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Abstract

The cross section for the production of W bosons with subsequent decay W → τντ is measured with the ATLAS detector
at the LHC. The analysis is based on a data sample that was recorded in 2010 at a proton-proton center-of-mass energy
of

√
s = 7 TeV and corresponds to an integrated luminosity of 34 pb−1. The cross section is measured in a region of

high detector acceptance and then extrapolated to the full phase space. The product of the total W production cross
section and the W → τντ branching ratio is measured to be σtot

W→τντ
= 11.1± 0.3 (stat)± 1.7 (syst)± 0.4 (lumi) nb.
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1. Introduction

The study of processes with τ leptons in the final state
is an important part of the ATLAS physics program, for
example in view of searches for the Higgs boson or super-
symmetry [1, 2, 3]. Decays of Standard Model particles
to τ leptons, in particular Z → ττ and W → τντ , are im-
portant background processes in such searches. Studies of
the W → τντ decay complement the measurement of W
production in the muon and electron decay modes [4, 5].
In addition, W → τντ decays can be used to validate
the reconstruction and identification techniques for τ lep-
tons and the measurement of the missing transverse energy
(Emiss

T ), which are both fundamental signatures in a wide
spectrum of measurements at the LHC.

At next-to-next-to-leading order (NNLO), theW → τντ
signal is predicted to be produced at

√
s = 7 TeV with a

cross section times branching ratio of σ × BR = 10.46 ±
0.52 nb [6, 7, 8]. Since purely leptonic τ decays cannot
be easily distinguished from electrons and muons from
W → eνe or W → µνµ decays, the analysis presented in
this paper uses only hadronically decaying τ leptons (τh).
Events from W → τντ production contain predominantly
low-pT W bosons decaying into τ leptons with typical vis-
ible transverse momenta between 10 and 40 GeV. In ad-
dition, the distribution of the missing transverse energy,
associated with the neutrinos from the W and τh decays,
has a maximum around 20 GeV and a significant tail up
to about 80 GeV.

Previous measurements at hadron colliders ofW boson
production with the subsequent decay W → τντ based on
pp̄ collisions were reported by the UA1 collaboration [9] at
center-of-mass energies of

√
s= 546 GeV and

√
s = 630 GeV

and by the CDF and D0 collaborations [10, 11] at a center-
of-mass energy of

√
s = 1.8 TeV.

In this Letter, we describe the measurement of this
process with

√
s = 7 TeV pp collision data, which were

recorded with the ATLAS experiment at the LHC.

2. The ATLAS detector

The ATLAS detector is described in Ref. [12]. The
cylindrical coordinate system is defined with polar an-
gles θ relative to the beamline and azimuthal angles φ in
the plane transverse to the beam. Pseudorapidities η are
defined as η = − ln tan θ

2 . Transverse momenta, pT, are
defined as the component of momentum perpedicular to
the beamline. Distances are measured in the η-φ plane as
∆R =

√

∆η2 +∆φ2.
Measurements of charged-particle trajectories and mo-

menta are performed with silicon detectors in the pseudo-
rapidity range |η| < 2.5, and also by a straw-tube track-
ing chamber in the range |η| < 2.0. Together, these sys-
tems form the inner tracking detector, which is contained
in a 2 T magnetic field produced by a superconducting
solenoid. These tracking detectors are surrounded by a
finely segmented calorimeter system which provides three-
dimensional reconstruction of particle showers up to
|η| < 4.9. The electromagnetic calorimeter uses liquid ar-
gon as the active material and comprises separate bar-
rel (|η| < 1.5), end-cap (1.4 < |η| < 3.2) and forward
(3.2 < |η| < 4.9) components. The hadron calorimeter is
based on scintillating tiles in the central region (|η| < 1.7).
It is extended up to |η| = 4.9 by end-caps and forward
calorimeters which use liquid argon. The muon spectrom-
eter measures the deflection of muon tracks in the field of
three large superconducting toroidal magnets. It is instru-
mented with trigger and high-precision tracking chambers.

The trigger system consists of three levels. The first
level is implemented as a hardware trigger, while the de-
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cision on the following levels is based on software event
processing similar to the offline reconstruction.

