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1 Introduction

String theory possesses T-duality and imposes O(D,D) structure on its D-dimensional

low energy effective actions [1–4]. The O(D,D) T-duality can be conveniently described

if we formally double the spacetime dimension, from D to 2D, with coordinates, xµ →
yA = (x̃µ, x

ν). The new coordinates, x̃µ, may be viewed as the canonical conjugates of the

winding modes of closed strings, as noted by Tseytlin and Siegel in the early 90’s [5–8].

Recent developments initiated by Hull and Zwiebach developed this idea further, in the

name of Double Field Theory (DFT), by writing the D-dimensional effective action entirely

in terms of the 2D-dimensional language, i.e. 2D tensors [9–12] (see also [13–24]). Yet, as

a field theory counterpart to the level matching condition in closed string theories, it is

required that all the fields as well as all of their possible products should be annihilated

by the O(D,D) d’Alembert operator, ∂2 = ∂A∂
A,

∂2Φ ≡ 0 , ∂AΦ1∂
AΦ2 ≡ 0 . (1.1)

This ‘level matching constraint’ actually means that the theory is not truly doubled: there

is a choice of coordinates (x̃′, x′), related to the original coordinates (x̃, x), by an O(D,D)

rotation, in which all the fields do not depend on the x̃′ coordinates [11]. Henceforth, the

equivalence symbol, ‘≡’, means an equality up to the constraint (1.1), or simply up to the

winding coordinate independency, i.e. ∂
∂x̃µ

≡ 0.

– 1 –



J
H
E
P
1
1
(
2
0
1
1
)
0
2
5

With the spacetime dimension formally doubled in double field theory, T-duality is

realized by an O(D,D) rotation which acts on the 2D-dimensional vector indices of an

O(D,D) covariant tensor in a standard manner,

TA1A2···An −→ MA1
B1MA2

B2 · · ·MAn
BnTB1B2···Bn , M ∈ O(D,D) , (1.2)

where the O(D,D) group is defined by the invariance of a constant metric,

MA
CMB

DJCD = JAB , JAB :=

(

0 1

1 0

)

. (1.3)

Without imposing the level matching constraint, the O(D,D) transformation would nat-

urally correspond to a Noether symmetry of the 2D-dimensional field theory. However,

with the constraint, the double field theory is, by nature, D-dimensional living on a D-

dimensional hyperplane. As the O(D,D) transformation then rotates the entire hyper-

plane, the O(D,D) rotation acts a priori as a ‘duality’ rather than a ‘Noether symmetry’

of the D-dimensional theory. After further dimensional reductions, it becomes a Noether

symmetry of the reduced action, as can be seen in e.g. [1–3, 25–28].

Further, in DFT the D-dimensional diffeomorphism, xµ → xµ + δxµ, and the one-form

gauge symmetry of the two-form gauge field, Bµν → Bµν + ∂µΛν − ∂νΛµ, are naturally

combined into what we may call ‘double-gauge symmetry’ (denoted by ‘δX ’). By definition,

the double-gauge transformation of a double-gauge covariant tensor is generated by the

Dorfman derivative or generalized Lie derivative, i.e. “δX = L̂X”, whose definition reads [8,

12, 29, 32, 33],

L̂XTA1···An := XB∂BTA1···An +ωT ∂BX
BTA1···An +

n
∑

i=1

(∂Ai
XB−∂BXAi

)TA1···Ai−1
B

Ai+1···An .

(1.4)

Here ωT is the given weight of an O(D,D) covariant tensor, TA1···An , and XA is the double-

gauge symmetry parameter whose half components are for the one-form gauge symmetry

and the other half are for the diffeomorphism,

XA = (Λµ , δx
ν) . (1.5)

As the generalized Lie derivative differs from the ordinary Lie derivative, the underlying dif-

ferential geometry of DFT should be beyond Riemann [14, 18, 29–34]. Generally speaking,

while the fundamental object in Riemannian geometry is a metric, closed string theories

call for us to put the B-field and a scalar dilaton on an equal footing with the metric, and

hence call for new geometry.

In our previous works [14, 18], we proposed a novel differential geometry for double field

theory that treats the three objects in a unified manner and manifests O(D,D) T-duality,

the double-gauge symmetry, and also a pair of local Lorentz symmetries simultaneously.

The key concept therein is ‘semi-covariant derivative’ that we review later.

In this paper, utilizing the semi-covariant derivative approach, we incorporate fermions,

such as gravitino and dilatino, into double field theory. Especially we construct covariant
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• O(D,D) T-duality

• Gauge symmetries

1. Double-gauge symmetry

– Diffeomorphism

– One-form gauge symmetry

2. A pair of Local Lorentz symmetries, SO(1, D−1) × SO(D−1, 1)

Table 1. T-duality and gauge symmetries in DFT.

DFT Dirac operators that are manifestly compatible with all the symmetries in table 1.

Upon the level matching constraint (1.1) and in terms of the undoubledD-dimensional com-

ponent fields, our Dirac operators reduce to those found recently by Coimbra, Strickland-

Constable and Waldram as for the unifying reformulation of type IIA and IIB supergravi-

ties [34].

Further we show that there are two kinds of fermions in double field theory:

1. O(D,D) singlet fermions that, in our notation, consist of ‘unprimed’ gravitino and di-

latino. Their local Lorentz indices (spinorial and vectorial) are singlet under O(D,D)

T-duality. They couple to ‘unprimed double-vielbein’ [18],

(

ψ α
p̄ , ρ

α
)

⇐⇒
(

VAp, V̄Bp̄

)

. (1.6)

The common fermionic sector of type IIA and IIB supergravities may be identified

as our unprimed fermions.

