tracking
system are then associated with these jets using a geomet-
ric definition. The structure of the jets is studied using
these associated particles.

Jets produced at large transverse momentum in proton-
proton collisions arise from the scattering of proton con-
stituents leading to outgoing partons (quarks and glu-
ons) with large transverse momenta. These manifest them-
selves as jets of hadrons via a “fragmentation process”.
While the scattering of the proton constituents is well de-
scribed by perturbative QCD and leads, at lowest order,
to final states of gg, gq, and qq, the fragmentation pro-
cess is more complex. First, fragmentation must connect
the outgoing partons with the rest of the event as the jet
consists of colourless hadrons while the initiating parton
carries colour. Second, the process involves the production
of hadrons and takes place at an energy scale where the
QCD coupling constant is large and perturbation theory
cannot be used. Fragmentation is therefore described us-
ing a QCD-motivated model with parameters that must
be determined from experiment. The fragmentation func-
tion Dh

i (z,Q) is defined as the probability that a hadron
of type h carries longitudinal momentum fraction z of the

momentum pi of a parton of type i

z ≡
pi · ph

|pi|
2 . (1)

D(z,Q) depends on z and on the scale Q of the hard
scattering process which produced the parton. While the
value of Dh

i (z,Q) cannot be calculated in perturbative
QCD, the variation with Q can be predicted provided Q
is sufficiently large [1–6].

In this paper a quantity related to Dh
i (z,Q) is mea-

sured. After jets have been reconstructed, the data are
binned for fixed ranges of jet transverse momenta (pT jet),
each bin containingNjet jets; z is then determined for each
charged particle associated with the jet

z =
pjet · pch

|pjet|
2 , (2)

where pjet is the momentum of the reconstructed jet and
pch the momentum of the charged particle. The following
quantity is measured

F (z, pT jet) ≡
1

Njet

dNch

dz
, (3)

where Nch is the number of charged particles in the jet.
F (z, pTjet) is a sum over Dh

i (z,Q) weighted by the rate at
which each parton species (i) is produced from the hard
scattering process. As particle identification is not used, h
is summed over all charged hadrons. The hard scattering
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scale Q is of the same order of magnitude as pT jet. At
small pT jet, gluon jets dominate due to the larger gluon
parton densities in the proton and larger scattering rates
for gg → gg. In the pseudorapidity range used for jets in
this analysis (|ηjet| < 1.2)1 the fraction of jets originating
from a hard scattering that produces a gluon falls from
80% for pT jet ∼ 25 GeV to 50% for pT jet ∼ 300 GeV
according to the Pythia [7] event generator.

The jets measured experimentally also contain parti-
cles produced from the hadronization of the beam rem-
nants (the “underlying event”). It should be emphasized
that because colour fields connect all the strongly interact-
ing partons in the pp event, no unambiguous assignment
of particles to the hard scattering parton or underlying
event is possible. The integral of F (z, pT jet) with respect
to z corresponds to the multiplicity of charged particles
within the jet. A clear summary of fragmentation phe-
nomenology is provided in [8] (Section 17) whose notation
is followed here.

The derivation of Dh
i (z,Q) from F (z, pT jet) is beyond

the scope of this paper, but comparisons of F (z, pT jet)
with the predictions of several Monte Carlo (MC) gener-
ators will be made. Different features of the Monte Carlo
models are probed by these studies. At low values of pT jet,
the comparisons are most sensitive to the non-perturbative
models of fragmentation, the connection of the partons to
the remainder of the event and to the accretion of parti-
cles from the underlying event into the jet. As pT jet rises,
the impact of these effects is diluted and, if all the Monte
Carlo models implemented perturbative QCD in the same
way, F (z, pT jet) would become similar. In particular the
increase of the total particle multiplicity with the hard
scattering energy, here pT jet, is predicted by perturbative
QCD [9].