3. Data samples

The data used in this measurement were recorded in
proton-proton collisions at a center-of-mass energy of√
s = 7 TeV during the 2010 LHC run. The integrated lu-

minosity of the data sample, considering only data-taking
periods where all relevant detector subsystems were fully
operational, is 34 pb−1 [13, 14]. The data were collected
using triggers combining the two main signatures of
W → τhντ decays, namely the presence of a hadronically
decaying τ lepton and missing transverse energy.

Processes producing W or Z bosons that subsequently
decay into electrons or muons constitute important back-
grounds to this measurement if the lepton from the decay
or an accompanying jet is misidentified as a hadronically
decaying τ lepton. Here, the missing transverse energy
signature arises from a W decay neutrino or the misrecon-
struction of jets or of other objects in the event. Also,
W → τντ decays with the τ decaying leptonically are
considered as a background. Incompletely reconstructed
Z → ττ and tt̄ decays can also enter the signal sample.
The number of background events from these electroweak
processes is referred to as NEW in the following.

The production of W and Z bosons in association with
jets is simulated with the PYTHIA [15] generator with the
modified LO parton distribution function (PDF) MRSTLO*
[16] and normalized to the NNLO cross section; tt̄ pro-
cesses are generated with MC@NLO [17], where parton
showers and hadronization are simulated with HERWIG [18]
and the underlying event with JIMMY [19]. The TAUOLA
[20] and PHOTOS [21] programs are used to model the
decay of τ leptons and the QED radiation of photons, re-
spectively.

All simulated samples include multiple proton-proton
interactions (pile-up) produced with PYTHIA using the
ATLASMC10 tune [22]. Those samples are passed through
a full detector simulation based on GEANT4 [23, 24]. The
simulated events are re-weighted so that the distribution
of the number of reconstructed primary vertices per bunch
crossing matches the data.

Due to their large production cross sections, QCD pro-
cesses provide a significant background if quark/gluon jets
(QCD jets) are misidentified as hadronic τ decays and a
significant amount of Emiss

T is measured, mainly due to in-
complete reconstruction. The number of QCD background
events NQCD is estimated directly from data.

4. Object reconstruction

Electron candidates, which together with muons are
relevant for the electroweak background, are reconstructed
from a cluster in the electromagnetic calorimeter matched
to a track in the inner tracking detector. The cluster must

have a shower profile consistent with an electromagnetic
shower [25]. Muon candidates are reconstructed by com-
bining tracks in the muon spectrometer with tracks in the
inner tracking detector [26].

Jets are reconstructed with the anti-kt algorithm [27]
with a radius parameter R = 0.4. The jet energies are
calibrated [28] using a pT- and η-dependent calibration
scheme, corrected for losses in dead material and outside
the jet cone [29]. All jets considered in this analysis are
required to have a transverse momentum above 20 GeV
and a pseudorapidity in the range |η| < 4.5.

Reconstructed jets within |η| < 2.5 provide the starting
point (seed) for the reconstruction of hadronic τ decays.
The direction of a τh candidate is taken directly from the
corresponding seed jet. The energy is calibrated by apply-
ing a dedicated correction extracted from Monte Carlo to
the sum of energies of the cells that form the clusters of
the seed jet [30]. Therefore, the energy of the τh refers to
the visible decay products. The transverse momentum is
calculated as pT = E sin θ, i.e. τh candidates are treated
as massless. Good-quality tracks are associated with a τh
candidate if they are found within ∆R < 0.2 around the
seed jet axis. At least one track must be associated to the
candidate.

The τh identification [30] is based on eight observables:
The invariant mass of the τ decay products is calculated
separately using the associated tracks and the associated
clusters. The fact that the τ decay products are typically
more collimated than QCD jets is quantified by calculat-
ing the transverse momentum-weighted radius from tracks
and the energy-weighted radius from electromagnetic en-
ergy information. The fraction of transverse energy within
∆R < 0.1 of the τh seed direction is used as well. Further
discrimination is provided by the fraction of the transverse
τh momentum carried by the highest-pT track and the frac-
tion of transverse energy deposited in the electromagnetic
calorimeter, for which higher values are expected in case
of hadronic τ decays compared to QCD jets. For τh candi-
dates with more than one associated track, the τ lifetime is
also exploited by measuring the decay length significance
of the associated secondary vertex in the transverse plane.
The single most discriminating of these quantities is the
energy-weighted radius

REM =

∑∆Ri<0.4
i EEM

T,i ∆Ri
∑∆Ri<0.4

i EEM
T,i

, (1)

where i iterates over cells in the first three layers of the
electromagnetic calorimeter associated with the τh candi-
date, ∆Ri is defined relative to the τh seed axis, and EEM

