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We suggest trying to count the number of invisible particles produced in missing energy events at the

LHC, arguing that multiple production of such particles provides evidence that they constitute stable dark

matter and that counting them could yield further insights into the nature of dark matter. We propose a

method to count invisible particles, based on fitting the shapes of certain transverse- or invariant-mass

distributions, discuss various effects that may affect the measurement, and simulate the use of the method

to count neutrinos in standard model processes and dark matter candidates in new physics processes.
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I. INTRODUCTION

What a fillip it would be if the dark matter that abounds
in the heavens could be manufactured here on Earth, at the
LHC. A dark matter (DM) particle, being color singlet and
electrically neutral, would be invisible in the LHC detec-
tors, but would manifest itself in the form of ‘‘missing
energy’’, recoiling against visible matter.

While production of DM would imply a missing energy
signal, the converse is not obviously true. For example, an
invisible particle produced at the LHC need only live long
enough to escape the detectors, while the DM in the
cosmos has been around for billions of years. The question
would thus arise of how to establish the link between a new,
invisible particle produced at the LHC and the DM in the
cosmos.

One way would be to measure the properties of the
invisible particle (and any new companions) and then to
compute the relic density and compare with cosmological
observations. Alas, this is unlikely to be feasible at the
LHC: even if we neglect the difficulties associated with
making precision measurements at hadron colliders, there
remains a basic obstacle, in that while the relic density is
determined (presumably) by the weak interactions of new
particles, production of those same particles at hadron
colliders proceeds dominantly via the strong interaction.

Here we should like to make a more modest, but perhaps
more feasible, proposal for strengthening the hypothesis
that a new, invisible particle produced at the LHC really is
DM. Our proposal is simply to count the number of invis-
ible particles in missing energy events. To begin with,
our system of counting will be loosely based on the
‘‘one-two-many’’ system of the Amazonian Pirahã tribe
[1], but simplified to ‘‘one-many’’. That is, we propose to
try to establish that invisible particles are being multiply
produced in events. As we argue in the next Section, this
constitutes evidence for the existence of a symmetry that
stabilizes DM.

If we can establish that new invisible particles are being
multiply produced, then it makes sense to follow the lead

of the Pirahã and to try to extend our system of counting
beyond ‘‘one-many’’. For example, we might try to count
modulo some integer. We shall see, for example, that even
counting only modulo two may lead to further insights
about the nature of DM particles (and antiparticles) and
the symmetry that stabilizes them.
Having argued, in Secs. II and III that counting invisible

particles (or at least establishing that they are multiply
produced) is a worthwhile thing to do at the LHC, we
sketch, beginning in Sec. IV, a method by which one might
hope to do it. In a nutshell, our strategy is to identify
observables that depend strongly on the number of invis-
ible particles present, but which are relatively insensitive to
all the other variables over which, a priori, we have little
control. We begin by considering, for simplicity, the limit-
ing case in which the masses of the invisible particles are
negligible on collider scales. In Sec. IVA, we discuss the
case in which new colored particles are singly produced at
the LHC and subsequently decay to visible and invisible
particles; in Sec. IVB, we discuss the case of pair produc-
tion. In Sec. V, we discuss various complications that arise
in the massive case. In Sec. VI, we discuss a variety of
other effects, including matrix elements, finite widths,
backgrounds and upstream transverse momentum. In
Sec. VII, we apply our method (neglecting showering
and detector effects) to three standard model test cases,
namely, decays of a W boson to a charged lepton and a
single neutrino, decays of the Higgs boson to a pair of
charged leptons and a pair of neutrinos via intermediate
W bosons, and decays of a pair of top quarks in the
dileptonic channel, and to a supersymmetric decay chain.
Section VIII provides a summary of the main results, while
a number of the more cumbersome formulæ have been
relegated to the Appendix.

II. MULTIPLE PRODUCTION AND
STABILIZING SYMMETRIES

Why is multiple production of invisible particles evi-
dence for DM? The obvious way to make DM sufficiently
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long-lived is to stabilize it by means of a symmetry: If DM
is the lightest particle transforming nontrivially under the
action of the symmetry (henceforth ‘‘nonsinglet’’), then it
cannot decay.1 Suppose (as seems likely) that the dark
matter particle is heavier than the constituent quarks of
the proton, such that the quarks are singlets. Then protons
and pairs of protons are singlet states, as are the products of
LHC pp collisions. If we are lucky enough to produce a
nonsinglet DM particle, then such a final state must contain
another nonsinglet particle. In the simplest case, this would
be a second DM particle (or its antiparticle), but it could
also be a different particle. If it is different, and if it is both
visible and stable on detector length scales, then we will
not see multiple production of invisible particles, but we
will see a spectacular charged track. In all other cases, we
must end up with multiple invisible particles in the detec-
tor, in order to form a singlet final state.