Two other related quantities that describe the trans-
verse shape of the jets are also studied here. The variable
prelT is the momentum of charged particles in a jet trans-
verse to that jet’s axis:

prelT =
|pch × pjet|

|pjet|
. (4)

The following distribution is measured

f(prelT , pT jet) ≡
1

Njet

dNch

dprelT

. (5)

Finally, the density of charged particles in y-φ space,
ρch(r, pT jet), is measured as a function of the angular dis-

1 ATLAS uses a right-handed coordinate system with its ori-
gin at the nominal interaction point (IP) in the centre of the
detector and the Z-axis coinciding with the axis of the beam
pipe. The X-axis points from the IP to the centre of the LHC
ring, and the Y -axis points upward. Cylindrical coordinates
(r,φ) are used in the transverse plane, φ being the azimuthal
angle around the beam pipe. The pseudorapidity is defined in
terms of the polar angle θ as η = − ln tan(θ/2). The rapidity y
for a track or jet is defined by y = 0.5 ln [(E + pZ)/(E − pZ)]
where E denotes the energy and pZ is the momentum along the
beam direction. For tracks, the energy is calculated assuming
the particle is a pion.

tance r of charged particles from the axis of the jet that
contains them, where r is given by:

r = ∆R(ch, jet) =
√

(φch − φjet)2 + (ych − yjet)2 (6)

Thus ρch(r, pT jet) is given by:

ρch(r, pT jet) ≡
1

Njet

dNch

2πrdr
. (7)

As in the case of the longitudinal variables, a com-
parison of these transverse quantities with Monte Carlo
generators is sensitive to many of their features. The non-
perturbative hadronization processes produce particles that
have limited transverse momentum with respect to the
parton direction. The mean value of this transverse mo-
mentum is of order a few hundred MeV, the scale where
the QCD coupling constant becomes non-perturbative. At
low pT jet this effect dominates. If there were no other
contributions, prelT would remain constant with increas-
ing pT jet. Therefore more of the energy would be concen-
trated in the core of the jet as pT jet increases and the
jets would become narrower. However, as pT jet increases
contributions from processes controlled by perturbative
QCD radiation become more important, contributing to
jet broadening and causing the mean value of prelT to rise
slowly (approximately logarithmically).

The phenomena described above are incorporated in
all the Monte Carlo generators used to describe jet produc-
tion in pp collisions, although there are significant differ-
ences in how these effects are implemented. For example,
Pythia describes non-perturbative hadronization using a
string model while Herwig [10] uses a cluster model. In
Pythia, coherent colour effects are described partly by
string fragmentation. These effects are also produced in
Herwig and Pythia from gluon radiation. Treatments of
the proton remnants are also described using different phe-
nomenological approaches. For both generators, the im-
plementations require that a number of input parameters
be tuned to the data. The results presented in this paper
will test whether these Monte Carlo models and their cur-
rent input parameters adequately describe jets produced
at the LHC. As the results are presented in bins of pT jet,
the explicit dependence on pT jetin the variables defined in
Equations 3, 5 and 7 is often suppressed in the following.

The measurement is performed using data with an in-
tegrated luminosity of 36 pb−1 recorded in 2010 with the
ATLAS detector at the LHC at a center-of-mass energy
of 7 TeV. The measurement covers a kinematic range of
25 GeV < pT jet < 500 GeV and |ηjet| < 1.2. Events are
triggered using a minimum bias trigger and a combina-
tion of calorimeter jet triggers. A complementary ATLAS
analysis [11] studying the jet fragmentation function and
transverse profile of jets reconstructed from charged parti-
cle tracks using a total integrated luminosity of 800 µb−1

has been completed. It explores the properties of jets at
lower transverse momentum than those typically studied
in this paper.
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Previous measurement of jet fragmentation functions
have been made in e+e− collisions [12–15], in pp collisions
[16, 17] and in ep collisions [18, 19].

This paper is organized as follows. The ATLAS de-
tector is described briefly in Section 2. The Monte Carlo
generator samples are discussed in Section 3. The event
and object selections are described in Section 4. Section
5 contains a description of the analysis. In Section 6 the
treatment of systematic uncertainties is presented. Results
and conclusions are shown in Sections 7 and 8.

2 The ATLAS Detector

The ATLAS detector is described in detail in Ref. [20].
The subsystems relevant for this analysis are the inner
detector (ID), the calorimeter and the trigger. The ID
is used to measure the momentum of charged particles.
It consists of three subsystems: a pixel detector, a sili-
con strip tracker (SCT) and a transition radiation straw
tube tracker (TRT). These detectors are located inside a
solenoid that provides a 2 T axial field. The ID has full
coverage in the azimuthal angle φ and over the pseudora-
pidity range 0 < |ηtrack| < 2.5.

