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Abstract

A measurement is presented of the cross section for the production of aW boson with one or two jets, of which at
least one must be ab-jet, in pp collisions at

√
s = 7 TeV. Production via top decay is not included in the signal

definition. The measurement is based on 35 pb−1of data collected with the ATLAS detector at the LHC. TheW+b-jet
cross section is defined for jets reconstructed with the anti-kt clustering algorithm with transverse momentum above
25 GeV and rapidity within±2.1. Theb-jets are identified by reconstructing secondary vertices.The fiducial cross
section is measured both for the electron and muon decay channel of theW boson and is found to be 10.2± 1.9 (stat)
± 2.6 (syst) pb for one lepton flavour. The results are comparedwith next-to-leading order QCD calculations, which
predict a cross section smaller than, though consistent with, the measured value.

1. Introduction

A measurement is presented of the cross section for
the production of aW boson with one or twob-jets
in proton-proton collisions at a centre-of-mass energy
of 7 TeV. Production via top decay is not included
in the signal definition. This measurement provides
an important test of quantum chromodynamics (QCD)
as it is sensitive to heavy-flavour quarks in the initial
state. Next-to-leading order (NLO) QCD predictions
for W+b-jets have made substantial progress in the last
years [1, 2, 3, 4, 5, 6], and now a complete NLO calcu-
lation has become available [7]. A measurement of the
cross section is also important becauseW+b-jet produc-
tion is a large background to searches for the Higgs bo-
son inWH production with a decay ofH → bb [8, 9],
to measurements of top quark properties in single [10]
and pair production [11], and to searches for physics
beyond the Standard Model [12]. A measurement of
W+b-jet production in proton-antiproton collisions at√

s = 1.96 TeV by the CDF Collaboration [13] indicates
that the measured cross section is considerably larger
than the NLO QCD predictions.

The W+b-jet production cross section is measured
in the exclusive 1 and 2 jet final states. Jets originat-
ing from b-quarks (referred to asb-jets) are identified
by exploiting the long lifetime and the large mass ofb
hadrons. The fiducial cross section is defined at particle-

level by the selection criteria given in Table 11. The
measurement is based on data corresponding to an inte-
grated luminosity of 35 pb−1and is compared with QCD
NLO predictions [14]. A closely related measurement
has been performed, using very similar techniques, in
theZ+b-jet final state [15].

2. The ATLAS Detector

The ATLAS detector [16] consists of an inner detec-
tor tracking system (ID) surrounded by a superconduct-
ing solenoid providing a 2 T magnetic field, electromag-
netic and hadronic calorimeters, and a muon spectrome-
ter (MS). The ID consists of pixel and silicon microstrip
detectors inside a transition radiation tracker. The elec-
tromagnetic calorimeter is a lead liquid-argon (LAr) de-
tector in the barrel (|η| < 1.475) and the endcap (1.375<
|η| < 3.2) regions. Hadron calorimetry is based on two
different detector technologies. The barrel (|η| < 0.8)
and extended barrel (0.8 < |η| < 1.7) calorimeters are

1ATLAS uses a right-handed coordinate system with its originat
the nominal interaction point (IP) in the centre of the detector and the
z-axis along the beam pipe. Thex-axis points from the IP to the centre
of the LHC ring, and they axis points upward. Cylindrical coordinates
(r, φ) are used in the transverse plane,φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angleθ asη = − ln tan(θ/2). The distance∆R in η-φ space is
defined as∆R ≡

√

∆η2 + ∆φ2.
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Table 1: Definition of the phase space for the fiducial cross
section. The W transverse mass is defined asmT =
√

2pℓT pνT (1− cos(φℓ − φν)).

Requirement Cut

Lepton transverse momentum pℓT > 20 GeV
Lepton pseudorapidity |ηℓ| < 2.5
Neutrino transverse momentum pνT > 25 GeV
W transverse mass mT > 40 GeV
Jet transverse momentum p j

T > 25 GeV
Jet rapidity |y j| < 2.1
Jet multiplicity n ≤ 2
b-jet multiplicity nb = 1 or nb = 2
Jet-lepton separation ∆R(ℓ, jet) > 0.5

composed of scintillator/steel, while the hadronic end-
cap calorimeters (1.5 < |η| < 3.2) are LAr/copper. The
forward calorimeters (3.1 < |η| < 4.9) are instrumented
with LAr /tungsten and LAr/copper, providing electro-
magnetic and hadronic energy measurements, respec-
tively. The MS consists of three large superconducting
toroids and a system of three stations of trigger cham-
bers and precision tracking chambers.

3. Simulated Event Samples

Monte Carlo (MC) simulated event samples with full
detector simulation [17], based on the Geant4 pro-
gram [18] corrected for all known detector effects, are
used to model theW+b-jet signal and most of the back-
grounds, as well as to unfold the measuredW+b-jet
yield to obtain the fiducial cross section.

The processes ofW boson production in association
with b-jets, c-jets and light-flavour jets are simulated
separately using the Alpgen [19] generator, interfaced
to Herwig [20] for parton shower and fragmentation,
and Jimmy [21] for the underlying event simulation. The
MLM [22] matching scheme as implemented in Alpgen
is used to remove overlaps between then andn + 1 par-
ton samples from the matrix element (ME) and the par-
ton shower. In addition, overlap between heavy-flavour
quarks that originate from ME production and those that
originate from the parton shower is removed.