Before going on, let us argue that the observation of
multiply produced invisible particles would not be a trivial
result, in that the alternative hypothesis of a new, singly
produced, invisible particle can plausibly be entertained.2

Indeed, one might worry that if one could draw a Feynman
diagram leading to significant production of such a state in
association with SM states at the LHC, then the crossed
diagram with only the invisible particle in the initial state
would imply a lifetime less than the time required to
traverse an LHC detector. However, this is not necessarily
the case.

Consider, for example, a resonance with mass M,
strongly produced at the LHC, which decays into an elec-
trically neutral and color-neutral particle of mass m. The
crossed Feynman diagram, with virtual exchange of the
resonance, can contribute to the decay of the ‘‘invisible’’
particle through a process which, at worst, involves a three-
body final state. Then the lifetime is �� 256�3M4=m5.
Being produced with typical momentum of order M, the
invisible particle will travel an average distance
L� �M=m before decaying. A predominantly invisible

decay (say with L > 30 metres) is obtained for m<

2 GeV ðM=TeVÞ5=6. This allows for a reasonable range
of masses. Note, in particular, that the particle can be
sufficiently heavy to avoid constraints from stellar cooling.
Moreover, the bound on m gets weaker if the production
process occurs in association with heavy SM particles
(such as W, Z, t, or b), since the decay of the invisible
particle must involve multibody final states.

III. COUNTING DARK MATTER

If we can establish that invisible particles are being
multiply produced, we may also gain further insights by
counting them, perhaps modulo some integer. As an ex-
ample, if we could count the invisible particles modulo
two, then observation of an odd number of invisible parti-
cles would rule out the simplest stabilizing symmetry, viz.
Z2. Indeed, an odd number of charged particles cannot
form a singlet of Z2. The simplest remaining candidate
for a stabilizing symmetry would then be Z3. An alterna-
tive approach to distinguishing Z2 from other symmetries
was discussed in [2–4].3 Moreover, if we make the plau-
sible assumption that only the DM particle is stable on
detector length scales, then observation of an odd number
of invisible particles also tells us that either the DM particle
cannot be its own antiparticle, namely, a real boson or a
Majorana fermion, or that the stabilizing symmetry cannot
be Abelian.
Indeed, any Abelian group is a product of Uð1Þ s and

finite cyclic groups and DM must be charged under at least
one of these. If, on the one hand, DM were its own
antiparticle and were charged under a Uð1Þ, one could
not write the necessary mass term for DM in the
Lagrangian. If, on the other hand, DM were charged only
under some ZN , one could write the mass term but could
not simultaneously form a singlet final state from an odd
number of DM particles.
We note, moreover, that counting modulo two is unaf-

fected by the presence of neutrinos in the final state, since
these too can be counted modulo two, via the visible lepton
number in the final state. If we try to be even more
ambitious and count invisible particles modulo N > 2,
then we should need to solve the problem of counting
neutrinos on an event-by-event basis. One could imagine
doing so, by using our knowledge of neutrino dynamics,
but we shall not go into the details here.

IV. LIGHT INVISIBLE PARTICLES

A. Single production

Having argued that counting invisible particles (or at
least establishing that they are multiply produced) is a
worthwhile thing to do at the LHC, let us now try to
convince the reader that it can be done, at least in principle.
To do so, we recall that invisible particles can be discov-
ered by their recoil against visible particles, manifesting
themselves in the form of missing energy in an event. Now,
the total collision energy is shared out between all the
visible and invisible particles in an event in a random
fashion; as a result, the shape of the distribution of the
missing energy in a sample of many events will depend on
the number of invisible particles present.

1There are obvious analogues among the known particles: the
proton is stabilized, perhaps accidentally, by baryon number, the
lightest neutrino by fermion number, and the electron by electric
charge.

2Neutrinos give a known example of invisible particles that
can be singly produced, but such events are easily picked out,
assuming conservation of lepton number, by the presence of net
visible lepton number in the final state.

3For models with stabilizing symmetries other than Z2, see
[5–10].
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In fact, the distribution of almost any observable will
depend on the number of invisible particles present. This is,
of course, good news. The bad news is that almost any
observable will also depend on many other things, making
it hard for one to be sure that one is really counting the
number of invisible particles and not just measuring some
poorly defined combination of many other things. This
leads us onto the important issue of how we propose to
count invisible particles in practice.