The electromagnetic calorimeters use liquid argon as
the active detector medium. They consist of accordion-
shaped electrodes and lead absorbers and cover the pseu-
dorapidity range |η| < 3.2. The technology used for the
hadronic calorimeters varies with η. In the barrel region
(|η| < 1.7) the detector is made of scintillating tiles with
steel radiator. In the endcap region (1.5 < |η| < 3.2) the
detector uses liquid argon and copper. A forward calorime-
ter consisting of liquid argon and tungsten/copper ab-
sorbers serves as both electromagnetic and hadronic calorime-
ter at large pseudorapidity and extends the coverage to
|η| < 4.9.

The calorimeters are calibrated at the electromagnetic
scale which correctly reconstructs the energy deposited by
electrons and photons. The calorimeters are not compen-
sating and the response of hadrons is lower than that of
electrons (e/h > 1). Some fraction of the hadronic en-
ergy can also be deposited in the material in front of
and in-between calorimeters. The response for hadronic
jets [21] is ∼ 50% of the true energy for pT jet = 20GeV
and |ηjet| < 0.8 and rises both with pT jet and ηjet. For
|ηjet| < 0.8, the response at pT jet = 1TeV is ∼ 80%.

The ATLAS trigger consists of three levels of event se-
lection: Level-1 (L1), Level-2 (L2), and Event Filter. The
L2 and event filter together form the High-Level Trigger
(HLT). The L1 trigger is implemented using custom-made
electronics, while the HLT is based on fast data recon-
struction online algorithms running on commercially avail-
able computers and networking systems. The triggers rel-
evant for this analysis are the L1 minimum bias triggers
(MBTS) and the L1 and HLT calorimeter triggers. The
minimum bias trigger is based on signals from 32 scintil-
lation counters located at pseudorapidities 2.09 < |η| <
3.84. Because non-diffractive events fire the MBTS with
high efficiency and negligible bias, this trigger can be used
to study jets with low pT jet. However, MBTS triggers were

highly prescaled at large instantaneous luminosities, mak-
ing them unsuitable for studies of high pT jets that are
produced at low rate. A series of single jet inclusive trig-
gers with different jet ET thresholds and prescales were de-
ployed to ensure that significant data samples were taken
over the full range of pT jet [22].

3 Monte Carlo Samples

Several Monte Carlo samples are used in this analysis.
Some samples were processed with the ATLAS full de-
tector simulation [23] which is based on the GEANT4

toolkit [24]. The simulated events are then passed through
the same reconstruction software as the data. These are
used to model the response of the detector and to cor-
rect the data for experimental effects. The baseline Monte
Carlo sample used to determine these corrections is pro-
duced using Pythia [7] 6.421 with the ATLAS tuneAMBT1

which uses the MRST2007LO* PDFs [25] and was derived
using the measured properties of minimum bias events [26].
Several other fully simulated samples are used to assess
systematic uncertainties: Pythia using the Perugia2010
tune [27] (CTEQ5L PDFs [28]); Herwig 6.5 [10] using
Jimmy 3.41 [29] and Herwig++ 2.4.2 [30] (MRST2007LO*
PDFs).

Additional Monte Carlo generator samples are used
to compare with the final corrected data: Pythia6.421
with the ATLAS MC09 tune [31] (MRST2007LO* PDFs),
Herwig++ 2.5.1 [32] (MRST2007LO* PDFs) , Sherpa [33]
(CTEQ6L [34] PDFs) and Pythia8 (8.105) [35]
(MRST2007LO* PDFs).