The Z+jets background is simulated with Alpgen
interfaced to Herwig using the same configuration
as for W+jets. The diboson (WW, WZ, ZZ) back-
ground is simulated with Herwig. The t-channel and
Wt-channel single top processes are simulated with
AcerMC [23], while the s-channel process is simu-
lated with MC@NLO [24]. The inclusiveW+jets and

Z+jets cross sections are normalized to NNLO predic-
tions [25], and the cross sections of the other back-
grounds are normalized to NLO predictions [26]. The
tt̄ background is simulated with MC@NLO interfaced
to Herwig. The tt̄ normalisation is extracted from the
data.

Multiple interactions per bunch crossing are ac-
counted for by overlaying simulated minimum bias
events. To match the observed instantaneous luminos-
ity profile, the MC events are reweighted to yield the
same distribution of the number of primary vertices as
measured in the data.

4. Event Selection

The analysis is based on the 2010 data set using
35 pb−1of integrated luminosity with an uncertainty of
3.4% [27, 28]. The data are collected using a single
electron or muon highpT trigger. Trigger thresholds are
low enough to ensure that leptons withpT > 20 GeV lie
in the efficiency plateau. All events are required to have
a primary vertex that is reconstructed from at least three
tracks withpT > 150 MeV.

Final states are selected with exactly one isolated
electron or muon. Electrons are required to satisfy
ET > 20 GeV and|η| < 2.47. Electrons in the re-
gion between the barrel and the endcap electromagnetic
calorimeters (1.37 < |η| < 1.52) are removed. In ad-
dition to the tight selection as defined in Ref. [29], a
pT - andη-dependent requirement on a combination of
calorimeter and track isolation is designed to yield con-
stant efficiency and to reduce the large background from
multi-jet production. Muon candidates are constructed
from matched ID and MS tracks and are required to
satisfy pT > 20 GeV and|η| < 2.4. Muons within
a distance∆R < 0.4 of a jet are rejected. In addition
the calorimeter transverse energy and the sum of track
transverse momenta within∆R < 0.3 of the muon must
both be less than 4 GeV.

Jets are reconstructed using the anti-kt [30] algorithm
with a radius parameterR = 0.4. To take into account
the differences in calorimeter response to electrons and
hadrons, apT - and η-dependent factor, derived from
simulated events, is applied to each jet to provide an av-
erage energy scale correction [31] back to particle level.
Events with one or two reconstructed jets are selected
with jet pT > 25 GeV and rapidity|y| < 2.1. All jets
within ∆R < 0.5 of a selected electron are removed. Jets
produced in additional interactions are removed by re-
quiring that 75% of the sum of the transverse momenta
of the tracks associated to each jet is consistent with
originating from the primary vertex.
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The reconstruction of the missing transverse momen-
tum (Emiss

T ) [29] is based on the energy deposits in
calorimeter cells grouped into three-dimensional clus-
ters. Corrections for electromagnetic to hadronic en-
ergy scale, dead material, out-of-cluster energy as well
as muon momentum for the muon channel are ap-
plied. The W boson transverse mass (mT ) is cal-
culated from the measured lepton momentum, the
missing transverse momentum and the opening an-
gle between the two according to the formulamT =
√

2pℓT pνT (1− cos(φℓ − φν)). For both lepton channels

Emiss
T > 25 GeV andmT > 40 GeV is required.

The algorithm used to tagb-jets, SV0 [32], is based
on the decay length significance between the primary
vertex and the displaced secondary vertex reconstructed
in the jet. Jets with a decay length significance greater
than 5.85 are considered to beb-jet candidates, referred
to asb-tagged jets. This working point of the SV0 al-
gorithm ensures about 35% efficiency forb-jets with a
mistag rate of about 0.3%, and 8% for light- andc-jets,
respectively. Theb-tagging efficiency is measured in a
sample enriched inb-jets by requiring that the jet con-
tains a muon, which is expected to come predominantly
from a semileptonicb hadron decay [33]. The muon
momentum relative to the jet axis, referred to asprel

T ,
is used to discriminateb-jets fromc- and light-flavour
jets. The ratio of theb-tagging efficiency measured in
data and in the MC simulation is applied to the simu-
lated samples in the form of a correction factor. This
correction factor does not show any strong dependence
on jet pT or η and is consistent with unity. The total
uncertainty on the correction factor ranges from 6% to
13%. These results are confirmed with independentb-
tagging efficiency measurements intt̄ events and alter-
natively using partial reconstruction ofb hadrons in jets
in D∗µ final states [33].

The overall fraction ofW+b-jet events with twob-
tagged jets is negligible (2%). Most of theW+b-jet
events with two trueb-jets are reconstructed as events
with one b-jet candidate. This is due to the require-
ment of central and highpT jets and to the b-tagging
efficiency of about 35%. In addition, events containing
more than oneb-jet candidate are predicted to be domi-
nated bytt̄. Therefore events are selected with one and
only one tagged jet despite the measurement also being
sensitive to the production ofW+b-jet with two trueb-
jets.