To do so, one would like to find an observable which
depends strongly (and in a known way) on the number of
invisible particles, but which is less sensitive to all the
other variables over which, a priori, we have little control.
Examples of such pernicious variables include: the sizes of
standard model backgrounds, other unknown parameters in
the new physics Lagrangian (such as particle masses and
couplings), the details of the event topology, the unknown
boosts of produced new particles with respect to the labo-
ratory frame, uncertainties in the parton distribution func-
tions (pdfs) &c. There are other important effects to which
we have less hope of being insensitive. These include: the
unknown particle spins and widths, the details of hard
process matrix elements, the presence of radiation in the
initial state, detector resolution, and so on. Nevertheless,
we shall argue that the sensitivity to these effects can be
mitigated, for three reasons. One is that we can, of course,
resort to numerical simulations of physics and detectors to
try to model such effects. The second is that, as we shall
see, the effect on certain distributions of changing the
number of invisible particles is a dramatic one, and is
unlikely to be masked or faked by other effects. The third
reason is that, since we are trying to measure a discrete
integer, we can tolerate a large error and still have con-
fidence in our result.

Before proceeding to a more detailed discussion of these
issues, let us begin by considering a simple example that
illustrates the dramatic effect on distributions that may
result from changing the number of invisible particles.
We consider decays of a single parent particle of mass M
into some number of visible and invisible daughter parti-
cles. For the time being, we assume that the masses of the
invisible particles are negligible at the scales of interest.
We should like to define an observable which has a strong
dependence on the number of invisible particles, which can
be understood in a simple way. We now claim that (a
version of) the transverse mass [11] is such an observable.
We note that, given only a single visible particle, our
observable could be any function of the momentum of
the visible particle and the missing transverse momentum;
with more visible particles, many more observables be-
come possible, including, for example, the invariant mass
of some of the visible particles. As described above, the
distributions of any of these observables will depend on the
number of invisible particles. But the transverse mass (and
invariant masses, which we consider in Sec. IVA2) are

special among these because not only do their distributions
have a maximal endpoint, which is easy enough to pick out
in data, but also the condition for an event to be at the
endpoint can be expressed in a simple way, in terms of the
invisible particles. For example, in the case of the trans-
verse mass, we shall see that necessary and sufficient
conditions to be at the maximum are that all invisibles be
parallel and transversely directed in the rest frame of the
decay.4 As we shall see, the transverse mass has the addi-
tional advantage that its behavior near its maximum is
independent of whether or not the decay involves inter-
mediate particles that are on shell.
To see all this, let us group the daughter particles of the

decay into a visible system of transverse momentum pT

and invariant mass mV and an invisible system (of n
particles) of transverse momentum 6pT and invariant mass
mI. The transverse mass is naı̈vely obtained by projecting
the invariant mass of all daughters onto the observable
transverse directions, namely

m2
T;naive�m2

Vþm2
I þ2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6p2

Tþm2
I Þðp2

Tþm2
VÞ

q
� 6pT �pTÞ:

(1)

However, the invariant mass of the invisible system, mI, is
not observable and thus nor is mT;naive. However, we can

simply replace the true value of mI by some fixed value in
the definition. We choose to replace it by its minimum
value (which, since mT;naive is a monotonically increasing

function of mI, preserves the property mT <M).5 This
minimum value is given by the sum of the masses of the
invisible particles, which we have taken, for now, to be
negligible. We thus arrive at our final definition of the
transverse mass, namely 6

m2
T � m2

V þ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6pTðp2

T þm2
VÞ

q
� 6pT � pTÞ: (2)

We now examine the conditions that events must satisfy, in
order to be at the maximum endpoint of the mT distribu-
tion. Since the invariant mass of the parent may be ex-
pressed as

M2 ¼ m2
V þm2

I þ 2ðEVEI � 6pT � pT � qVqIÞ; (3)

where E denotes the energy and q the longitudinal mo-
mentum component, we have that

m2
T ¼ M2 �m2

I � 2eV

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6p2
T þm2

I

q
�

ffiffiffiffiffiffi
6p2
T

q �
� 2ðEVEI � eVeI � qVqIÞ; (4)

4To avoid later confusion, we stress that the conditions change
if the invisible particles have non-negligible mass.

5We will see later that we could also usefully replace mI by
any value that exceeds its maximum value in events.

6The transverse mass thus defined is, in fact, the natural
variable to use in this case, in the sense that it captures all of
the information that is available from kinematics alone [12].
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where we defined the transverse energies via e2 �
p2
T þm2. Using the relation

ðEVEIÞ2 � ðeVeI þ qVqIÞ2 ¼ ðeVqI � qVeIÞ2; (5)

it is clear that EVEI � eVeI þ qVqI. But then the last three
terms on the right-hand side of (4) are each negative semi-
definite, such that

m2
T � M2; (6)

with equality iff.

eVqI � qVeI ¼ 0 and mI ¼ 0: (7)

The former condition is invariant under longitudinal
Lorentz boosts and implies either that qV ¼ qI ¼ 0 or
that the configuration is a longitudinal boost thereof. The
latter condition is invariant under all Lorentz boosts and
implies that all the invisible particles’ momenta are parallel
(not antiparallel). Thus, the condition to be at the maxi-
mum of themT distribution is that all invisibles be parallel,
and that there exist a longitudinal boost to a frame in which
they be purely transverse. (The generalization to the case of
massive invisibles will be carried out in Sec. V.)