T,i

is the cell transverse energy.
These eight variables are combined in a boosted deci-

sion tree discriminator (BDT) [31], which provides an out-
put value between 0 (background-like) and 1 (signal-like)
with a continuous gradient of signal and background effi-
ciency. This discriminator was optimized using a combi-
nation of W → τhντ and Z → ττ Monte Carlo samples for
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the signal. The background was modeled from dijet events
selected from data. For τh transverse momenta (pτhT ) above
20 GeV, the efficiency of the τh identification at the tighter
working point of the BDT identification considered for this
measurement is about 30% with a jet rejection factor of
100 for τh candidates with one track, while for candidates
with three tracks it is about 35% with a rejection factor of
300 [30]. Additional requirements on the calorimeter and
tracking properties of τh candidates are used to discrimi-
nate against electrons and muons.

The missing transverse energy in the event, Emiss
T , is re-

constructed as
√

(Emiss
x )2 + (Emiss

y )2, where (Emiss
x , Emiss

y )

is the vector sum of all calorimeter energy clusters in the
region |η| < 4.5, corrected for identified muons [32]. With
good approximation, the resolution of Emiss

T components

is proportional to a×
√

∑

ET, where the scaling factor a
depends on both the detector and reconstruction perfor-
mance and

∑

ET is calculated from all calorimeter energy
clusters. The factor a is about 0.5

√
GeV for minimum

bias events [33].
In order to reject events with large reconstructed Emiss

T

due to fluctuations in the energy measurement, we define
the significance of Emiss

T as:

SEmiss
T

=
Emiss

T [GeV]

0.5
√
GeV

√

(
∑

ET[GeV])
. (2)

SEmiss
T

is found to provide better discrimination between
the signal and the background from QCD jets than a sim-
ple Emiss

T requirement.

5. Event selection

Events are selected using triggers based on the pres-
ence of a τh jet and Emiss

T . In the earlier part of the
2010 data taking, corresponding to an integrated lumi-
nosity of 11 pb−1, a loosely identified τh candidate with
pτhT > 12 GeV (as reconstructed at the trigger level) in
combination with Emiss

T > 20 GeV was required. In the
second part of the period (24 pb−1), a tighter τh identifi-
cation and higher thresholds of 16 GeV and 22 GeV had
to be used for pτhT and Emiss

T , respectively, due to the in-
creasing luminosity. The signal efficiencies of these two
triggers with respect to the offline selection are estimated
from the simulation to be (81.3±0.8)% and (62.7±0.7)%,
respectively.

Events satisfying the trigger selection are required to
have at least one reconstructed vertex that is formed by
three or more tracks with pT > 150 MeV. Further selec-
tion requirements based on calorimeter information are ap-
plied to reject non-collision events and events containing
jets that were incompletely reconstructed or significantly
affected by electronic noise in the calorimeters.

The calorimeter has a lower resolution for jets in the
barrel-endcap transition regions. In order to ensure a uni-
form Emiss

T resolution, events are rejected if a jet or a τh
candidate with 1.3 < |η| < 1.7 is found. In events where

the Emiss
T is found to be collinear to one of the jets, the re-

constructed Emiss
T is likely to originate from an incomplete

reconstruction of this jet. Therefore, a minimum separa-
tion |∆φ(jet, Emiss

T )| > 0.5 rad is required.
In order to suppress backgrounds from other leptonic

W and Z decays, events containing identified electrons or
muons with pT > 15 GeV are rejected. The highest-pT
identified τh candidate in the event is considered for fur-
ther analysis and required to be in the pseudorapidity
range |η| < 2.5 and to have 20 < pτhT < 60 GeV. A mini-
mum Emiss

T of 30 GeV is required and events are rejected
if SEmiss

T
< 6.

6. Background estimation

The number of expected events from signal and elec-
troweak background processes is obtained from simulation.
This is justified by the good agreement between data and
simulation observed in the ATLAS W cross section mea-
surements [4, 5] through decays into electrons or muons.
It is further validated using a high-purity data sample of
W → µνµ events, in which the muon is removed and re-
placed by a simulated τh lepton. Thus, only the τ de-
cay and the corresponding detector response are taken
from simulation while the underlying W kinematics and
all the other properties of the event are obtained from the
W → µνµ events selected in data. Figure 1 compares the
distribution of SEmiss

T
for the τh-embedded data sample

with simulated W → τhντ events. A good agreement is
observed within the statistical uncertainties, which adds
further confidence in the electroweak background event
model provided by the simulated event samples used in
this analysis.
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Figure 1: Distribution of SEmiss
T

for the τh-embedded W → µνµ

data sample (points) and simulated W → τhντ events (histogram),
including statistical uncertainties.