5. Background Estimation and Cross Section Ex-
traction

Charm hadrons also have an appreciable lifetime
which can result in reconstructed displaced secondary
vertices. Light-flavour jets can also be misidentified
asb-jets due to hadronic interactions and photon con-
versions in detector material, long-lived light-flavour
hadrons likeΛ andK0

S and wrongly reconstructed dis-
placed vertices. The invariant mass of the secondary
vertex, mS V , is correlated with the mass of the par-
ent hadron and thus discriminates betweenb-, c- and
light-flavour jets. The number ofW+b-jet events is ex-
tracted from data by fitting the measuredmS V distribu-
tion with a linear combination of templates forb-, c- and
light-flavour jets using a binned maximum likelihood
fit, while the expected contributions from non-W+jets
background processes are constrained in the fit using the
estimated template shapes and normalisations. ThemS V

is calculated from the tracks associated to the secondary
vertex assuming they are pions. The fit procedure is val-
idated with simulated pseudo-experiments with flavour
compositions and background levels similar to the mea-
sured ones.

The non-W+jets background sources comprise top
quark pair, single top, multi-jet and the other elec-
troweak (EW) production processes,Z+jets and di-
bosons.

The tt̄ background is estimated from data by apply-
ing the same secondary vertex mass fit to a control re-
gion enriched intt̄ using the same event selection ex-
cept requiring four or more jets instead of one or two.
Backgrounds to thett̄ process are estimated in the same
way as for the fit in the signal region. TheW+b-
jet contamination in thett̄ control region is at the 5%
level and is extrapolated from the measured yield in
the signal region by using Alpgen and an uncertainty
of ± 100%. The measuredtt̄ yield, n≥4 jets

tt̄,measured, is then
projected into the signal region using MC simulation:

n1,2jets
tt̄ = n≥4jets

tt̄,measured·
n1,2jets

tt̄,expected

n≥4jets
tt̄,expected

. This data-driventt̄ yield

estimate is in good agreement with MC@NLO predic-
tion and has the advantage that it is almost completely
independent of theb-tagging uncertainty. Thett̄ mS V

template is modelled using MC simulation.
As the multi-jet background is difficult to model with

simulation, data-driven techniques similar to those de-
scribed in Ref. [11] are used to estimate this back-
ground in each jet multiplicity bin and lepton flavour.
The multi-jet background in the electron channel arises
mainly from non-prompt electrons and a small amount
of fake electrons such as electrons from photon con-
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versions and misidentified jets with high electromag-
netic fractions. A binned likelihood template fit of the
Emiss

T distribution is used to estimate the multi-jet back-
ground. TheEmiss

T template for multi-jet events is mod-
elled using a complementary data sample where the full
event selection including theb-tagging requirement is
satisfied but electrons are required to fail certain se-
lection criteria and to satisfy a looser identification re-
quirement. This selection is dominated by multi-jet
events. TheEmiss

T template for the other contributions
is modelled using MC simulation. The results of the fit
are shown in Fig. 1, where the fit region goes from 0-
100 GeV. ThemS V template is modelled using the same
control region used to model the multi-jetEmiss

T tem-
plate.

The muon multi-jet background is dominated by
non-prompt muons and extracted using the matrix
method [11]. The method is based on the difference
in efficiency for a real (prompt) or a fake (non-prompt)
muon that satisfies a loose selection criterion, to also
satisfy the standard selection criterion. Fig. 1 illustrates
that the muon multi-jet background is well modelled
with this method. The shape of themS V template is
modelled using a control region enriched in multi-jet
events where the full event selection including theb-
tagging requirement is satisfied butEmiss

T <10 GeV is
required. For both lepton flavours the multi-jet back-
ground is dominated by realb-jets. The validity of these
approaches to the multi-jet background estimates are
verified on samples of simulated events.

The mS V distributions in data and MC, where the
W+jets samples are normalized to the results of the
maximum likelihood fit, are shown in Fig. 2 and 3. The
fit results are also shown in Table 2 and are converted
into a W+b-jet fiducial cross section times the branch-
ing fraction for one lepton flavour, including corrections
for all known detector effects:

σ
j
W+b−jet × B(W → ℓν) =

n j
tag · f j

W+b−jet
∫

Ldt · U j
, (1)

where the indexj = 1, 2 indicated the jet multiplicity,
n j

tag the number of selected events with exactly oneb-

tagged jet,f j
W+b−jet the fitted fraction of signal events,

∫

Ldt the integrated luminosity, andU j the W+b-jet
correction factor which includes the acceptance and ef-
ficiency effects.

The correction factor is calculated from the simula-
tion as the ratio ofW+b-jet events which satisfy the
offline selection requirements to theW+b-jet events
which satisfy the fiducial particle-level selection crite-
ria, summarized in Table 1. At the particle level jets are
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Figure 1: (top)Emiss
T distribution in the electron channel in the com-

bined 1- and 2-jet bin without applying theEmiss
T selection criterion.

(bottom) mT distribution in the muon channel in the 1-jet bin with-
out applying themT selection criterion after applying theb-tagging
requirement. Non-multi-jet contributions are normalizedto their MC
predictions.

reconstructed with the anti-kt algorithm using all stable
particles (τ > 10 ps),b-jets are defined by the presence
of a b hadron withpT > 5 GeV associated to the jet
requiring∆R(jet, b hadron)< 0.3, and only weakly-
decayingb hadrons are considered. Leptons are defined
by including the energy of all radiated photons within
∆R = 0.1 around the lepton.