We thus see that the conditions to be at the maximum
have a strong dependence on n (since one must line up all n
invisibles), but are independent of (i) the number of visi-
bles and their masses and (ii) longitudinal boosts of the
parent with respect to the lab frame. We can guess the form
of the mT distribution near its endpoint, for configurations
in which the parent is produced without any transverse
momentum and decays according to phase-space consid-
erations alone, in the following way. The dependence
coming from the condition that the total momentum of
the invisibles be purely transverse is independent of n and
may be evaluated at n ¼ 1; it comes from the Jacobian that
arises in changing variables from the decay direction
(which is uniformly distributed) to m2

T and gives a factor

of ð1� m2
T

M2Þ�ð1=2Þ. The n dependence comes from the dis-

tribution of the invariant mass of the invisible particles,

which, as can be seen in (A2) goes as m2ðn�2Þ
I . Near the

endpoint (at smallm2
I ),m

2
T is linear inm

2
I and hence we get

a factor of ð1� m2
T

M2Þn�2. In all, we find

d�nþ1

dm2
T

/
�
1� m2

T

M2

�
n�ð3=2Þ

: (8)

We reproduce the explicit calculation of the mT distribu-
tion for the cases of one and two massless visible particles
in the Appendix; the resulting expressions are given in
(A6)–(A8) and (A13)–(A15) and distributions for the first
few values of n are illustrated in Figs. 1 and 2. We see that
the dependence on the number of particles is, in some
sense, the strongest possible: for n ¼ 1, the distribution
diverges at the endpoint (in the absence of finite

experimental resolution), while it vanishes for n > 1. So
we can hope that it is possible to discriminate single and
multiple production of invisible particles, by looking at the
endpoint behavior. (As regards the secondary question of
counting the number of invisibles for n > 1, the falloff with
n is so rapid that a lack of statistics near the endpoint would
be a concern for n greater than a few.)
To see whether such a hope could become a reality at the

LHC, one must consider the various aforementioned com-
plications. Happily, the result is robust with respect to a
number of effects. We have already argued that, since the
transverse mass depends on only transverse or Lorentz-
invariant quantities, the phase-space distribution will be
insensitive to pdfs (which give rise only to longitudinal
boosts of the singly produced parent) and their uncertain-
ties. We have also argued that, at least in the limit of
massless invisibles, the endpoint behavior is independent
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FIG. 1 (color online). Normalized, phase-space distribution of
m2

T for n 2 f1; . . . ; 4g for the process M ! Pþ nX, i.e. the
decay of a parent particle of mass M into a visible particle P
and n invisible particles X.
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FIG. 2 (color online). Normalized, phase-space distribution of
m2

T for n 2 f1; . . . ; 4g for the process M ! 2Pþ nX, i.e. the
decay of a parent particle of mass M into two visible particles P
and n invisible particles X.
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of the number of visible particles and their masses.7 We
now show that, in the same limit, the power-law falloff in
mT is also unchanged if we let intermediate states be on
shell (leading to, for example, cascade decays).

1. Topology dependence

It is easy enough to convince oneself that the endpoint
behavior of the mT distribution will be unaffected by the
presence of on-shell intermediate states, with one caveat.
Indeed, we have already seen that necessary and sufficient
conditions to be at the endpoint are that the massless,
invisible particles be parallel (mI ¼ 0) and transverse,
qI ¼ 0, regardless of the topology. The problem then
reduces to studying how easy it is to satisfy these two
conditions, as one varies the topology. The condition that
the particles be transverse cannot depend on the topology,
since the phase space for any topology is always a Lorentz
invariant. For the condition that the particles be parallel, an

explicit calculation confirms that d�
dm2

I

�m2ðn�2Þ
I as m2

I ! 0

independently of the topology, with one exception. The
exception is that there exist topologies for which one
cannot hope to satisfy mI ¼ 0, namely, those in which an
on-shell intermediate decays exclusively into invisible par-
ticles. Then, the invisible particles from that decay cannot
all be parallel, if energy and momentum are to be con-
served.8 In all other cases, the endpoint behavior of the mT

distribution will be unaffected by the presence of on-shell
intermediates.