2. O(D,D) non-singlet fermions that consist of ‘primed’ gravitino and dilatino. Their

local Lorentz indices transform nontrivially under O(D,D) T-duality. They couple

to ‘primed double-vielbein’,

(

ψ′ α
p̄ , ρ

′α ) ⇐⇒
(

V ′
Ap̄, V̄

′
Bp

)

. (1.7)

The non-common fermions of the opposite chiralities in type IIA and IIB supergrav-

ities correspond to our primed fermions.

We also present a criterion for O(D,D) rotations to flip the chirality of the primed

fermions, which turns out to depend on both the O(D,D) group element and the back-

ground fields. This generalizes, in a unifying manner, the earlier works by Hassan in

90’s [35–37].

The organization of the present paper is as follows. To start, in section 2 we set up our

conventions including the indices used for each representation of the symmetries in table 1.

In section 3, after reviewing the two types of the double-vielbeins from [18], we analyze

their finite O(D,D) transformations. In section 4, utilizing the semi-covariant derivative,

we construct the covariant Dirac operators for each type of the fermions and derive the

criterion for the primed fermions to flip their chiralities under O(D,D) T-duality. Section 5

contains the summary and comments.

– 3 –



J
H
E
P
1
1
(
2
0
1
1
)
0
2
5

indices representation metric

A,B, · · · double-gauge vector JAB in eq. (1.3)

p, q, · · · SO(1,D−1) vector ηpq = diag(− + + · · ·+)

α, β, · · · Spin(1,D−1) spinor Cαβ in eq. (2.2)

p̄, q̄, · · · SO(D−1, 1) vector η̄p̄q̄ = diag(+ −− · · · −)

ᾱ, β̄, · · · Spin(D−1, 1) spinor C̄ᾱβ̄ in eq. (2.2)

Table 2. Indices used for each symmetry representation and the relevant metrics that raise or

lower the positions of them. While O(D,D) acts always on the double-gauge vector indices (capital

Roman), it may also rotate other indices of the primed fields (1.7). It is the characteristic feature of

DFT that, although the O(D,D) metric JAB (1.3) is a constant ‘flat’ one, the corresponding ‘flat’

indices, A,B, · · · , decompose into D-dimensional curved spacetime vector and one-form indices, as

in (1.5), (3.6), (3.10), etc. [9–12].

2 Conventions

In table 2, we summarize our conventions for indices and metrics used for each represen-

tation of the symmetries listed in table 1.1 For the application of our formalism to type

IIA and IIB supergravities, in this paper we focus on ‘even’ D-dimensional Minkowskian

spacetime that admits Majorana-Weyl spinors, i.e. D ≈ 2 mod 8.

For the two Minkowskian metrics, ηpq and η̄p̄q̄, we introduce separately the correspond-

ing ‘real’ gamma matrices: (γp)αβ and (γ̄p̄)ᾱβ̄ satisfying

γp = (γp)∗ , γpγq + γqγp = 2ηpq ,

γ̄p̄ = (γ̄p̄)∗ , γ̄p̄γ̄ q̄ + γ̄ q̄ γ̄p̄ = 2η̄p̄q̄ .
(2.1)

Their charge conjugation matrices, Cαβ and C̄ᾱβ̄, meet2

(Cγp1p2···pn)αβ = −(−1)n(n+1)/2(Cγp1p2···pn)βα ,

(C̄γ̄p̄1p̄2···p̄n)ᾱβ̄ = −(−1)n(n+1)/2(C̄γ̄p̄1p̄2···p̄n)β̄ᾱ ,
(2.2)

and define the charge-conjugated spinors. For the unprimed and primed Spin(1,D−1)

spinors we have

ψ̄p̄α = ψ
β
p̄ Cβα , ρ̄α = ρβCβα , ψ̄′

p̄α = ψ′ β
p̄ Cβα , ρ̄′α = ρ′βCβα . (2.3)

We also set, in order to specify the chirality of the Weyl spinors,

γ(D+1) := γ012···D−1 , γ̄(D+1) := γ̄012···D−1 , (2.4)

that satisfy

γpγ(D+1)+γ(D+1)γp = 0 ,
(

γ(D+1)
)2

= 1 , γ̄p̄γ̄(D+1)+γ̄(D+1)γ̄p̄ = 0 ,
(

γ̄(D+1)
)2

= 1 .

(2.5)

1Note the opposite signatures chosen for η and η̄, i.e. mostly plus vs. mostly minus (cf. [18]).
2A possible relation between the unbarred and barred real gamma matrices is to identify γ̄p̄ with

γpγ(D+1), and C̄ with C. However, we do not need to impose this identification in the present paper.
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The unprimed fermions, (ψ α
p̄ , ρ

α), are set to be Majorana-Weyl spinors of the fixed chiral-

ities,

γ(D+1)ψp̄ = +ψp̄ , γ(D+1)ρ = −ρ . (2.6)

On the other hand, the primed fermions, (ψ′ α
p̄ , ρ

′α), are Majorana-Weyl spinors possessing

either the same chirality (as for type IIB supergravity),

γ(D+1)ψ′
p̄ = +ψ′

p̄ , γ(D+1)ρ′ = −ρ′ , (2.7)

or the opposite chirality (as for type IIA supergravity),

γ(D+1)ψ′
p̄ = −ψ′

p̄ , γ(D+1)ρ′ = +ρ′ . (2.8)

The chiralities of the primed fermions may be flipped under O(D,D) T-duality, as we shall

see later.