The small contributions to the measuredW+b-jet
yield from W → τν decays (less than 5%, where the
τ decays to an electron or muon) are treated as back-
ground and corrected for. The final correction factors
are 0.17 and 0.21 in the electron channel and 0.23 and
0.28 in the muon channel for the 1-jet and 2-jet bin, re-
spectively. The correction factor is dominated by the
b-tagging requirement which has an efficiency of about
35%. The correction factor in the electron channel is
smaller than in the muon channel due to tighter electron
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Table 2: Fitted event yields for theW+jet contributions including the statistical uncertainty from the binned likelihood fit, compared to the Alpgen
MC prediction normalized to the NNLO inclusiveW cross section [25], per lepton channel and jet multiplicity. The data-driven multi-jet andtt̄
estimates and the other background estimates normalized to(N)NLO cross sections are also shown. The statistical uncertainty on the MC prediction
is negligible and is not shown. No attempt to compare the fitted and predicted event yields is made, therefore the systematic uncertainties on the
predicted event yields have not been estimated. Uncertainties on the MC shapes that affect theW + b-jets fitted event yield are discussed in section
6.

W → µν, 1-jet W → µν, 2-jet W → eν, 1-jet W → eν, 2-jet
Pred. Fit result Pred. Fit result Pred. Fit result Pred. Fit result

W+b 25 28± 13 26 62± 18 18 33± 12 19 38± 14
W+c 108 170± 20 45 54± 19 84 105± 18 36 24± 15

W+light 38 21.2± 9.9 20 21± 10 30 22± 10 17 14.4± 7.7
Multi-jets 8 - 10 - 10 - 5.8 -

tt̄ 11 - 44 - 8.1 - 33 -
Single top 17 - 23 - 14 - 18 -

Other backgrounds 3.9 - 2.5 - 1.9 - 2.1 -
Total Predicted 212 - 170 - 167 - 131 -

Data 261 - 217 - 194 - 136 -

selection in order to reduce the larger multi-jet back-
ground. Relative uncertainties on the correction factors
vary between 12% and 14% and are dominated by the
uncertainty on theb-tagging efficiency, as discussed be-
low.

6. Systematic Uncertainties

Systematic uncertainties on the measuredW+b-jet
cross section are derived from the non-W+jets back-
ground estimate, the modelling of themS V templates
and the correction factor of the fittedW+b-jet event dis-
tributions to derive the cross section. All correlations
between systematic uncertainties are accounted for.

The largest uncertainty is related to the calibration
of theb-tagging efficiency, which impacts not only the
W+b-jet acceptance and efficiency, but also the template
shapes and the normalisation of the single top back-
ground. The uncertainty on theb-tagging efficiency is
estimated to be between 6% for high jetpT > 60 GeV
to 13% at the lowpT end of 25 GeV [33]. The uncer-
tainty is driven by theb-decay modelling, the MC statis-
tics, the modelling of the muonpT spectrum and the
uncertainty on the jet energy scale. The impact of the
b-tagging efficiency uncertainty on thett̄ background
is strongly reduced since this background is extracted
from data.

The systematic uncertainties on themS V templates
are evaluated from direct comparisons of themS V

shapes of the data and the simulation in three multi-jet
control regions (an example of the agreement between
data and simulation in such control regions can be seen

in Fig. 19 of Ref. [33]). Two of these control regions
are used to determine systematic uncertainties on the
bottom and charm template shapes. Since both charm
and bottom jet tags are caused by displaced tracks from
real vertex decays, it is natural to determine their uncer-
tainties together from control regions that enhance the
heavy-flavour fractions. One of these control regions is
taken from events in which two jets areb-tagged, in-
creasing the probability that both of the selected jets
are from heavy flavour production. The other region
is taken fromb-tagged jets which are also required to
contain muons, which is very rare for light-flavour jets.
Both of these control regions are determined to have a
light-flavour contamination of less than 10%. The bot-
tom and charmmS V templates used in theW+jets fit
are then transformed simultaneously by multiplying by
the ratio of the data to the simulation in the control re-
gion for eachmS V bin. The shapes of the simulated
heavy-flavour backgrounds (in particular the top back-
grounds) are also transformed simultaneously. In each
lepton channel, out of the two control regions, the trans-
formation resulting in the larger variation is chosen to
assess the systematic uncertainty.

Additional studies are performed to account for the
possibility that the charm and the bottom templates may
not transform in exactly the same manner. This is tested
by transforming the charm and the bottom templates one
at a time instead of together. It is observed that varying
both the charm and the bottom templates together leads
to the maximum systematic bias, with most of the effect
coming from the distortion of theb-template shape, and
only about a third of the effect coming from the distor-

5



Secondary Vertex Mass [GeV]

0 1 2 3 4 5 6

E
ve

nt
s 

/ 0
.5

 G
eV

0

10

20

30

40

50

60

70

80

90
= 7 TeVsData 2010, 

W+b
W+c
W+light
multi-jet

tt
Single top
Other EW

-1
 L dt = 35 pb∫

ATLAS
Electron + 1 jet

Secondary Vertex Mass [GeV]