In (A25), we give the explicit form of the distribution in
the simplest case of a decay involving two massless, visible
particles and one massless, invisible particle, connected by
a single intermediate state of mass mY; one may easily
show that the endpoint behavior is given by (8) for all mY .
Distributions for various intermediate mass ratios, z ¼
m2

Y=M
2, are shown in Fig. 3.

2. Invariant-mass observables

In cases where there are multiple visible particles
present in the final state, one also has the option of using
the invariant mass of some combination of the visible
particles as an observable. Compared to the transverse
mass, these have the advantage of being invariant under
all boosts and we shall see that they too have endpoint
behaviors that depend strongly on the number of invisible
particles. Perhaps their most appealing property is that they
do not require one to measure the missing energy in events,
with the well-known difficulties that such a measurement
entails.9

Let us proceed to discuss how the endpoint behavior of
such observables depends on the number of invisible par-
ticles. Consider the case in which a single particle of mass
M decays into l massless, visible particles and n massless,
invisible particles. Now, it is simple to show that the
invariant mass, mV , of the l visible particles reaches its
maximum only when all n invisible particles are produced
with vanishing momentum in the rest frame of the decay-
ing particle.10 Thus, if we add one extra invisible particle,
the extra condition to remain at the maximum of mV is
stronger than the extra condition to remain at the maximum
of mT ; to wit, in the first case the extra particle must have
vanishing momentum (in the rest frame of the decay),
while in the second case it need only be parallel with the
existing invisibles. As a result the coefficient of n in
the power-law falloff near the endpoint is increased; in
the simplest case l ¼ 2, an explicit calculation shows that

d�nþ2

dm2
V

/
�
1�m2

V

M2

�
2n�1

: (9)

We reproduce the full mV distribution in (A17); distribu-
tions for the first few values of n are illustrated in Fig. 4.
Invariant-mass distributions have the apparent disad-

vantage that, unlike the mT distribution, their behavior at
their maximum does change when intermediate particles
go on shell and therefore use of them to count invisible
particles requires one to first know (or assume) the event
topology. This is hardly surprising, since the location of the
endpoint itself changes as intermediate particles go on
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FIG. 3 (color online). Normalized, phase-space distribution of
m2

T for the cascade decay process M ! Pþ Y ! 2Pþ X for
various values of the intermediate mass ratio z ¼ m2

Y=M
2.

7Even if there were a dependence, this would be easy to
compensate for, since the number and masses of visible particles
are observable.

8On reflection, such a situation must result in a pathology,
since even the most diligent experimentalist could not be privy to
the knowledge that an invisible intermediate particle had de-
cayed into other invisible particles. Clearly, what would happen
in practice would be that the intermediate particle would be
counted as a single (massive) invisible particle.

9Measurement of the missing energy might be required for
triggering, or to establish the presence of a signal, however.
10Provided the decaying particle is boosted with respect to the
lab frame, there will still be missing energy on which to trigger,
if required.
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shell. To give an explicit example, in the simplest cascade
decay discussed abovewith two visible particles and an on-
shell intermediate of mass mY , the endpoint is at m2

V ¼
M2 �m2

Y and the distribution there is flat. But for a point-
like three-body decay, the maximum is at m2

V ¼ M2 and
the distribution vanishes linearly there.

B. Pair production

We now switch our attention to decays of pair-produced
particles. Pair production is relevant in theories, such as
minimal supersymmetric models, in which the parent
states are charged under the stabilizing symmetry and
must themselves be multiply produced. It turns out that
the mT distribution still has the same form of power-law
falloff for the case of pair-produced parents, assuming that
the two parents are produced at rest, relative to one another,
and without an overall transverse boost. These are, per-
haps, not such good assumptions at the LHCwhere, even in
the absence of initial state radiation, two parents may be
produced boosted back-to-back in their rest frame.11 One
way to avoid this problem would be to use, instead of mT ,
the invariant mass of the visible decay products coming
from one of the decaying parents. This observable is, of
course, invariant under any boost of that parent, but the
endpoint behavior of its distribution will only yield infor-
mation about the number of invisible particles produced in
that parent’s decay. Alternatively, one may use the distri-
bution of the observable mT2 [13,14], which is defined as

mT2 ¼ min
q1þq2¼6pT

½maxðM1T;M2TÞ�; (10)

whereMiT are the transverse masses of the parent particles,
and qi are the transverse momenta of the invisible particles
arising from their decays.