4 Reconstruction and Event Selection

Events are required to have at least one primary vertex
reconstructed using ID tracks. If the event has multiple
primary vertices, the vertex with the largest

∑

(pTtrack)
2

is tagged as the hard-scattering vertex.
Jets are reconstructed using the infrared- and collinear-

safe anti-kt algorithm [36] with radius parameter Rc = 0.6
using the FastJet package [37]. The detector input is based
on topological clusters [38]. A topological cluster is de-
fined to have an energy equal to the energy sum of all
the included calorimeter cells, zero mass and a recon-
structed direction calculated from the weighted averages
of the pseudo-rapidities and azimuthal angles of the con-
stituent cells. The weight used is the absolute cell energy
and the positions of the cells are relative to the nominal
ATLAS coordinate system. The energy of these clusters
is measured at the electromagnetic scale, which provides
the appropriate calibration for electrons and photons. A
pT jet and ηjet dependent calibration is then applied to
each jet [21]. These calibrations are based on comparing
the response from simulated calorimeter jets to that of
jets reconstructed using generator particles and matched
to the reconstructed jets in η-φ space. The η-φ position of
the jet (and hence its momentum) is corrected to account
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Fig. 1. Systematic uncertainty in F (z, pT jet) from uncertainties in the jet energy scale and resolution, the track reconstruction
efficiency and momentum resolution and the response matrix for 25 GeV < pT jet < 40 GeV (left) and 400 GeV < pT jet <
500 GeV (right). The total uncertainty from the combination is also shown.
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Fig. 2. Systematic uncertainty in f(prelT , pT jet) from uncertainties in the jet energy scale and resolution, the track reconstruction
efficiency and momentum resolution and the response matrix for 25 GeV < pT jet < 40 GeV (left) and 400 GeV < pT jet <
500 GeV (right). The total uncertainty from the combination is also shown.

for the fact that the primary vertex of the interaction is
not at the geometric centre of the detector. Quality cri-
teria are applied to ensure that jets are not produced by
noisy calorimeter cells, and to avoid problematic detector
regions. The jet energy is corrected for the presence of ad-
ditional pp interactions in the same bunch crossing using
correction constants measured in-situ that depend on the
number of reconstructed primary vertices.

Jets are required to have |ηjet| < 1.2. For events se-
lected with the MBTS trigger, jets are required to pass a
minimum cut of pT jet > 20 GeV. For events selected using
jet triggers, a trigger-dependent minimum pT jet threshold
is imposed on jets used in the final measurements to en-
sure a jet trigger efficiency larger than 99%.

Tracks are selected using the following cuts:

pTtrack > 0.5GeV, Npixel ≥ 1, NSCT ≥ 6,

|d0| < 1.5mm, |z0 sin θ| < 1.5mm,

where Npixel and NSCT are the number of hits from the
pixel and SCT detectors, respectively, that are associated
with the track and d0 and z0 are the transverse and longi-
tudinal impact parameters measured with respect to the
hard-scattering vertex.

Tracks are associated with jets using a simple geomet-
ric algorithm. If the distance in η-φ between the track and
the jet is less than the radius parameter used in the jet
reconstruction (Rc = 0.6), the tracks are considered to
belong to the jet. Track parameters are evaluated at the
perigee to the primary vertex and are not extrapolated to
the calorimeter. This simple association algorithm facili-
tates comparison with particles from the event generator
whose parameters correspond to those measured at the
primary vertex..
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Fig. 4. Distributions of F (z) for 25 GeV < pT jet < 40 GeV (left) and 400 GeV < pT jet < 500 GeV (right). The gray band
indicates the total uncertainty.

5 Analysis

The results presented here are obtained using four mea-
sured distributions: the jet transverse momentum spec-
trum, dNjet(pT jet)/dpT jet, and three differential distribu-
tions of the number of charged tracks, dNtracks(z, pT jet)/dz,
dNtracks(p

rel
T , pT jet)/dp

rel
T and dNtracks(r, pT jet)/dr. To fa-

cilitate comparison with the predictions of Monte Carlo
event generators, these distributions are corrected for de-

tector acceptance, reconstruction efficiency and migration
due to track and jet momentum resolution effects. This
correction procedure is called unfolding. The distributions
F (z, pTjet), f(prelT , pT jet) and ρch(r, pT jet) are obtained
from the charged particle differential distributions by nor-
malizing the distribution for each pT jet range to the value
of Njet(pT jet) obtained from the unfolding of the jet trans-
verse momentum spectrum. This paper presents results for
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pT jet > 25 GeV; however, to decrease the systematic un-
certainty associated with the modeling of the pT jet spec-
trum, jets with 20 GeV < pT jet < 25 GeV are also used
in the unfolding.