0 1 2 3 4 5 6

E
ve

nt
s/

0.
5 

G
eV

0

20

40

60

80

100

120

140 =7 TeVsData 2010, 
W+b
W+c
W+light
multi-jet

tt
Single top
Other EW

ATLAS

-1
 L dt = 35 pb∫

Muon + 1 jet

Figure 2:mS V distributions for theb-tagged jet in data and MC, where
the W+jets samples are normalized to the results of the maximum
likelihood fit and non-W+jets backgrounds are normalized to the esti-
mates as given in the text, in the 1-jet bin in the electron channel (top)
and the muon channel (bottom). The stack order is the same as in the
legend.

tion of the charm template shape. The reason that the
charm shape plays such a small role in the fit results is
that the template shapes below aboutmS V = 1.5 GeV do
not strongly influence the final fittedb-normalisation.
The b-normalisation is mostly constrained by the high
mS V tail where there is very little background, especially
in the one jet fits. In fact, fitting themS V distribution
only for mS V > 1.5 GeV does not considerably reduce
the analysis sensitivity or bias the final results.

The uncertainty on the measuredtt̄ yield in the≥ 4-
jet bin is dominated by the limited data statistics. The
number oftt̄ events is alternatively estimated using a
tag-counting method [33]. The use of simulatedtt̄ sam-
ples for the projection from the≥ 4-jet bin gives rise
to systematic uncertainties from the choice of gener-
ator, the amount of QCD initial and final state radia-
tion (ISR/FSR) and uncertainties on the PDF. The un-
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Figure 3:mS V distributions for theb-tagged jet in data and MC, where
the W+jets samples are normalized to the results of the maximum
likelihood fit and non-W+jets backgrounds are normalized to the esti-
mates as given in the text, in the 2-jet bin in the electron channel (top)
and the muon channel (bottom). The stack order is the same as in the
legend.

certainty due to the choice of generator is evaluated
by comparing the predictions of MC@NLO with those
of Powheg [34, 35, 36] interfaced to either Herwig or
Pythia [37]. The dominant uncertainty is represented
ISR/FSR, and it is evaluated by studies using the Ac-
erMC generator interfaced to Pythia, and by varying
the parameters controlling ISR and FSR in a range con-
sistent with experimental data [38]. The uncertainty in
the PDFs used to generatett̄ events is evaluated using a
range of current PDF sets with the procedure described
in Ref. [38]. ISR/FSR and PDF uncertainties are evalu-
ated in the same way for the single top background.

Both thett̄ and single top background are irreducible
in the sense that both backgrounds contain aW boson,
at least oneb-jet, and additional jets. While thett̄ back-
ground is extracted from the data, this is not possible for
single top due to the limited statistics. Therefore, more
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details are given here on the single top background. The
selection efficiency for single top is considerably larger
than for theW+b-jet signal, mainly due to the different
pT spectrum of theb-jet. The corresponding single top
fiducial cross sections as defined in Table 1 for one lep-
ton flavour are 1.4 pb and 1.8 pb in the 1-jet and 2-jet
bin, respectively. The secondary vertex mass shapes for
the single top background andW+b-jet signal are found
to be in good agreement. The invariant mass distribution
of W+b-jet in Fig. 4 illustrates good agreement between
data and the fit results.
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Figure 4: Invariant mass of theW+b-jet system in the electron chan-
nel. The neutrinopz is obtained by imposing theW invariant mass and
using the smallest in absolute value of the two solutions. The W+jets
samples are normalized to the results of the maximum likelihood fit
and non-W+jets backgrounds are normalized to the estimates as given
in the text.

Uncertainties on the signal modelling are estimated
by reweighting the spectra of both theb-jet pT and the
opening angle between thebb pairs to match either the
Herwig parton showering or the Alpgenmatrix element
shapes. The parton shower model leads to softerb-
jets and a narrower angle between the quarks in thebb
pairs. These modelling uncertainties affect both the ac-
ceptance and efficiency, and the fit templates. It should
be noted, however, that even large changes in the bottom
quark production model have very little effect on the fit
template shapes. The fit template shape dependence on
jet kinematics is weak. The shape also does not depend
much on the mode of production for the heavy-flavour
jets except in the rare cases when the twob quarks are
produced close to each other such that their fragments
are not resolved in separate jets. Similarly, even large
biases in the charm quark production kinematics (in-
cluding varying the rate ofWc production by+/-100%.)
have no significant effect on the fit template shapes.

The systematic uncertainty on the multi-jet back-

ground estimate in the electron channel is assessed by
changing the requirements which define the control re-
gion to model theEmiss

T template. The uncertainty on
the mS V template shape is estimated in the same way.
In addition the nominalEmiss

T fit range (0-100 GeV) is
reduced to both 10-100 and 0-60 GeV. Uncertainties on
the EW and top contamination in the control region are
found to be negligible. The uncertainty on the multi-
jet background normalisation in the electron channel is
estimated to be 50% and is limited by low statistics.
The systematic uncertainty on the muon multi-jet back-
ground is dominated by the validity of the assumptions
which go into the matrix method, which is assessed with
closure tests in simulated samples. The uncertainty on
the mS V template is estimated by an alternative shape
determination using the matrix method bin by bin in
mS V . The uncertainty on the multi-jet background nor-
malisation in the muon channel is estimated to be 30%.
The multi-jet estimate in the muon channel is further
validated by fitting the multi-jet background explicitly
in themS V template fit by using the muon isolation vari-
able as a second template. This independent multi-jet
estimate gives consistent results.