Again, this is the natural observable for pair production,
in that it encodes all of the information that is available

from kinematic considerations [12,15,16].12 More impor-
tantly as regards our discussion, it enjoys a large invariance
with respect to boosts of the parent particles, reducing the
sensitivity to the details of the production process. This
invariance is exhibited most simply by noting that if we
only consider events in which the invisible particles recoil
against the visible particles in the decays, such that there is
no initial state radiation or other source of transverse
momentum ‘‘upstream’’ in the event, then the algorithmic
definition of mT2 reduces to an algebraic expression
[17–19]. The expression depends on whether a configura-
tion is ‘‘balanced’’ or ‘‘unbalanced’’,13 and is given by

m2
T2 ¼

8<
:AT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
T �m2

1m
2
2

q
; balanced;

maxðm1
2; m

2
2Þ; unbalanced;

where AT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1T þm2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2T þm2

2

q
þ p1T � p2T and p1;2T

and m1;2 denote the transverse momenta and invariant

masses of the visible systems in each decay.14

This expression is manifestly invariant under indepen-
dent longitudinal boosts of each parent, along with boosts
that correspond to first boosting both decays to be purely
transverse and subsequently applying equal, but opposite
transverse boosts to each parent [18].15

Just like mT , the distribution of mT2 has an upper end-
point encoding information about the masses of the parti-
cles involved. However, the endpoint behavior is
complicated, if there are multiple visible particles in one
or other decay, by the fact that either the unbalanced or
balanced configuration may dominate, since both can reach
the same maximum, M. For balanced configurations, the
maximum is reached when the invisible particles are par-
allel and transverse, leading to the same power-law behav-
ior as in (8); for unbalanced configurations, we need to
maximize one or other visible invariant mass, leading to
the falloff given in (9), but with mV ! mT2 and with n
replaced by the number of invisible particles in one or other
decay. Now, since the endpoints are the same, the distri-
bution there will be dominated by the component with the
smaller power. For pair decays that are symmetric in the
sense of having the same number of invisible particles on
each side, the balanced solution dominates; for asymmetric
decays, the unbalanced solution always dominates (pro-
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FIG. 4 (color online). Normalized, phase-space distribution of
m2

V for n 2 f1; . . . ; 4g for the process M ! 2Pþ nX.

11Parents will necessarily be boosted if the production process
involves nonzero angular momentum.

12Here, we focus on pair production of parents of identical
mass; generalizations of mT2 [12] might be more appropriate in
other cases.
13For completeness, these terms correspond, respectively, to
momentum configurations where the parent MTs are equal at the
minimum, and those where one MT is larger than the other (see
Fig. 7 in [14]).
14As we did formT (cf. (2), we have replaced the true, unknown
value of the invariant mass of the invisible system in each decay
with zero in the definition.
15We stress that this invariance group, large though it is, does
not contain all back-to-back boosts of the parents.
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vided that the decay with fewer invisible particles has
multiple visible particles). We note that in the asymmetric
case, the power is always an integer, while it is strictly a
half-integer in the symmetric case. Thus, no ambiguity can
arise between the two. Just as for mT these results do not
depend on the precise number of visible particles.

In the simplest case of a single, massless, visible particle
in each decay, mT2 reduces to

m2
T2 ¼ jp1Tjjp2Tj þ p1T � p2T; (11)

which allows one to obtain an analytic form for the mT2

distribution for two parents produced at rest in the lab or
boosted as described above, given in (A28) for the case of
two parents of equal mass, each decaying to k or l, mass-
less, invisible daughter particles. The distributions for the
first few values of n ¼ kþ l are shown in Fig. 5.

C. Counting the number of parents

At this point, the reader might worry how a conscien-
tious experimentalist, blessed with a sample of signal
events, is to decide whether they came from decays of
singly or pair-produced parent particles and thus whether
to try to count the invisible daughter particles using the mT

or mT2 distribution. We now suggest two possible ways to
proceed.

The first possibility is simply to make an educated guess.
For example, if the final state contains only a single visible
particle, then single production seems likely; alternatively,
if the final state contains two copies of all particles (or
particle-antiparticle pairs), then pair production might rea-
sonably be assumed.

Perhaps the ideal strategy would be to try to indepen-
dently count the number of parents and the number of
invisible daughters. We have argued above that one expects
that the distributions computed here will only give a good
fit when one chooses the ‘‘right’’ observable for the pro-
cess. If one chooses the wrong observable, then the absence

of the desired invariance properties will lead to an observed
distribution which is rather poorly fitted by the idealized
distributions we present here. One thus might hope that one
can identify the right observable (and in doing so, count the
parents) by comparing multiple observables and seeing for
which of those one obtains an acceptable fit. As an ex-
ample, for single production followed by decay to two
visible particles and one invisible particle, one would ex-
pect a good fit to the mT distribution, but a poorer fit to the
mT2 distribution.

V. HEAVY INVISIBLE PARTICLES

Thus far we have assumed that the invisible particles
have negligible masses; we now redress this.
Changing to a nonzero mass has several ramifications.