3 Two types of double-vielbeins and their O(D, D) transformations

3.1 Primed and unprimed double-vielbeins

There are two types of vielbeins in DFT [18]. We distinguish them here as unprimed double-

vielbein, (VAp, V̄Bq̄), and primed double-vielbein,3 (V ′
Ap̄ V̄

′
Bq). They carry opposite local

Lorentz vector indices.

In terms of the flat metrics in table 2, the unprimed double-vielbein satisfies the fol-

lowing defining properties [18]:

VApV
A

q = ηpq , VApV̄
A

q̄ = 0 , V̄Ap̄V̄
A

q̄ = η̄p̄q̄ , VApVB
p + V̄Ap̄V̄B

p̄ = JAB .

(3.1)

Hence the double-vielbein forms a pair of rank-two projections [14],

PAB := VA
pVBp , P̄AB := V̄A

p̄V̄Bp̄ , (3.2)

that are symmetric, orthogonal and complementary to each other,

PAB = PBA , P̄AB = P̄BA , PA
BP̄B

C = 0 ,

PA
BPB

C = PA
C , P̄A

BP̄B
C = P̄A

C , PA
B + P̄A

B = δA
B , (3.3)

and further meet

PA
BVBp = VAp , P̄A

BV̄Bp̄ = V̄Ap̄ , P̄A
BVBp = 0 , PA

BV̄Bp̄ = 0 . (3.4)

The defining properties of the double-vielbein (3.1) actually means then that, as a 2D×2D

matrix, (VA
p, V̄B

q̄) diagonalize both the projectors PAB and P̄AB , or equivalently both the

O(D,D) metric JAB and the “generalized metric” HAB := (P − P̄ )AB , as follows [18],

J =
(

V , V̄
)

(

η 0

0 η̄

)

(

V , V̄
)t
, H =

(

V , V̄
)

(

η 0

0 −η̄

)

(

V , V̄
)t
. (3.5)

3In [18], the latter was called “twin double-vielbein”.
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Assuming that the upper half blocks are non-degenerate, the unprimed double-vielbein

takes the following most general form [18],4

VAp = 1√
2

(

(e−1)p
µ

(B + e)νp

)

, V̄Ap̄ = 1√
2

(

(ē−1)p̄
µ

(B + ē)νp̄

)

. (3.6)

Here eµ
p and ēν

p̄ are two copies of the D-dimensional vielbein corresponding to the same

spacetime metric in the following manner,

eµ
peν

qηpq = −ēµp̄ēν
q̄η̄p̄q̄ = gµν , (3.7)

and Bµν corresponds to the Kalb-Ramond two-form gauge field. We also set in (3.6),

Bµp = Bµν(e
−1)p

ν , Bµp̄ = Bµν(ē−1)p̄
ν . (3.8)

In particular, (ē−1e)p̄
p and (e−1ē)p

p̄ are local Lorentz transformations,

(ē−1e)p̄
p(ē−1e)q̄

qηpq = −η̄p̄q̄ , (e−1ē)p
p̄(e−1ē)q

q̄ η̄p̄q̄ = −ηpq . (3.9)

Now, having the explicit form of the unprimed double-vielbein (3.6), we are able to

define the ‘primed double-vielbein’,

V ′
Ap̄ := (ē−1e)p̄

pVAp = 1√
2

(

(ē−1)p̄
µ

(B − ē)νp̄

)

, V̄ ′
Ap := (e−1ē)p

p̄V̄Ap̄ = 1√
2

(

(e−1)p
µ

(B − e)νp

)

.

(3.10)

They satisfy, parallel to (3.1),

V ′
Ap̄V

′A
q̄ = −η̄p̄q̄ , V ′

Ap̄V̄
′A

q = 0 , V̄ ′
ApV̄

′A
q = −ηpq , V ′

Ap̄V
′
B

p̄+V̄ ′
ApV̄

′
B

p = −JAB ,

(3.11)

and

−V ′
A

p̄V ′
Bp̄ = VA

pVBp = PAB , −V̄ ′
A

pV̄ ′
Bp = V̄A

p̄V̄Bp̄ = P̄AB ,

PA
BV ′

Bp̄ = V ′
Ap̄ , P̄A

BV̄ ′
Bp = V̄ ′

Ap . (3.12)

3.2 O(D,D) rotations of the double-vielbeins

Both the primed and unprimed double-vielbeins are covariant with respect to the local

Lorentz symmetries and the double-gauge symmetry i.e. “δX ≡ L̂X”. What make them

distinguishable are their O(D,D) T-duality transformations. Once we set the unprimed

double-vielbein to be a covariant O(D,D) vector,

VAp −→ MA
BVBp , V̄Ap̄ −→ MA

BV̄Bp̄ , (3.13)

4It is worth while to note that (up to the upper half block non-degeneracy assumption), (3.6) is the most

general form of the double-vielbein parametrization that diagonalizes both the O(D, D) metric, JAB , and

the generalized metric, HAB , as in (3.5). For other parametrization that diagonalizes HAB only, see the

early work by Maharana and Schwarz [27].
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the primed double-vielbein cannot transform as an O(D,D) vector: Its Lorentz vector

indices must be rotated too, as first noted in [18] for infinitesimal O(D,D) transforma-

tions. Below we analyze their ‘finite’ O(D,D) transformations, for later discussion on the

chirality change of the primed fermions under O(D,D) T-duality.