The uncertainties on the light jet andb-jet energy
scale [31] as well as the jet energy resolution lead to
an uncertainty on the correction factor for acceptance
and efficiency and to a large uncertainty on thett̄ back-
ground normalisation. The latter is driven by the pro-
jection of the measuredtt̄ yield in the≥ 4-jet bin into
the signal region. To a lesser extent uncertainties on the
jet reconstruction efficiency also play a role in this un-
certainty.

Uncertainties related to the lepton trigger and recon-
struction efficiencies are evaluated using tag-and-probe
measurements inZ → ee or Z → µµ [29]. The lepton
momentum scales and resolutions are determined from
fits to theZ-mass peak [29].

The missing transverse momentum is recalculated for
each systematic shift applied to the electron, muon, and
jet pT . Additional uncertainties are applied to soft jets,
i.e. those with transverse momentum below 20 GeV,
and to unassigned calorimeter clusters. To be conserva-
tive, this uncertainty is considered to be fully correlated
with the uncertainty on the jet energy scale.

A 3.4% uncertainty on the integrated luminosity [27,
28] has an impact on the number of predicted single
top, Z+jets and diboson events as well as the conver-
sion from the measuredW+b-jet yield to the cross sec-
tion. Uncertainties due to multiple interactions and lim-
ited MC statistics are also considered. Table 3 gives a
summary of all systematic uncertainties.

As a cross check the analysis is repeated using the al-
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Table 3: Measured fiducialW+b-jet cross sections for one lepton flavour with statistical and systematic uncertainty and breakdown of relative
systematic uncertainties per lepton flavour, jet multiplicity, combined across jet bins and also across lepton flavour.Uncertainties due to limited
MC statistics are combined in the template shape uncertainties since this is where the low statistics has the biggest impact.

Fiducial cross section [pb]

1 jet 2 jet 1+2 jet
µ e µ & e µ e µ & e µ e µ & e

Measured cross section3.5 5.5 4.5 6.2 5.1 5.7 9.7 10.7 10.2
Statistical uncertainty 1.6 2.1 1.3 1.8 1.9 1.3 2.4 2.8 1.9
Systematic uncertainty 1.1 1.7 1.3 1.5 1.5 1.4 2.4 3.0 2.6

Breakdown of systematic uncertainty [%]
b-tag efficiency 15 14 14 10 10 10 11 12 12
Template shapes 16 13 12 10 12 10 11 11 10
tt̄ 9 6 7 12 16 13 11 11 11
Single top 10 6 8 4 6 5 7 6 6
Signal modeling 9 8 9 10 10 10 9 9 9
Multi-jets 7 18 11 4 8 4 5 13 7
Jet uncertainties 9 6 7 7 10 8 7 7 7
Lepton uncertainties 3 5 3 2 5 3 2 5 3
Emiss

T 1 1 1 2 2 1 1 1 1
Luminosity 5 5 5 4 5 5 5 5 5
Multiple interactions 5 4 5 3 3 3 3 4 3

ternative JetProb [39]b-tagging algorithm, which gives
results consistent with the default SV0 tagger. The Jet-
Prob tagger has a mistag rate that is more than an order
of magnitude higher than the SV0 tagger and probes a
very different mixture of signal and background.

7. Results and Conclusions

The fiducialW+b-jet cross section in the phase space
defined in Table 1 is measured in the 1- and 2-jet bin in
the electron and muon channel. The results are com-
bined across jet bins and lepton flavour by summing
the corresponding measured cross sections as given in
Equation 1. This linear addition is also performed for
each of the systematic variations considered, in order to
properly take into account the correlations among the
different jet bins and lepton channels due to common
systematic uncertainties. The leading uncertainties are
related to theb-tagging calibration and themS V template
shapes, the top quark background, bothtt̄ and single top,
the modelling of the signal, the multi-jet background
and the jet energy scale uncertainty. Most of these sys-
tematic uncertainties exhibit a strong correlation with
each other between the jet bins and lepton channels and
therefore the relative systematic uncertainties are only
slightly reduced in the combination.

The results are presented in Table 3 and Fig. 5 and are
compared with QCD NLO predictions [14] performed
in the 5FNS (5 flavour number scheme) described in
Ref. [3, 4, 7]. This calculation requires the combina-
tion of two contributions. The first contribution has a
bb pair in the final state, and theb quarks are consid-
ered massive (4FNS). The second one has ab quark in
the initial state and is treated in a scheme based onb
quark PDFs where theb quark is assumed massless.

The 5FNS prediction is obtained usingαNLO
s (mZ) =

0.118, mb = 4.7 GeV andVus = Vcd = 0.227. The
NLO CTEQ6.6 [40] PDF sets are used. The calcula-
tion is obtained withµR = µF = µ0 ≡ mW + 2mb,
whereµR andµF are the renormalisation and factoriza-
tion scale. The dependence of the result on the choice
of µ0 is assessed by varyingµ betweenµ0/4 and 4µ0,
as in Ref. [14]. These variations account for about a
25% uncertainty in the cross section. The PDF uncer-
tainty, estimated to be at the most 7%, is obtained by
comparing three different PDF sets: NNPDF2.1 [41],
CT10 [42] MSTW2008 [43].