The background contribution from QCD jet produc-
tion, for which the cross section is large and the selection
efficiency is low, cannot be reliably modeled using simu-
lated events alone and is thus estimated from data. In
addition to the signal-dominated data set defined by the
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A B C D

N i (Data) 2335 4796 1577 27636
N i

sig (W → τhντ ) 1811 ± 25 683 ± 16 269 ± 8 93 ± 5
N i

EW 284 ± 7 118 ± 4 388 ± 9 90 ± 4
ci 0.38 ± 0.01 0.31 ± 0.01 0.087 ± 0.003
N i

QCD 127 ± 8 3953 ± 75 885 ± 45 27444 ± 166

Table 1: Estimated sample compositions and ci factors (as defined in Equation 4) in the signal region A and control regions B, C, and D
defined in the text.

selection described in Section 5, three background control
regions are defined by inverting the requirements on the
SEmiss

T
and/or the τh identification (ID), resulting in the

following four samples:

• Region A: SEmiss
T

> 6.0 and τh candidates satisfying
the signal τh ID requirements described in Section 4;

• Region B: SEmiss
T

< 4.5 and τh candidates satisfying
the signal-region τh ID requirements;

• Region C: SEmiss
T

> 6.0 and τh candidates satisfy-
ing a looser τh-ID but failing the signal-region τh ID
requirements;

• Region D: SEmiss
T

< 4.5 and τh candidates satisfy-
ing a looser τh-ID but failing the signal-region τh ID
requirements.

Here, the looser τh-ID region is defined by selecting τh
candidates with a lower value of the BDT output.

After ensuring that the shape of the SEmiss
T

distribu-
tion for the QCD background is independent of the τh-ID
requirement and assuming that the signal and electroweak
background contributions in the three control regions are
negligible, an estimate for the number of QCD background
events in the signal region A is provided by

NA
QCD = NBNC/ND, (3)

where N i represents the number of observed events in re-
gion i.

In order to take into account the residual signal and
EW background contamination in the control regions
i = B,C,D, the number of selected events, N i, needs to
be replaced in Equation 3 by N i− ci(N

A−NA
QCD), where

ci =
N i

sig +N i
EW

NA
sig +NA

EW

(4)

is the ratio of simulated signal and EW background events
in the control region i and the signal region. Therefore
Equation 3 becomes:

NA
QCD=

[NB − cB(N
A −NA

QCD)][N
C − cC(N

A −NA
QCD)]

ND − cD(NA −NA
QCD)

.(5)

The statistical error on NA
QCD includes both the uncer-

tainty on the calculation of the ci coefficients, due to the

Monte Carlo statistics, and the statistical uncertainty of
the data in the four regions. The resulting estimates of
the sample compositions are summarized in Table 1.

The quality of the description of the selected data by
the backgroundmodels can be judged from Figures 2 and 3,
where data and the background estimates (EW and QCD)
are shown. Figure 2(a) shows the distribution of SEmiss

T
in
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Figure 2: (a)SEmiss
T

distribution in the combined region AB, ex-

tended over the full SEmiss
T

range. The QCD background shape has

been extracted from regions CD. Monte Carlo signal and EW back-
ground in regions AB are also shown; (b) the τh identification
variable REM in the combined region AC. The QCD background
shape has been extracted from regions BD. Monte Carlo signal and
EW background in regions AC are also shown.
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Figure 3: (a) Distribution of missing transverse energy in signal region A on a linear scale. The QCD background shape has been extracted
from control region C. (b) Same distribution on a logarithmic scale. (c) Transverse momentum and (d) number of tracks of τh candidates in
signal region A. The QCD background shape has been extracted from control region B. (e) Distribution of ∆φ(τh, E

miss

T
) and (f) transverse

mass mT in signal region A. The QCD background shape has been extracted from control region C. The expectation from Monte Carlo signal
and EW background in region A are also shown.