If we explicitly parametrize a generic O(D,D) element as

MA
B =

(

aµ
ν bµσ

cρν dρ
σ

)

, (3.14)

the defining property of the O(D,D) group (1.3) implies

abt + bat = 0 , cdt + dct = 0 , adt + bct = 1 . (3.15)

From the vectorial O(D,D) transformation rule (3.13) of the unprimed double-vielbein (3.6),

we note, among others,

e−1 −→ e−1
[

at + (g −B)bt
]

, ē−1 −→ ē−1
[

at − (g +B)bt
]

, (3.16)

and hence

(e−1ē)p
p̄ −→ Lp

q(e−1ē)q
p̄ , (ē−1e)p̄

p −→ L̄p̄
q̄(ē−1e)q̄

p , (3.17)

where we set

L = e−1
[

at + (g −B)bt
] [

at − (g +B)bt
]−1

e , L̄ = (ē−1e)L−1(e−1ē) . (3.18)

The crucial properties of L and L̄ are that they are local Lorentz transformations,

Lp
rLq

sηrs = ηpq , L̄p̄
r̄L̄q̄

s̄η̄r̄s̄ = η̄p̄q̄ . (3.19)

These can be verified directly from (3.15) and

[a + b(g +B)] g−1
[

at + (g −B)bt
]

= [a − b(g −B)] g−1
[

at − (g +B)bt
]

. (3.20)

In fact, from the consideration that (e−1ē)p
p̄ and (ē−1e)p̄

p themselves are local Lorentz

transformations and also that this property must be preserved under O(D,D) T-duality,

it follows naturally that L and L̄ must correspond to local Lorentz transformations.

Therefore, under O(D,D) T-duality the primed double-vielbein transforms nontriv-

ially as

V ′
Ap̄ −→ MA

BL̄p̄
q̄V ′

Bq̄ , V̄ ′
Ap −→ MA

BLp
qV̄ ′

Bq , (3.21)

where L and L̄ are local Lorentz transformations (3.18) depending on both the O(D,D)

element, M , and the backgrounds, gµν , Bµν .

– 7 –



J
H
E
P
1
1
(
2
0
1
1
)
0
2
5

It is well known that even-dimensional irreducible gamma matrices are unique up to

similarity transformations, essentially due to Schur’s lemma. This implies, for the cases

of (2.1), (3.9) and (3.19), that there must be similarity transformations, Se and SL relating

γp(e−1ē)p
p̄ = Seγ̄

p̄S−1
e , γ̄p̄(ē−1e)p̄

p = S−1
e γpSe , (3.22)

and

γqLq
p = SLγ

pS−1
L , γ̄ q̄L̄q̄

p̄ =
(

S−1
e SLSe

)−1
γ̄p̄
(

S−1
e SLSe

)

. (3.23)

Further, from (2.4), we get

SLγ
(D+1) = det(L) γ(D+1)SL ,

(

S−1
e SLSe

)

γ̄(D+1) = det(L̄) γ̄(D+1)
(

S−1
e SLSe

)

,

(3.24)

where from (3.18),

det(L) = det(L̄)−1 =
det [a + b(g +B)]

det [a − b(g −B)]
, (3.25)

of which the value must be either +1 or −1, since L and L̄ are local Lorentz transforma-

tions (3.19). Thus, if det(L) = +1, SL commutes with γ(D+1). Otherwise, det(L) = −1,

they anti-commute. As we shall see in the following section 4, this gives the necessary

and sufficient condition for the primed fermions to flip their chiralities under O(D,D)

T-duality.

4 Covariant Dirac operators

In this section, utilizing the semi-covariant derivative in refs. [14, 18], we construct covariant

Dirac operators for unprimed and primed fermions separately, and discuss the chirality

change of the primed fermions under O(D,D) T-duality.

4.1 Semi-covariant derivative for double-gauge symmetry: review

By definition [14, 18], the semi-covariant derivative acts on a generic O(D,D) tensor density

with weight, ωT , as

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n
∑

i=1

ΓCAi

BTA1···Ai−1BAi+1···An , (4.1)

and it annihilates the pair of rank-two projections and the DFT-dilaton (and hence the

NS-NS sector completely),

∇APBC = 0 , ∇AP̄BC = 0 , ∇Ad := −1
2e

2d∇A(e−2d) = ∂Ad+ 1
2ΓB

BA = 0 .

(4.2)

Note that the DFT-dilaton, d, is related to the string dilaton, φ, through [11]

e−2d =
√
−ge−2φ , (4.3)

and hence e−2d =
√−ge−2φ is a scalar density with weight one. In fact, this is the only

quantity having a nontrivial weight in this paper.

– 8 –
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It follows from (4.2) that, the O(D,D) metric is also ‘flat’ with respect to the semi-

covariant derivative,

∇AJBC = 0 , (4.4)

which implies

ΓABC = −ΓACB . (4.5)

Further, requiring

ΓABC + ΓBCA + ΓCAB = 0 , (4.6)

and

PCAB
DEF ΓDEF = 0 , P̄CAB

DEF ΓDEF = 0 , (4.7)

the connection is uniquely fixed to be [18]

ΓCAB = 2
(

P∂CPP̄
)

[AB]
+ 2

(

P̄[A
DP̄B]

E − P[A
DPB]

E
)

∂DPEC

− 4
D−1

(

P̄C[AP̄B]
D + PC[APB]

D
) (

∂Dd+ (P∂EPP̄ )[ED]

)

.
(4.8)

In (4.7), PCAB
DEF and P̄CAB

DEF are rank-six projections,

PCAB
DEF := PC

DP[A
[EPB]

F ] + 2
D−1PC[APB]

[EPF ]D ,

P̄CAB
DEF := P̄C

DP̄[A
[EP̄B]

F ] + 2
D−1 P̄C[AP̄B]

[EP̄F ]D ,
(4.9)

that are symmetric and traceless,

PCABDEF = PDEFCAB = PC[AB]D[EF ] , P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF ] ,

PCAB
DEFPDEF

GHI = PCAB
GHI , P̄CAB

DEF P̄DEF
GHI = P̄CAB

GHI ,

PA
ABDEF = 0 , PABPABCDEF = 0 , P̄A

ABDEF = 0 , P̄ABP̄ABCDEF = 0 .