A Bayesian iterative unfolding method [39] implemented
in the RooUnfold [40] software package is used. This pro-
cedure takes as its input the measured distributions and
a response matrix obtained from simulated data that pro-
vides a mapping between reconstructed objects and those
obtained directly from the event generator. This response
matrix is not unitary because in mapping from generator
to reconstruction some events and objects are lost due to
inefficiencies and some are gained due to misreconstruc-
tion or migration of truth objects from outside the fiducial
acceptance into the reconstructed observables. It is there-
fore not possible to obtain the unfolded distributions by
inverting the response matrix and applying it to the mea-
sured data. Instead, an assumed truth distribution (the
“prior”) is selected, the response matrix is applied and the
resulting trial reconstruction set is compared to the ob-
served reconstruction set. A new prior is then constructed
from the old prior and the difference between the trial and
the observed distributions. The procedure can iterated un-
til this difference becomes small. Monte Carlo based stud-
ies of the performance of the procedure demonstrate that
in this analysis no iteration is necessary. The initial truth
prior is taken to be the prediction of the baseline Monte
Carlo generator. Systematic uncertainties associated with
this choice and with the modeling of the response matrix
are discussed in Section 6.

6 Systematic Uncertainties

The following sources of systematic uncertainties are con-
sidered:

1. The jet energy scale (JES) and resolution (JER) un-
certainties which affect the measurement of the num-
ber of jets in a given pT jet bin and consequently the
measured value of z.

2. The track reconstruction efficiency and momentum re-
construction uncertainties which affect the number of
tracks in each z, prelT and Nch(r) bin.

3. The uncertainty in the response matrix which is de-
rived using a particular Monte Carlo sample and de-
pends on the details of the event generator.

4. Potential bias due to the failure of the unfolding pro-
cedure to converge to the correct value.

These systematic uncertainties are addressed using Monte
Carlo methods.

The first two systematic uncertainties, potential bias
due to incorrect Monte Carlo modeling of the JES and/or
JER and potential bias due to mismodeling by the sim-
ulation of the track reconstruction efficiency and/or res-
olution, are studied by modifying the detector response
in simulated data. These modified Monte Carlo events
are then unfolded and compared to the baseline. The sys-
tematic uncertainty on the JES is studied by varying the
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Fig. 5. Distributions of F (z) in bins of pT jet. The circles show
unfolded data and the lines are the predictions from AMBT1
Pythia.

jet energy response by its uncertainty. The JES uncer-
tainty varies from 4.6% at pT jet = 20 GeV to 2.5%
at pT jet = 500 GeV [21]. Systematic uncertainties on
the JER are studied by broadening the jet energy reso-
lution with an additional ηjet and pT jet dependent Gaus-
sian term. The uncertainty on the JER is below 14% for
the full pT jet and ηjet range used in this analysis [41].
The uncertainty on the tracking efficiency is studied by
randomly removing a fraction of the tracks in the sim-
ulated data. Uncertainties on the tracking efficiency are
η-dependent and vary between 2% and 3% for the rele-
vant range of ηtrack [42], dominated by the accuracy of
the description of the detector material in the simulation.
In addition, there can be a loss of tracking efficiency in the
core of jets at high pT jet due to a single pixel hit receiving
contributions from more than track. Studies of such hit
sharing show that the simulation and data agree well and
that the resulting systematic uncertainty is negligible for
pT jet< 500 GeV. Uncertainties on the track momentum
resolution are parametrized as an additional η-dependent
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broadening of the resolution in curvature with values that
vary from 0.0004 GeV−1 to 0.0009 GeV−1 [43].

While the studies described above account for system-
atic uncertainties associated with the accuracy of the de-
tector simulation, they do not account for the fact that
the response matrix itself depends on the fragmentation
properties of the jets and hence on the physics descrip-
tion in the event generator. Because the response of the
calorimeter to hadrons depends on the hadron momen-
tum [44], the JES depends at the few per cent level on
the momentum spectrum of particles within the jet. Be-
cause the probability that a track will share hits in the
ID with another track is dependent upon the local density
of particles within the jet, the tracking resolution depends
weakly on the transverse profile of particles within the jet.
These effects have been studied by unfolding fully simu-
lated Monte Carlo samples created from Perugia2010,
Herwig 6.5 (with Jimmy 3.41) and Herwig++ using the
baseline response matrix obtained with Pythia AMBT1.
Differences between the unfolded results for each tune and
the true distributions obtained from that same tune are
studied as a function of z, prelT and Nch(r) for each bin in
true pT jet and used to assess the systematic uncertainty.