This QCD NLO prediction is only available at the
parton level with an undecayedW boson. The imple-
mentation of the NLO 4FNS in Powheg [34, 35, 36] is
used to calculate theW acceptance factor of 0.465±
0.003 (stat). To compare with data the non-perturbative
effects of the hadronization and the underlying event
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have to be considered. The impact of these effects
has been evaluated using the Pythia PERUGIA 2011
tune [44] on the Powheg prediction by comparing the
results with hadronization and underlying event model
turned on and off. The non-perturbative correction to
the cross section is 0.93 ± 0.07, dominated by parti-
cles fromb hadron decays landing outside the effective
anti-kt jet cone. The systematic uncertainty accounts for
the difference in the modelling of the non-perturbative
physics in Pythia PERUGIA 2011, Pythia MC11, and
Herwig+Jimmy MC11 [45], and theb-jet pT spectrum
modelling of Powheg. Fully corrected predictions are
shown in Table 4 and Fig. 5. The fiducialW+b-jet
cross section for one lepton flavour in the combined
1- and 2-jet bin is measured to be 10.2± 1.9 (stat)±
2.6 (syst) pb. It is found to be larger than the NLO
prediction of 4.8+1.2

−0.7 (scale)+0.3
−0.0 (PDF) +0.3

−0.2 (mb) ± 0.3
(non-pert.) pb, but still consistent within 1.5σ. In ad-
dition the measured cross section is compared with the
LO Alpgen prediction of 4.7± 0.1 (stat) pb, using the
CTEQ6L1 [46] PDF sets. Here the NNLO correction
factor for the inclusiveW cross section of 1.2 [25] is not
applied.

Table 4: Theoretical NLO predictions [14] for theW+b-jet fiducial
cross section for one lepton flavour. The systematic uncertainties SC,
PDF,mb, and NP correspond to the renormalisation and factorization
scale, PDF set,b quark mass, and non-perturbative correction, respec-
tively, and they are obtained as described in the text.

Fiducial cross section (NLO) [pb]
1j 2.9+0.4

−0.4 SC+0.2
−0.0 PDF+0.2

−0.1 mb ± 0.2 NP
2j 1.9+0.8

−0.4 SC+0.1
−0.0 PDF+0.1

−0.1 mb ± 0.1 NP
1+2j 4.8+1.2

−0.7 SC+0.3
−0.0 PDF+0.3

−0.2 mb ± 0.3 NP

In summary, the cross section for the production of
a W boson with at least oneb-jet has been measured
in pp collisions at