(4.10)

The symmetric properties, (4.5) and (4.6), enable us to replace the ordinary derivatives in

the definition of the generalized Lie derivative (1.4) by our semi-covariant derivatives (4.1),

i.e. L̂∂
X → L̂∇

X . The additional constraints (4.6) and (4.7) are analogue to the torsionless

condition in Riemannian geometry that uniquely picks up the the Levi-Civita connection.

In fact, assuming the skew-symmetric property, ΓABC = −ΓACB only, the difference be-

tween L̂∂
X and L̂∇

X is given by the totally anti-symmetric part of the connection,

(

L̂∇
X − L̂∂

X

)

TA1···An =

n
∑

i=1

(ΓAiBC + ΓBCAi
+ ΓCAiB)XCTA1···Ai−1

B
Ai+1···An , (4.11)

such that this difference might be used for the definition of “torsion” [34]. However we

emphasize that, the symmetric properties (4.5), (4.6) are not sufficient enough to fix the

connection uniquely: the projective condition (4.7) must be also imposed.

Under the double-gauge transformations, the connection and the semi-covariant deriva-

tive transform as

(δX−L̂X)ΓCAB ≡ 2
[

(P+P̄)CAB
FDE − δ F

C δ D
A δ E

B

]

∂F∂[DXE] ,

(δX−L̂X)∇CTA1···An ≡
n
∑

i=1

2(P+P̄)CAi

BFDE∂F∂[DXE]TA1···Ai−1BAi+1···An .
(4.12)
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Hence, they are not double-gauge covariant. We say, a tensor is double-gauge covariant

if and only if its double-gauge transformation agrees with the generalized Lie derivative,

i.e. ‘δX = L̂X ’. Nonetheless, the characteristic feature of the semi-covariant derivative is

that, combined with the projections, it can generate various fully covariant quantities, and

hence the name ‘semi-covariant’:

PC
DP̄A1

B1P̄A2
B2 · · · P̄An

Bn∇DTB1B2···Bn ,

P̄C
DPA1

B1PA2
B2 · · ·PAn

Bn∇DTB1B2···Bn ,

PABP̄C1
D1P̄C2

D2 · · · P̄Cn
Dn∇ATBD1D2···Dn ,

P̄ABPC1
D1PC2

D2 · · ·PCn
Dn∇ATBD1D2···Dn ,

PABP̄C1
D1P̄C2

D2 · · · P̄Cn
Dn∇A∇BTD1D2···Dn ,

P̄ABPC1
D1PC2

D2 · · ·PCn
Dn∇A∇BTD1D2···Dn .

(4.13)

With the usual curvature,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED , (4.14)

that turns out to be double-gauge non-covariant, if we set

SABCD :=
1

2

(

RABCD +RCDAB − ΓE
ABΓECD

)

, (4.15)

a double-gauge covariant rank two-tensor and a double-gauge covariant scalar follow

PI
AP̄J

BSAB , PABSAB ≡ −P̄ABSAB . (4.16)

Here we put

SAB= SBA:= SC
ACB , (4.17)

that turns out to be traceless,

SA
A ≡ 0 . (4.18)

In particular, the covariant scalar reduces to the bosonic closed string effective action upon

the level matching constraint (1.1) [18],

2PABSAB ≡ Rg + 4�φ− 4∂µφ∂
µφ− 1

12
HλµνH

λµν . (4.19)

4.2 Unprimed Dirac operators: O(D, D) singlet

For the O(D,D) singlet fermions, i.e.unprimed fermions, (ψ α
p̄ , ρ

α), we focus on the following

differential operator,

DA := ∂A + ΓA + ΦA + Φ̄A = ∇A + ΦA + Φ̄A = DA + ΓA , (4.20)

where DA, is a local Lorenz covariant, yet double-gauge non-covariant, derivative having

the connections, ΦA and Φ̄A for SO(1,D−1) and SO(D−1, 1) respectively,

DA := ∂A + ΦA + Φ̄A . (4.21)
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We view DA, as our ‘master’ unprimed, semi-covariant derivative unifying ∇A and DA.

We require it to annihilate the unprimed double-vielbein and the DFT-dilaton,

DAVBp = ∂AVBp + ΓAB
CVCp + ΦAp

qVBq = 0 ,

DAV̄Bp̄ = ∂AV̄Bp̄ + ΓAB
C V̄Cp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 ,

DAd = ∇Ad := −1

2
e2d∇A(e−2d) = ∂Ad+

1

2
ΓB

BA = 0 , (4.22)

as well as all the constant metrics and the gamma matrices in table 2,

DAJBC = 0 , DAηpq = 0 , DAη̄p̄q̄ = 0 , DACαβ = 0 , DAC̄ᾱβ̄ = 0 ,

DA(γp)αβ = ΦA
p
q(γ

q)αβ + ΦA
α

δ(γ
p)δβ − (γp)αδΦA

δ
β = 0 ,

DA(γ̄p̄)ᾱβ̄ = Φ̄A
p̄
q̄(γ̄

q̄)ᾱβ̄ + Φ̄A
ᾱ

δ̄(γ̄
p̄)δ̄ β̄ − (γ̄p̄)ᾱδ̄Φ̄A

δ̄
β̄ = 0 . (4.23)

It follows that

DAPBC = ∇APBC = 0 , DAP̄BC = ∇AP̄BC = 0 , (4.24)

and as usual,5

ΦApq = −ΦAqp , Φ̄Ap̄q̄ = −Φ̄Aq̄p̄ , ΦA
α

β =
1

4
ΦApq(γ

pq)αβ , Φ̄A
ᾱ

β̄ =
1

4
Φ̄Ap̄q̄(γ̄

p̄q̄)ᾱβ̄ .