regions A and B, extended over the full SEmiss
T

range, for all
events passing the selection criteria except for the SEmiss

T

requirement. In Figure 2(b) the distribution of REM is
shown. In this case events passing the selection criteria but
considering τh candidates identified by the loose and the
tight selections in regions A and C are shown. The agree-
ment between data and Monte Carlo expectation confirms
the results obtained by the data-driven background esti-
mation. In Figure 3 the distribution of Emiss

T , the pτhT spec-
trum, the number of tracks associated to the τh candidate,
the distribution of ∆φ(τh, E

miss
T ) and the transverse mass,

mT =
√

2 · pτhT · Emiss
T ·

(

1− cos∆φ
(

τh, Emiss
T

))

, in the se-

lected signal region A are shown, illustrating the charac-
teristic properties of W → τhντ decays. In all the distribu-
tions reasonable agreement is observed between the data
and Monte Carlo prediction.

7. Cross section measurement

The fiducial cross section is measured in a phase space
region given by the geometrical acceptance of the detector
and by the kinematic selection of the analysis (as described
in Section 5). This region is defined based on the decay
products from a simulated hadronic τ decay and corre-
sponds to the criteria presented in Table 2.

Here, the visible τ momentum pτ,visT and pseudorapid-
ity ητ,vis are calculated from the sum of the four-vectors of

20 GeV < pτ,visT < 60 GeV
|ητ,vis| < 2.5, excluding 1.3 < |ητ,vis| < 1.7

(
∑

pν)T > 30 GeV
|∆φ(pτ,vis,

∑

pν)| > 0.5

Table 2: Definition of the acceptance region.

the decay products from the simulated hadronic τ decay,
except for the neutrinos. This momentum also includes
photons radiated both from the τ lepton and from the de-
cay products themselves, considering only photons within
∆R < 0.4 with respect to the τh. The minimum Emiss

T

requirement translates into a cut on the transverse com-
ponent of the sum of the simulated neutrino four-vectors
(
∑

pν)T .
The fiducial cross section, including the branching ratio

BR(W → τhντ ), is computed as

σfid
W→τhντ

=
Nobs −Nbkg

CWL , (6)

where Nobs is the number of observed events in data, Nbkg

is the number of estimated (QCD and EW) background
events (signal region A in Table 1), and L is the inte-
grated luminosity. CW is the correction factor that takes
into account the efficiency of trigger, τh reconstruction and
identification and the efficiency of all selection cuts within
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the acceptance:

CW =
Nreco, all cuts

Ngen, kin/geom
, (7)

where Nreco, all cuts is the number of fully simulated signal
events passing the reconstruction, trigger and the selection
cuts of the analysis and Ngen, kin/geom is the number of
simulated signal events within the fiducial region defined
above.

With the kinematic and geometrical signal acceptance

AW =
Ngen, kin/geom

Ngen, all
, (8)

where Ngen, all is the total number of simulated signal
events while Ngen, kin/geom is the denominator of CW , the
total cross section

σtot
W→τhντ

= σfid
W→τhντ

/AW =
Nobs −Nbkg

AWCWL (9)

can be obtained. AW and CW are determined using a
PYTHIA Monte Carlo signal sample described in Sec-
tion 3. The fiducial acceptance is found to be AW =
0.0975 ± 0.0004 (MC stat) and the correction factor
CW = 0.0799 ± 0.0011 (MC stat).

The measured fiducial cross section of the W → τhντ
decay is σfid

W→τhντ
= 0.70 ± 0.02 (stat) nb and the total

cross section is found to be σtot
W→τhντ

= 7.2±0.2 (stat) nb.
Several alternative analyses are performed to confirm

these results. For example, the BDT τh ID is replaced by
a simpler identification based on cuts on three of the ID
variables only [30]. Also, in order to study the influence
of pile-up on the result, the signal selection is restricted
to events with only one reconstructed primary vertex. In
both cases consistent results are found.

8. Systematic uncertainties

Table 3 summarizes the systematic uncertainties. The
main sources are discussed in the following.

Monte Carlo predictions.