Potential bias in the unfolding procedure itself is stud-
ied by creating 1000 pseudo-experiments where the “data”
are drawn from the baseline fully simulated Monte Carlo
samples via a bootstrap method [45] and unfolding these
”data” using the standard procedure. The mean results
obtained from these samples show negligible bias and have
a spread that is consistent with the reported statistical
uncertainties. The systematic uncertainty due to the un-
folding procedure is thus deemed to be negligible in com-
parison to the other uncertainties.

The resulting systematic uncertainties on F (z, pT jet),
f(prelT , pT jet) and ρch(r, pT jet) for the 25 GeV < pT jet <
40 GeV (left) and 400 GeV < pT jet < 500 GeV (right)
are shown in Figures 1 through 3. For F (z, pTjet), un-
certainties on the tracking efficiency and response matrix
dominate at low z while the jet energy scale dominates
at high z. For f(prelT , pT jet) the jet energy scale, response
matrix and tracking efficiency uncertainties are all sig-
nificant and the overall uncertainty rises with prelT . For
ρch(r, pT jet), the response matrix and tracking efficiency
uncertainties are significant for all pT jet and r while the
jet energy scale contribution is most important for small
pT jet.

7 Results

This section presents comparisons of acceptance-corrected,
unfolded data to the predictions of several Monte Carlo
generators. The gray band on all the figures indicates the
total uncertainty which is dominated by the systematic
uncertainty. Figure 4 shows distributions of F (z) in two
bins of pT jet. Figure 5 shows distributions of F (z) in all
bins of pT jet compared to AMBT1 Monte Carlo. Com-
parisons of the data and the Monte Carlo samples are
shown in Figure 6. All the Pythia 6 tunings show good

agreement with the data. Herwig+Jimmy disagrees with
the data at large z for pT jet > 200 GeV. Herwig++ 2.5.1
is below the data at low z for pT jet > 100 GeV while
Herwig++ 2.4.2 has too many particles at low z for pT jet <
100 GeV. Pythia8 and Sherpa provide a poor description
of the data.

Figure 7 (left) shows the distribution of 〈z〉 for the
data and for a selection of Monte Carlo samples as a func-
tion of pT jet. A comparison with the Monte Carlo gen-
erators shows that the AMBT1 and MC09 Pythia and
Perugia2010 datasets show good agreement with the
data over the entire pT jet range. The agreement with Her-
wig+Jimmy is satisfactory. Herwig++ 2.5.1 is inconsistent
with the data for pT jet > 40 GeV and 2.4.2 is inconsistent
for pT jet < 100 GeV. Pythia8 is ∼ 8% below the data
at all pT jet. Sherpa agrees well.

The charged particle multiplicity as a function of pT jet

is shown in Figure 7 (right). The Pythia 6 tunes show
reasonable agreement, with AMBT1 being higher than the
others. Herwig+Jimmy has slightly too few particles for
pT jet > 200 GeV. Herwig++ 2.4.2 (2.5.1) has too many
(few) particles for pT jet < 200 (> 300) GeV. Sherpa de-
scribes the data well while Pythia8 has ∼ 8% too many
particles at all pT jet.

The transverse profile of the jets is described by the
ρch(r) and f(prelT ) distributions. Figure 8 shows the distri-
bution of ρch(r) in two bins of pT jet. The sharp decrease
in population in the last bin is a feature of the jet al-
gorithm, which tends to incorporate particles close to the
radius parameter into the jet. The effect is also seen in [11]
(Figure 6) where distributions for two radius parameters
are shown. Figure 9 shows the distribution of f(prelT ) in
the same two pT jet bins. Figures 10 and 11 show distribu-
tions of ρch(r) and f(prelT ), respectively, in all pT jet bins
together with the predictions of the AMBT1 Monte Carlo.
Comparisons of ρch(r) for all data and Monte Carlo are
shown in Figure 12. Sherpa, Herwig++ 2.4.2 and Pythia8
disagree significantly with the data over the full range of
the measurement. Pythia8 is consistent with the data
only over a very restricted range of pT jet around 80 GeV.
Herwig++ 2.5.1 shows good agreement except at small r
and for pT jet > 200 GeV. Herwig+Jimmy is consistent
with the data only for pT jet > 160 GeV. All the Pythia 6
tunings except AMBT1 agree; AMBT1 shows disagree-
ment for pT jet > 200 GeV. Comparison of f(prelT ) for all
data and Monte Carlos are shown in Figure 13. None of
the generators agree with the data within the systematic
uncertainties.