(4.25)

Specifically the spin connections are determined, from (4.22) with (4.8), by

ΦApq = V B
p∇AVBq , Φ̄Ap̄q̄ = V̄ B

p̄∇AV̄Bq̄ , (4.26)

such that

ΓABC = VB
pDAVCp + V̄B

p̄DAV̄Cp̄ . (4.27)

From the consideration of [DA,DB ]VCp = 0 and [DA,DB ]V̄Cp̄ = 0, we may derive the re-

lations between the covariant scalar, PABSAB (4.16), and the field strengths of the local

Lorentz connections,

PABSAB = FABpqV
ApV Bq − 1

2
ΓABCΓAB

DP
CD ,

P̄ABSAB = F̄ABp̄q̄V̄
Ap̄V̄ Bq̄ − 1

2
ΓABCΓAB

DP̄
CD , (4.28)

where, in fact PABSAB = −P̄ABSAB due to (4.18), and the field strengths are as usual,

FABpq = ∂AΦBpq − ∂BΦApq + ΦAprΦB
r
q − ΦBprΦA

r
q ,

F̄ABp̄q̄ = ∂AΦ̄Bp̄q̄ − ∂BΦ̄Ap̄q̄ + Φ̄Ap̄r̄Φ̄B
r̄
q̄ − Φ̄Bp̄r̄Φ̄A

r̄
q̄ .

(4.29)

5Here, for simplicity, we omit the possibility of adding a central term to the spin connections, i.e.

ΦA
α

β =
1

4
ΦApq(γ

pq)α
β + c × δ

α
β .
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Though ΦApq and Φ̄Ap̄q̄ are not double-gauge covariant from (4.12),6

(δX − L̂X)ΦApq ≡ 2PABC
DEF∂D∂[EXF ]V

B
pV

C
q ,

(δX − L̂X)Φ̄Ap̄q̄ ≡ 2P̄ABC
DEF∂D∂[EXF ]V̄

B
p̄V̄

C
q̄ ,

with (4.9), the followings are so, i.e. ‘ δX ≡ L̂X ’,

P̄A
BΦBpq , PA

BΦ̄Bp̄q̄ , ΦA[pqV
A

r] , Φ̄A[p̄q̄V̄
A

r̄] , ΦApqV
Ap , Φ̄Ap̄q̄V̄

Ap̄ . (4.30)

This generalizes our earlier results in [18] where only the first two in (4.30) were identified.

After all, the fully covariant unprimed Dirac operators, with respect to all the symme-

tries in table 1, are as follows

γADAρ , γADAψp̄ , V̄ A
p̄DAρ , V̄ Ap̄DAψp̄ = DAψ

A . (4.31)

Here we set for simplicity,

ψA := V̄A
p̄ψp̄ , γA := V A

pγ
p , (4.32)

such that

V̄ A
p̄ψA = ψp̄ ,

{

γA, γB
}

= 2PAB . (4.33)

Writing explicitly,

DAρ = DAρ =

(

∂A +
1

4
ΦApqγ

pq

)

ρ ,

DAψp̄ = DAψp̄ =

(

∂A +
1

4
ΦApqγ

pq

)

ψp̄ + Φ̄Ap̄
q̄ψq̄ , (4.34)

DAψB =

(

∂A +
1

4
ΦApqγ

pq

)

ψB + ΓAB
CψC .

As all the associated fields in (4.31) are unprimed (unprimed double-vielbein and unprimed

fermions), all the unprimed Dirac operators are O(D,D) singlets.

4.3 Primed Dirac operators

In this subsection, we construct the fully covariant, ‘primed’ Dirac operators for the

O(D,D) non-singlet fermions, i.e. the primed fermions, (ψ′ α
p̄ , ρ

′α). As the analysis is

parallel to the previous subsection on the unprimed fermions, we skip the details and

present only the main results.

The primed master semi-covariant derivative is

D′
A := ∂A + ΓA + Φ′

A + Φ̄′
A = ∇A + Φ′

A + Φ̄′
A = D′

A + ΓA , (4.35)

where

D′
A := ∂A + Φ′

A + Φ̄′
A , (4.36)

6For double-gauge covariant yet O(D, D) non-covariant connections for the local Lorentz symmetries,

see our earlier work [18]. In this paper, instead we focus on the double-gauge semi-covariant and O(D, D)

covariant connections for the local Lorentz symmetries.
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and

Φ′
Apq = −V̄ ′

Bp∇AV̄
′B

q , Φ̄′
Ap̄q̄ = −V ′

Bp̄∇AV
′B

q̄ ,

ΓABC = −V ′
B

p̄D′
AV

′
Cp̄ − V̄ ′

B
pD′

AV̄
′
Cp .

(4.37)

It satisfies

D′
AV

′
Bp̄ = 0 , D′

AV̄
′
Bp = 0 , D′

Ad = ∇Ad = ∂Ad+
1

2
ΓB

BA = 0 ,

D′
APBC = ∇APBC = 0 , D′

AP̄BC = ∇AP̄BC = 0 , (4.38)

and like (4.23),

D′
AJBC = 0 , D′

Aηpq = 0 , D′
Aη̄p̄q̄ = 0 ,

D′
ACαβ = 0 , D′

AC̄ᾱβ̄ = 0 , D′
A(γp)αβ = 0 , D′

A(γ̄p̄)ᾱβ̄ = 0 .
(4.39)

Further, in analogy to (4.28), we have

PABSAB = −F̄ ′
ABp̄q̄V

′Ap̄V ′Bq̄ − 1

2
ΓABCΓAB

DP
CD ,

P̄ABSAB = −F ′
ABpqV̄

′ApV̄ ′Bq − 1

2
ΓABCΓAB

DP̄
CD , (4.40)

where the primed field strengths are, in an identical fashion to (4.29),

F ′
AB = ∂AΦ′

B − ∂BΦ′
A + [Φ′

A,Φ
′
B] , F̄ ′

AB = ∂AΦ̄′
B − ∂BΦ̄′

A +
[

Φ̄′
A, Φ̄

′
B

]

.