√
s = 7 TeV. The cross section is

measured separately with one and two associated jets.
The results are consistent with the NLO expectations.
The combined result lies above the expectation, but is
consistent at the 1.5σ level.
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P. Jenni29, A. Jeremie4, P. Jež35, S. Jézéquel4, M.K. Jha19a, H. Ji172, W. Ji81, J. Jia148, Y. Jiang32b,
M. Jimenez Belenguer41, G. Jin32b, S. Jin32a, O. Jinnouchi157, M.D. Joergensen35, D. Joffe39, L.G. Johansen13,
M. Johansen146a,146b, K.E. Johansson146a, P. Johansson139, S. Johnert41, K.A. Johns6, K. Jon-And146a,146b, G. Jones82,
R.W.L. Jones71, T.W. Jones77, T.J. Jones73, O. Jonsson29, C. Joram29, P.M. Jorge124a,b, J. Joseph14, T. Jovin12b,
X. Ju130, V. Juranek125, P. Jussel62, A. Juste Rozas11, V.V. Kabachenko128, S. Kabana16, M. Kaci167,
A. Kaczmarska38, P. Kadlecik35, M. Kado115, H. Kagan109, M. Kagan57, S. Kaiser99, E. Kajomovitz152, S. Kalinin174,
L.V. Kalinovskaya65, S. Kama39, N. Kanaya155, M. Kaneda29, T. Kanno157, V.A. Kantserov96, J. Kanzaki66,
B. Kaplan175, A. Kapliy30, J. Kaplon29, D. Kar43, M. Karagoz118, M. Karnevskiy41, K. Karr5, V. Kartvelishvili71,
A.N. Karyukhin128, L. Kashif172, A. Kasmi39, R.D. Kass109, A. Kastanas13, M. Kataoka4, Y. Kataoka155,
E. Katsoufis9, J. Katzy41, V. Kaushik6, K. Kawagoe67, T. Kawamoto155, G. Kawamura81, M.S. Kayl105,
V.A. Kazanin107, M.Y. Kazarinov65, J.R. Keates82, R. Keeler169, R. Kehoe39, M. Keil54, G.D. Kekelidze65,
M. Kelly82, J. Kennedy98, C.J. Kenney143, M. Kenyon53, O. Kepka125, N. Kerschen29, B.P. Kerševan74, S. Kersten174,
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H. Pernegger29, R. Perrino72a, P. Perrodo4, S. Persembe3a, V.D. Peshekhonov65, B.A. Petersen29, J. Petersen29,
T.C. Petersen35, E. Petit83, A. Petridis154, C. Petridou154, E. Petrolo132a, F. Petrucci134a,134b, D. Petschull41,
M. Petteni142, R. Pezoa31b, A. Phan86, A.W. Phillips27, P.W. Phillips129, G. Piacquadio29, E. Piccaro75,
M. Piccinini19a,19b, A. Pickford53, S.M. Piec41, R. Piegaia26, J.E. Pilcher30, A.D. Pilkington82, J. Pina124a,b,
M. Pinamonti164a,164c, A. Pinder118, J.L. Pinfold2, J. Ping32c, B. Pinto124a,b, O. Pirotte29, C. Pizio89a,89b,
R. Placakyte41, M. Plamondon169, W.G. Plano82, M.-A. Pleier24, A.V. Pleskach128, A. Poblaguev24, S. Poddar58a,
F. Podlyski33, L. Poggioli115, T. Poghosyan20, M. Pohl49, F. Polci55, G. Polesello119a, A. Policicchio138, A. Polini19a,
J. Poll75, V. Polychronakos24, D.M. Pomarede136, D. Pomeroy22, K. Pommès29, L. Pontecorvo132a, B.G. Pope88,
G.A. Popeneciu25a, D.S. Popovic12a, A. Poppleton29, X. Portell Bueso29, R. Porter163, C. Posch21, G.E. Pospelov99,
S. Pospisil127, I.N. Potrap99, C.J. Potter149, C.T. Potter114, G. Poulard29, J. Poveda172, R. Prabhu77, P. Pralavorio83,
S. Prasad57, R. Pravahan7, S. Prell64, K. Pretzl16, L. Pribyl29, D. Price61, L.E. Price5, M.J. Price29, P.M. Prichard73,
D. Prieur123, M. Primavera72a, K. Prokofiev108, F. Prokoshin31b, S. Protopopescu24, J. Proudfoot5, X. Prudent43,
H. Przysiezniak4, S. Psoroulas20, E. Ptacek114, E. Pueschel84, J. Purdham87, M. Purohit24,w, P. Puzo115,
Y. Pylypchenko117, J. Qian87, Z. Qian83, Z. Qin41, A. Quadt54, D.R. Quarrie14, W.B. Quayle172, F. Quinonez31a,
M. Raas104, V. Radescu58b, B. Radics20, T. Rador18a, F. Ragusa89a,89b, G. Rahal177, A.M. Rahimi109, D. Rahm24,
S. Rajagopalan24, M. Rammensee48, M. Rammes141, M. Ramstedt146a,146b, A.S. Randle-Conde39,
K. Randrianarivony28, P.N. Ratoff71, F. Rauscher98, E. Rauter99, M. Raymond29, A.L. Read117, D.M. Rebuzzi119a,119b,
A. Redelbach173, G. Redlinger24, R. Reece120, K. Reeves40, A. Reichold105, E. Reinherz-Aronis153, A. Reinsch114,
I. Reisinger42, D. Reljic12a, C. Rembser29, Z.L. Ren151, A. Renaud115, P. Renkel39, M. Rescigno132a, S. Resconi89a,
B. Resende136, P. Reznicek98, R. Rezvani158, A. Richards77, R. Richter99, E. Richter-Was4,z, M. Ridel78, S. Rieke81,

17



M. Rijpstra105, M. Rijssenbeek148, A. Rimoldi119a,119b, L. Rinaldi19a, R.R. Rios39, I. Riu11, G. Rivoltella89a,89b,
F. Rizatdinova112, E. Rizvi75, S.H. Robertson85,k, A. Robichaud-Veronneau118, D. Robinson27, J.E.M. Robinson77,
M. Robinson114, A. Robson53, J.G. Rocha de Lima106, C. Roda122a,122b, D. Roda Dos Santos29, S. Rodier80,
D. Rodriguez162, A. Roe54, S. Roe29, O. Røhne117, V. Rojo1, S. Rolli161, A. Romaniouk96, V.M. Romanov65,
G. Romeo26, L. Roos78, E. Ros167, S. Rosati132a,132b, K. Rosbach49, A. Rose149, M. Rose76, G.A. Rosenbaum158,
E.I. Rosenberg64, P.L. Rosendahl13, O. Rosenthal141, L. Rosselet49, V. Rossetti11, E. Rossi132a,132b, L.P. Rossi50a,
L. Rossi89a,89b, M. Rotaru25a, I. Roth171, J. Rothberg138, D. Rousseau115, C.R. Royon136, A. Rozanov83, Y. Rozen152,
X. Ruan115, I. Rubinskiy41, B. Ruckert98, N. Ruckstuhl105, V.I. Rud97, C. Rudolph43, G. Rudolph62, F. Rühr6,
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83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United States of America
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
89 (a)INFN Sezione di Milano;(b)Dipartimento di Fisica, Università di Milano, Milano, Italy
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Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a
l’Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of
America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, UnitedStates of America
144 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava;(b)Department of Subnuclear
Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a)Department of Physics, University of Johannesburg, Johannesburg;(b)School of Physics, University of the
Witwatersrand, Johannesburg, South Africa
146 (a)Department of Physics, Stockholm University;(b)The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex,Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo,
Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a)TRIUMF, Vancouver BC;(b)Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
161 Science and Technology Center, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164 (a)INFN Gruppo Collegato di Udine;(b)ICTP, Trieste;(c)Dipartimento di Fisica, Università di Udine, Udine, Italy
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