The first issue arises in the definition of the observablesmT

and mT2. For massless particles, we saw that the natural
definition was to replace mI in (1) by its minimal value,
namely, zero. For massive particles, the obvious analogue
would be to replace mI by its minimum value, namely, the
sum of the masses of the invisible particles present.
Unfortunately, we do not expect that this quantity would
have been measured at the time that the analysis proposed
here could be carried out.16 Again, the obvious solution,
since mT as defined in (1) is a monotonically increasing
function of mI, is to replace mI by its minimal possible
value, namely, zero. Thus we retain the definition (2). This
will lead, however, to yet further subtleties, as we shall see
in the next Subsection.
A second issue is that the phase space available, in the

limit that the invariant mass of the invisible particles
approaches its minimum, differs depending on whether
those invisible particles are massive or not. This should
hardly come as a surprise, since the condition to be at the
minimum differs in the two cases: in the massless case, the
momenta of invisible particles must be parallel, whereas in
the massive case, the momenta should, in addition, vanish,
in the center-of-mass frame of the invisibles. There is, thus,
less phase space available near threshold in the massive
case; the explicit behaviors are given in (A2) and (A3). As
a result, (8) is changed in the massive case, for a pointlike
decay of a single parent particle into a single, massless,
visible particle and n invisible particles, to

d�nþ1

dm2
T

/
�
1� m2

T

M2
1

�ð3n=2Þ�2
; (12)

where now the endpoint is atM1 � M2��2
n

M and where�n �
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FIG. 5 (color online). Normalized, phase-space distribution
of m2

T2 for ðk; lÞ 2 fð1; 1Þ; ð1; 2Þ; ð2; 2Þ; ð1; 3Þg for the process

2M ! 2Pþ ðkþ lÞX.

16It is, by now, clear that there is enough information in
kinematics (or equivalently mT or mT2) to measure the DM
mass at the LHC [20] in principle; it is also clear that the
measurement will be extremely challenging in practice. We
therefore take the view that the DM mass will be unknown at
the time that efforts to count the number of invisible particles
begin.
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�mX is the total mass of the invisible particles. We note
that the behavior is unchanged compared to the massless
case for n ¼ 1.

Unlike the case of massless invisibles, we do not obtain
the same formula for themT2 distribution for pair-produced
particles. There, to be at the maximum ofmT2, the invisible
particles produced in one decay must be at rest relative to
one another, but need only be aligned (transversely) with
the invisible particles produced in the other decay.
Consequently, for pointlike decays of a pair of parents,
each into a single, massless, visible particle, we find

d�kþ1�lþ1

dm2
T2

/
�
1�m2

T2

M2
2

�ð3n�5Þ=2
; (13)

where now the endpoint is given by M2
2 � ðM2��2

k
ÞðM2��2

l
Þ

M2

and n ¼ kþ l.17 Again, the behavior is unchanged, com-
pared to the massless invisible case, for k ¼ l ¼ 1.

These changes in the power law in going from massless
to massive invisible particles may seem confusing when
one considers that (12), for example, holds for all nonzero
values of �n, however small. Naı̈vely, this suggests that
there is a discontinuous (and observable) difference in the
mT distributions at �n ¼ 0 and as �n ! 0. What really
happens is that the behavior in (12) is obtained only in the
region of the distribution where the invisible particle mass
cannot be neglected in comparison with the distance from
the endpoint. Further away, a transition to the behavior in
(8) occurs. The location of the transition thus depends on
the mass itself and the distributions show a smooth behav-
ior as one takes the limit in which the invisible masses
vanish. We learn that there is no paradox, but we also learn
that the endpoint behavior we can expect to see is con-
tingent upon the unknown mass of the DM. Our recom-
mended strategy for measuring n will be to fit n in the
endpoint region of the distribution, treating the unknown
invisible mass (or masses) as a nuisance parameter in the
fit. This is unlikely to result in a precise determination of
the invisible particle mass, but it should give us enough
flexibility to reliably fit n.