(4.41)

Finally, the fully covariant primed Dirac operators are

γ′AD′
Aρ

′ , γ′AD′
Aψ

′
p̄ , V ′A

p̄D′
Aρ

′ , V ′Ap̄D′
Aψ

′
p̄ = D′

Aψ
′A . (4.42)

Here we set for simplicity,

ψ′
A := V ′

A
p̄ψ′

p̄ , γ′A := V̄ ′A
pγ

p , (4.43)

such that

V ′A
p̄ψ

′
A = −ψ′

p̄ ,
{

γ′A, γ′B
}

= −2P̄AB . (4.44)

Writing explicitly we have

D′
Aρ

′ = D′
Aρ

′ =

(

∂A +
1

4
Φ′

Apqγ
pq

)

ρ′ ,

D′
Aψ

′
p̄ = D′

Aψ
′
p̄ =

(

∂A +
1

4
Φ′

Apqγ
pq

)

ψ′
p̄ + Φ̄′

Ap̄
q̄ψ′

q̄ , (4.45)

D′
Aψ

′
B =

(

∂A +
1

4
Φ′

Apqγ
pq

)

ψ′
B + ΓAB

Cψ′
C .
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4.4 Chirality change under O(D,D) T-duality

In order to discuss the O(D,D) transformations of the primed fermions, we first recall the

O(D,D) transformation rule of the primed double-vielbein (3.21),

V ′
Ap̄ −→ MA

BL̄p̄
q̄V ′

Bq̄ , V̄ ′
Ap −→ MA

BLp
qV̄ ′

Bq , (4.46)

where, from (3.14) and (3.18), the O(D,D) group element and the associated local Lorentz

transformations are given by

MA
B =

(

aµ
ν bµσ

cρν dρ
σ

)

,
L = e−1

[

at + (g −B)bt
] [

at − (g +B)bt
]−1

e ,

L̄ = (ē−1e)L−1(e−1ē) .
(4.47)

We also recall the covariance of the gamma matrices (3.23),

γqSLLq
p = SLγ

p . (4.48)

It is then clear that, with the full covariance of the primed Dirac operators (4.42), the

primed fermions transform under O(D,D) T-duality as follows,



















ρ′

ψ′
p̄

γ′AD′
Aρ

′

γ′AD′
Aψ

′
p̄

V ′A
p̄D′

Aρ
′

D′
Aψ

′A



















−→



















SLρ
′

L̄p̄
q̄SLψ

′
q̄ ,

SLγ
′AD′

Aρ
′

L̄p̄
q̄SLγ

′AD′
Aψ

′
q̄

L̄p̄
q̄V ′A

q̄SLD′
Aρ

′

SLD′
Aψ

′A



















. (4.49)

Thus, from (3.24) and (3.25),

γ(D+1)SL = det(L)SLγ
(D+1) , det(L) =

det [a + b(g +B)]

det [a − b(g −B)]
= ±1 , (4.50)

when det(L) = −1, the primed fermions flip their chiralities. Otherwise not.

For example, on a flat background (g = η, B = 0), we may set both a and bg to be

diagonal with the eigenvalues, zero or one only, in an exclusive manner such that a+bg = 1.

This choice corresponds to the usual discrete T-duality along toroidal directions. In this

case, we get det(L) = (−1)♯a where ♯a counts the number of zero eigenvalues in the matrix,

a, and hence the number of toroidal directions on which T-duality is performed. Thus,

our formula is consistent with the well-known knowledge that performing odd number of

T-duality on flat backgrounds exchanges type IIA and IIB superstrings.

4.5 Reduction to D dimension

Upon the level matching constraint (1.1), with the explicit forms of the double-
vielbeins (3.6), (3.10), the covariant DFT Dirac operators (4.31), (4.42) reduce to more
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familiar D-dimensional expressions within the Riemannian setup,

√
2γADAρ≡ γm

(

∂mρ+
1

4
ωmnpγ

npρ+
1

24
Hmnpγ

npρ− ∂mφρ

)

,

√
2γADAψp̄ ≡ γm

(

∂mψp̄+
1

4
ωmnpγ

npψp̄+ω̄mp̄q̄ψ
q̄+

1

24
Hmnpγ

npψp̄+
1

2
Hmp̄q̄ψ

q̄−∂mφψp̄

)

,

√
2V̄ A

p̄DAρ≡ ∂p̄ρ+
1

4
ωp̄qrγ

qrρ+
1

8
Hp̄qrγ

qrρ ,

√
2DAψ

A ≡ ∂p̄ψp̄ +
1

4
ωp̄qrγ

qrψp̄ + ω̄p̄
p̄q̄ψ

q̄ +
1

8
Hp̄qrγ

qrψp̄ − 2∂p̄φψ
p̄ ,

√
2γ′

AD′

Aρ
′ ≡ γm

(

∂mρ
′ +

1

4
ωmnpγ

npρ′ − 1

24
Hmnpγ

npρ′ − ∂mφρ
′

)