The trigger efficiency is determined in Monte Carlo for
the combined Emiss

T and τh triggers used in the two data
periods. The differences between the measured trigger re-
sponses of the two trigger components in data and Monte
Carlo are used to determine the systematic uncertainty. A
pure and unbiased sample enriched with W → τhντ events
is obtained in data by applying an independent τh (Emiss

T )
trigger and selected cuts of the event selection like the
BDT τh ID. The corresponding Emiss

T (τh) trigger part is
applied to this sample and the response of this trigger is
compared to the response in Monte Carlo. The observed
differences are integrated over the offline pτhT and Emiss

T

range used for the cross section measurement. The total
systematic uncertainty after the combination of the differ-
ent trigger parts is 6.1%.

The signal and background acceptance depends on the
energy scale of the clusters used in the computation of
Emiss

T and SEmiss
T

and the energy scale of the calibrated τh
candidates. Based on the current knowledge of the cali-
bration the uncertainty due to cluster energy within the
detector region |η| < 3.2 is at most 10% for pT of 500 MeV
and within 3% at high pT [34]. In the forward region
|η| > 3.2 it is estimated to be 10%. The effect on Emiss

T

and SEmiss
T

has been evaluated by scaling all clusters in the
event according to these uncertainties and recalculating
Emiss

T and
∑

ET. At the same time, the τh energy scale has
been varied according to its uncertainty [30]. This uncer-
tainty depends on the number of tracks associated to the
τh candidate, its pT and the η region in which it was recon-
structed, and ranges from 2.5% to 10%. In addition, the
sensitivity of the signal and background efficiency to the
Emiss

T resolution has been investigated [33]. Consequently,
the yield of signal and EW background varies within 6.7%
and 8.7%, respectively.

The identification and reconstruction efficiency of τh
candidates was studied with Monte Carlo W → τhντ and
Z → ττ samples and was found to vary with different
simulation conditions such as different underlying event
models, detector geometry, hadronic shower modeling and
noise thresholds for calorimeter cells in the cluster recon-
struction. In Ref. [30], these uncertainties are evaluated
as a function of pτhT , separately for candidates with one or
multiple tracks and low or high multiplicity of primary ver-
tices in the event. The corresponding changes in the signal
and EW background efficiencies are found to be 9.6% and
4.1%, respectively.

The probability of a jet or electron to be misidentified
as a τh candidate has been evaluated in data and compared
with the expectation from Monte Carlo. The rate of jets
that are misidentified as τh candidates was calculated us-
ing a selection of W→ ℓνℓ+jets events (with ℓ = e, µ) and
measuring the fraction of reconstructed candidates that
are found by the τh identification. The difference of this
misidentification rate in Monte Carlo compared to that in
data is 30% and this was applied as a systematic uncer-
tainty to the fraction of events mimicked by a jet. The
overall uncertainty on the EW background is 7.2%. The
misidentification probability of electrons as τh candidates
has been determined with a “tag-and-probe” method using
Z → ee events where the τh identification and τh electron
veto is applied to one of the electrons. The difference be-
tween the misidentification probability in data and Monte
Carlo as a function of η has been applied as a systematic
uncertainty to τh candidates mimicked by an electron. It
amounts to 4.5% for the total EW background.

Other sources of systematic uncertainty have been eval-
uated and were found to have only small effects on the
resulting cross section measurement, for example the pro-
cedure to include pile-up effects, the uncertainty on the
lepton selection efficiency entering via the veto of elec-
trons and muons and the influence of the underlying event
modeling on Emiss

T quantities. The uncertainties on the
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δCW

CW

δNEW

NEW

δNQCD

NQCD

δσfid
W→τhντ

σfid
W→τhντ

Trigger efficiency 6.1% 6.1% - 7.0%
Energy scale 6.7% 8.7% - 8.0%
τh ID efficiency 9.6% 4.1% - 10.3%
Jet τh misidentification - 7.2% - 1.1%
Electron τh misidentification - 4.5% - 0.7%
Pile-up reweighting 1.4% 1.2% - 1.6%
Electron reconstruction/identification - 1.2% - 0.2%
Muon reconstruction - 0.3% - 0.04%
Underlying event modeling 1.3% 1.1% - 1.5%
Cross section - 4.5% - 0.7%
QCD estimation: Stability/correlation - - 2.7% 0.2%
QCD estimation: Sig./EW contamination - - 2.1% 0.1%
Monte Carlo statistics 1.4% 2.4% 6.0% 1.5%

Total systematic uncertainty 13.4% 15.2% 6.9% 15.1%

Table 3: Summary table for systematic uncertainties. For the systematic uncertainty on the fiducial cross section measurement, correlations
between the systematics affecting CW and NEW have been taken into account.

cross sections used for the EW background are taken from
ATLAS measurements, when available, or theoretical
NNLO calculations, and lie between 3 and 9.7% [8, 35,
6, 7]. The uncertainty on the integrated luminosity is
3.4% [13, 14].