The mean value of prelT as a function of pT jet is shown
in Figure 14. Herwig++ 2.5.1 has much too large a value
of 〈prelT 〉 for pT jet > 100 GeV and 2.4.2 has too small
a value for pT jet < 80 GeV. AMBT1 has too small a
value at all pT jet. Herwig+Jimmy has too large a value
for pT jet > 200 GeV. Agreement of the remaining Monte
Carlos is quite good.
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Fig. 12. The ratio of ρch(r) predicted by various Monte Carlo generators to that measured. The gray band indicates the
combined statistical and systematic uncertainties.
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8 Conclusion

A measurement of the jet fragmentation properties for
charged particles in proton-proton collisions at a center-of-
mass energy of 7 TeV is presented. The dataset recorded
with the ATLAS detector at the LHC in 2010 with an
integrated luminosity of 36 pb−1 is used. Systematic un-
certainties for the fragmentation function which describes
how the jet momentum is distributed amongst its con-
stituents vary between approximately 4% and 40% de-
pending on z and pT jet. The uncertainties increase strongly
with z and are largest at small pT jet. The measurements
of the distributions ρch(r, pT jet) and f(prelT , pT jet) which
describe the shape of jets transverse to the jet direction
have uncertainties that fall as pT jet increases, increase at
large values of prelT and are almost independent of r. They
are less than 5% except in the lowest pT jet range and for
prelT > 1 GeV.

The measurements are sensitive to several properties
of QCD as implemented in and modeled by Monte Carlo
event generators. The additional QCD radiation present
as pT jet increases is modeled by perturbative QCD and re-
sults in a growth of the particle multiplicity. This growth is
very well modeled by all the Monte Carlo generators used
here. Two other effects that cannot be described by per-
turbative QCD impact the measured distributions. The
hadronization of partons produced in a QCD radiative
shower into the observed hadrons must be modeled in the
Monte Carlo generators and is described by a large num-
ber of parameters which are tuned to agree with data.
Particles produced from remnants of the initial protons
(underlying event) can be incorporated into jets whose
constituents mainly come from the hard scattering, so the
measured jet properties can be sensitive to this modeling.

The measured fragmentation functions agree well with
the AMBT1 Pythia and Perugia2010 Monte Carlo pre-
dictions within statistical and systematic uncertainties.
Other tunes and generators show less good agreement
indicating that the non-perturbative physics is not ad-
equately modeled in these cases. Measurements of the
transverse distributions f(prelT , pT jet) and ρch(r, pT jet) are
also presented. For the prelT distribution, none of the gener-
ators agree with data within systematic uncertainties over
the full kinematic range. For the ρch(r, pT jet) distribution,
Herwig+Jimmy, Pythia MC09 and Perugia2010 are in
reasonable agreement with the data.

In summary, none of the Monte Carlo generators stud-
ied provide a good description of all the data. The mea-
surements presented here provide valuable inputs to con-
strain future improvements in Monte Carlo modeling of
fragmentation. The full results are available in the HEP-
DATA database [46], and a Rivet [47] module for the anal-
ysis is also available.
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expectations.
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A.A. Minaenko128, M. Miñano167, I.A. Minashvili65, A.I. Mincer108, B. Mindur37, M. Mineev65, Y. Ming130,
L.M. Mir11, G. Mirabelli132a, L. Miralles Verge11, A. Misiejuk76, J. Mitrevski137, G.Y. Mitrofanov128,
V.A. Mitsou167, S. Mitsui66, P.S. Miyagawa139, K. Miyazaki67, J.U. Mjörnmark79, T. Moa146a,146b, P. Mockett138,
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74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 Department of Physics, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
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