,

√
2γ′

AD′

Aψ
′

p̄ ≡ γm

(

∂mψ
′

p̄+
1

4
ωmnpγ

npψ′

p̄+ω̄mp̄
q̄ψ′

q̄−
1

24
Hmnpγ

npψ′

p̄−
1

2
Hmp̄q̄ψ

′ q̄−∂mφψ
′

p̄

)

,

√
2V ′A

p̄D′

Aρ
′ ≡ ∂p̄ρ

′+
1

4
ωp̄qrγ

qrρ′− 1

8
Hp̄qrγ

qrρ′ ,

√
2D′

Aψ
′A ≡ ∂p̄ψ′

p̄ +
1

4
ωp̄

qrγ
qrψ′

p̄ + ω̄p̄
p̄q̄ψ

′q̄ − 1

8
Hp̄qrγ

qrψ′p̄ − 2∂p̄φψ
′p̄ , (4.51)

where, with the D-dimensional standard diffeomorphism covariant derivative, ▽µ, we set

∂p = (e−1)p
µ∂µ, ∂p̄ = (ē−1)p̄

µ∂µ, ωµpq = (e−1)p
ν▽µeνq, ω̄µp̄q̄ = (ē−1)p̄

ν▽µēνq̄, etc.

In fact, the above expressions are precisely what appear in type IIA and IIB supergrav-

ities [34], where ψp̄ and ψ′
p̄ are gravitinos in string frame, while ρ and ρ′ are ‘DFT-dilatinos’

corresponding to the superpartner of the DFT-dilaton, d = φ− 1
2 ln

√−g.

5 Summary and comments

In summary, based on the stringy differential geometry that is characterized by the semi-

covariant derivative [18], we have incorporated fermions, like gravitino and dilatino, into

double field theory in a manifestly covariant manner with regard to all the symmetries

in table 1, i.e. O(D,D) T-duality, double-gauge symmetry and a pair of local Lorentz

symmetries. We have shown that in general there are two types of fermions in double

field theory: O(D,D) singlet and non-singlet (unprimed and primed). For each type, we

have constructed relevant covariant Dirac operators, (4.31) and (4.42). Especially, we have

derived a necessary and sufficient condition for the primed fermions to flip their chiralities

under O(D,D) T-duality (4.50), that depends on both the O(D,D) group element and

the background fields.

In this paper, we have chosen the primed fermions, (ρ′α, ψ′ α
p̄ ), to carry the same local

Lorentz indices as the unprimed fermions, (ρα, ψ α
p̄ ). The alternative choice is also possible:

If we let the primed fermions have the opposite local Lorentz structure like (ρ′ᾱ, ψ′ ᾱ
p ), their

– 15 –



J
H
E
P
1
1
(
2
0
1
1
)
0
2
5

fully covariant Dirac operators are, with γ̄′A := V ′A
p̄γ̄

p̄,

√
2γ̄′AD′

Aρ
′ ≡ γ̄m̄

(

∂m̄ρ
′ +

1

4
ω̄m̄p̄q̄ γ̄

p̄q̄ρ′ − 1

24
Hm̄p̄q̄ γ̄

p̄q̄ρ′ − ∂m̄φρ
′

)

,

√
2γ̄′AD′

Aψ
′

p ≡ γ̄m̄

(

∂m̄ψ
′

p+
1

4
ω̄m̄p̄q̄γ̄

p̄q̄ψ′

p+ωm̄p
qψ′

q−
1

24
Hm̄p̄q̄γ̄

p̄q̄ψ′

p−
1

2
Hm̄pqψ

′q − ∂m̄φψ
′

p

)

,

√
2V̄ ′A

pD′

Aρ
′ ≡ ∂pρ

′ +
1

4
ω̄pp̄q̄ γ̄

p̄q̄ρ′ − 1

8
Hpp̄q̄ γ̄

p̄q̄ρ′ ,

√
2V̄ ′ApD′

Aψ
′

p ≡ ∂pψ′

p +
1

4
ω̄p

p̄q̄γ̄
p̄q̄ψ′

p + ωp
pqψ

′q − 1

8
Hpp̄q̄ γ̄

p̄q̄ψ′p − 2∂pφψ
′p . (5.1)

However, these seem irrelevant to type IIA and IIB supergravity (e.g. see eq. (2.8) in [34]).

It is worth while to note that, the distinction between the primed and unprimed double-

vielbein is arbitrary: if we set one to be O(D,D) vector, like (3.13), then the other is not a

vector anymore, like (3.21). Thus, O(D,D) may act on the unprimed fermions nontrivially

while leaving the primed fermions singlet. This seems to imply the doubling of O(D,D)

structures. Further investigation is required.

So far, we have focused on the gravitational interpretation of the unprimed and primed

fermions. However, we may also regard ρ or ρ′ as gaugino and couple them to the Yang-

Mills double field theory [16].
Up to the RR sector (for related works see e.g. [22, 34, 38]), the unifying supersym-

metric double field theory reformulation of type IIA and IIB supergravities will, when
constructed [39], contain the following leading order terms (see also [28]),

e−2d
(

PABSAB + ρ̄γADAρ+ 2ψ̄ADAρ+ ψ̄AγBDBψA + ρ̄′γ′
AD′

Aρ
′ + 2ψ̄′AD′

Aρ
′ + ψ̄′Aγ′

BD′

Bψ
′

A

)

.

(5.2)

In particular, the complete supersymmetric double field theory will manifest not only

O(D,D) T-duality and double-gauge symmetry, but also a pair of local Lorentz symmetries.

It will be of interest to identify the pair of local Lorentz symmetries directly from the string

worldsheet or M-theory points of view [19–21, 40–47].
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