QCD background estimation.

Two different sources of systematic uncertainty arising from
the method of estimating the QCD background events
from data have been studied. The stability of the method
and the small correlation of the two variables (τh ID and
SEmiss

T
) used to define the control regions have been tested

by varying the SEmiss
T

threshold. The systematic uncer-
tainty due to the correction for signal and EW background
contamination in the control regions was obtained by vary-
ing the fraction of these events in the regions within the
combined systematic and statistical uncertainties on the
Monte Carlo predictions discussed above. The total un-
certainty on the QCD background estimation is 3.4%.

Acceptance.

The theoretical uncertainty on the geometric and kine-
matic acceptance factor AW is dominated by the limited
knowledge of the proton PDFs and the modeling of
W boson production at the LHC.

The uncertainty resulting from the choice of the PDF
set is evaluated by comparing the acceptance obtained
with different PDF sets (the default MRST LO*, CTEQ6.6
and HERAPDF 1.0 [36]) and within one PDF set by re-
weighting the default sample to the different error eigen-
vectors available for the CTEQ6.6 NLO PDF [37]. The
uncertainty is 1.6 % and 1.0%, respectively, which com-
bines to 1.9%.

The uncertainty on the modeling of W production was
evaluated by comparing the default sample acceptance to
that obtained from an MC@NLO sample where the parton

shower is modeled by HERWIG. The difference in accep-
tance is found to be smaller than 0.5%.

9. Results

The results of the analysis relevant to the cross section
measurement are summarized in Table 4. Within the ac-

Nobs 2335
NQCD 127 ± 9
NEW 284 ± 43
AW 0.0975 ± 0.0019
CW 0.0799 ± 0.0107

Table 4: Resulting numbers for the cross section calculation. The
errors include statistical and systematic uncertainties here.

ceptance region defined in Table 2 they translate into a
fiducial cross section σfid

W→τhντ
of:

0.70± 0.02 (stat)± 0.11 (syst)± 0.02 (lumi) nb

and a total cross section σtot
W→τhντ

of:

7.2± 0.2 (stat)± 1.1 (syst)± 0.2 (lumi) nb.

After correcting the cross section for the hadronic τ decay
branching ratio BR(τ → hντ ) = 0.6479 ± 0.0007 [38] this
yields the following inclusive cross section σtot

W→τντ
:

11.1± 0.3 (stat)± 1.7 (syst)± 0.4 (lumi) nb.

The measured cross section is in good agreement with
the theoretical NNLO cross section 10.46 ± 0.52 nb [6, 7,
8] and the ATLAS measurements of the W → eνe and
W → µνµ cross sections [4, 5]. The comparison of the cross
section measurements for the different lepton final states
and the theoretical expectation is shown in Figure 4. This
is the first W → τντ cross section measurement performed
at the LHC.
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Figure 4: Cross sections for the different W → ℓνℓ channels mea-
sured in ATLAS with 2010 data (points). Systematic, luminosity
and statistical uncertainties are added in quadrature. The theoreti-
cal NNLO expectation is also shown (dashed line), together with its
uncertainty (filled area).
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G. Akimoto155, A.V. Akimov 94, A. Akiyama67, M.S. Alam1, M.A. Alam76, J. Albert169, S. Albrand55, M. Aleksa29,
I.N. Aleksandrov65, F. Alessandria89a, C. Alexa25a, G. Alexander153, G. Alexandre49, T. Alexopoulos9, M. Alhroob20,
M. Aliev15, G. Alimonti89a, J. Alison120, M. Aliyev10, P.P. Allport73, S.E. Allwood-Spiers53, J. Almond82,
A. Aloisio102a,102b, R. Alon171, A. Alonso79, M.G. Alviggi102a,102b, K. Amako66, P. Amaral29, C. Amelung22,
V.V. Ammosov128, A. Amorim124a,b, G. Amorós167, N. Amram153, C. Anastopoulos29, L.S. Ancu16, N. Andari115,
T. Andeen34, C.F. Anders20, G. Anders58a, K.J. Anderson30, A. Andreazza89a,89b, V. Andrei58a, M-L. Andrieux55,
X.S. Anduaga70, A. Angerami34, F. Anghinolfi29, N. Anjos124a, A. Annovi47, A. Antonaki8, M. Antonelli47,
A. Antonov96, J. Antos144b, F. Anulli132a, S. Aoun83, L. Aperio Bella4, R. Apolle118,c, G. Arabidze88, I. Aracena143,
Y. Arai66, A.T.H. Arce44, J.P. Archambault28, S. Arfaoui29,d, J-F. Arguin14, E. Arik18a,∗, M. Arik18a,
A.J. Armbruster87, O. Arnaez81, C. Arnault115, A. Artamonov95, G. Artoni132a,132b, D. Arutinov20, S. Asai155,
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J. Boek174, N. Boelaert35, S. Böser77, J.A. Bogaerts29, A. Bogdanchikov107, A. Bogouch90,∗, C. Bohm146a,
V. Boisvert76, T. Bold163,g, V. Boldea25a, N.M. Bolnet136, M. Bona75, V.G. Bondarenko96, M. Bondioli163,
M. Boonekamp136, G. Boorman76, C.N. Booth139, S. Bordoni78, C. Borer16, A. Borisov128, G. Borissov71,
I. Borjanovic12a, S. Borroni132a,132b, K. Bos105, D. Boscherini19a, M. Bosman11, H. Boterenbrood105, D. Botterill129,
J. Bouchami93, J. Boudreau123, E.V. Bouhova-Thacker71, C. Bourdarios115, N. Bousson83, A. Boveia30, J. Boyd29,
I.R. Boyko65, N.I. Bozhko128, I. Bozovic-Jelisavcic12b, J. Bracinik17, A. Braem29, P. Branchini134a,
G.W. Brandenburg57, A. Brandt7, G. Brandt15, O. Brandt54, U. Bratzler156, B. Brau84, J.E. Brau114, H.M. Braun174,
B. Brelier158, J. Bremer29, R. Brenner166, S. Bressler152, D. Breton115, D. Britton53, F.M. Brochu27, I. Brock20,
R. Brock88, T.J. Brodbeck71, E. Brodet153, F. Broggi89a, C. Bromberg88, G. Brooijmans34, W.K. Brooks31b,
G. Brown82, H. Brown7, P.A. Bruckman de Renstrom38, D. Bruncko144b, R. Bruneliere48, S. Brunet61, A. Bruni19a,
G. Bruni19a, M. Bruschi19a, T. Buanes13, F. Bucci49, J. Buchanan118, N.J. Buchanan2, P. Buchholz141,
R.M. Buckingham118, A.G. Buckley45, S.I. Buda25a, I.A. Budagov65, B. Budick108, V. Büscher81, L. Bugge117,
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A. Filippas9, F. Filthaut104, M. Fincke-Keeler169, M.C.N. Fiolhais124a,i, L. Fiorini167, A. Firan39, G. Fischer41,
P. Fischer 20, M.J. Fisher109, S.M. Fisher129, M. Flechl48, I. Fleck141, J. Fleckner81, P. Fleischmann173,
S. Fleischmann174, T. Flick174, L.R. Flores Castillo172, M.J. Flowerdew99, M. Fokitis9, T. Fonseca Martin16,
D.A. Forbush138, A. Formica136, A. Forti82, D. Fortin159a, J.M. Foster82, D. Fournier115, A. Foussat29, A.J. Fowler44,
K. Fowler137, H. Fox71, P. Francavilla122a,122b, S. Franchino119a,119b, D. Francis29, T. Frank171, M. Franklin57,
S. Franz29, M. Fraternali119a,119b, S. Fratina120, S.T. French27, F. Friedrich 43, R. Froeschl29, D. Froidevaux29,
J.A. Frost27, C. Fukunaga156, E. Fullana Torregrosa29, J. Fuster167, C. Gabaldon29, O. Gabizon171, T. Gadfort24,
S. Gadomski49, G. Gagliardi50a,50b, P. Gagnon61, C. Galea98, E.J. Gallas118, M.V. Gallas29, V. Gallo16, B.J. Gallop129,
P. Gallus125, E. Galyaev40, K.K. Gan109, Y.S. Gao143,f , V.A. Gapienko128, A. Gaponenko14, F. Garberson175,
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Paris, France
79 Fysiska institutionen, Lunds universitet, Lund, Sweden
80 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
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