A. Multiple visible particles

A third issue in the case of massive invisibles is that,
with mT defined as in (2), the condition to be at the
maximum (and indeed its location and endpoint behavior)
changes, if there are multiple visible particles. To see this,
let us revisit the arguments of Sec. IVA. Equation (4) is
unchanged, but since mI cannot vanish, being bounded
below by the sum of the masses of the invisible particles,
necessary conditions for mT to be at its maximum are that

eVqI � qVeI ¼ 0, as before, and for mI to be at its mini-
mum, ~mI. Then, (4) reduces to

m2
T ¼ M2 � ~m2

I � 2eV

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6p2
T þ ~m2

I

q
�

ffiffiffiffiffiffi
6p2
T

q �
:

The expression in parentheses never vanishes and so to be
at the maximum ofmT one must also be at the minimum of
eV and ergo mV . Thus, to be at the maximum of mT , one
must also line up all the visible particles (if they are
massless), or make their momenta vanish in their center-
of-mass frame (if they are massive).18

To illustrate this, we give in (A23) the mT distribution
for decay of a single parent to two massless visibles and a
single massive invisible. The reader may verify that the
power-law falloff near the endpoint has changed from
minus one-half (as in the case of a massless invisible) to
plus one-half (as in the case of a massive invisible), be-
cause we now have to line up two (massless, visible)
particles. Nevertheless, as illustrated in Fig. 6, the massless
and massive distributions map onto each other as the
invisible mass is sent to zero.
Finally, we remark that this change in the endpoint

behavior, while dramatic, can easily be accommodated in
performing the measurement of n, since the number of
visible particles is easy to measure.
Further subtleties arise for mT2, once we allow for

multiple visible particles. Most importantly, either the

endpoint at
ðM2��2

k
ÞðM2��2

l
Þ

M2 , corresponding to balanced con-

figurations, or the one atmaxðM��k;lÞ2, corresponding to
unbalanced configurations, may be the true maximum in
asymmetric decays. In the latter case, the endpoint behav-
ior of the m2

T2 distribution is the same as that of the visible
invariant-mass distribution for the relevant decay, whose
form we now discuss.

B. Invariant-mass observables

It is also worthwhile to consider the effect of massive
invisible particles on the distributions of invariant masses
of visible particles. Again, let us consider a single particle
of mass M decaying into l visible particles and n invisible
particles, all with arbitrary (but nonvanishing) masses. Just
as in the case considered before, where all the invisible

17We stress that this result is derived for parents produced at
rest, or boosted as described after (11). If one includes arbitrary
back-to-back boosts, the endpoint shifts to M2 �minð�k;�lÞ
[12], but the change in the endpoint behavior is observed in
simulations to be not greatly changed.

18This is one of two effects that enables the (sum of) invisible
particle mass(es) to be measured: if, as is the case here, the
hypothesized mass in the definition of mT is smaller than the real
mass, the maximum of mT is at the minimum of mV , while if it is
greater, the maximum ofmT is at the maximum ofmV , leading to
a kink in the endpoint of the mT distribution as a function of the
hypothesized mass [21]. The other effect needs only one visible
particle and relies on the varying alignment of the visible particle
(s) with respect to upstream transverse momentum to generate a
kink [22]. A choice of hypothesized mass that is always greater
than the true mass (the center-of-mass energy of the collider, for
example) would give an alternative observable with a different
dependence on the number of invisible particles near the
endpoint.
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particles were massless, one may show that the condition to
be at the maximum of the invariant mass of the l visible
particles is that all invisible particles be produced with zero
momentum in the rest frame of the decaying particle. An
explicit computation shows that the endpoint behavior is
given, for pointlike decays, by [23]

d�nþl

dm2
V

/
�
1�m2

V

M2
3

�ð3n=2Þ�1
; (15)

where now the endpoint is at M3 � M��n. The coeffi-
cient of n in the power-law falloff is easy to understand.
Here, unlike the massless case, if one adds an extra invis-
ible particle, then the extra condition to be satisfied by that
particle to be at the maximum of either mT or mV is the
same: the extra particle must be at rest with respect to the
invisible particles already present. Note however that the
power laws are different in the massless and massive cases
(2n� 1 and 3n

2 � 1, respectively), even though the condi-

tion to be at the maximum (all invisible particles’ momenta
vanishing) is the same in both cases.

C. Topology dependence

All the results obtained thus far for massive invisible
particles were derived assuming pointlike decays. In the
limiting case of massless invisible particles, we saw that
the endpoint behavior of the transverse mass variable was
independent of the decay topology. We now show, by means
of a counter example, that this is no longer true in the case of
massive invisible particles. To wit, consider a single particle
decaying into two invisible particles and a single visible
particle. The behavior of the transverse mass near its maxi-
mum is determined in part (as we saw in Sec. VA) by the
behavior of the invariant mass of the invisible system near
its minimum. For a pointlike decay, the differential phase
space in the square of the invisible invariant mass vanishes

as the square root near its minimum, whereas it is flat if an
on-shell intermediate lies between the two invisible parti-
cles. Happily, we would still fit the correct number of
invisible particles, namely, two, if we incorrectly assumed
a pointlike topology. We would, however, obtain an incor-
rect value of the mass, namely, zero.
Thus, when invisible particle masses are non-negligible,

both transverse and invariant-mass distributions may ex-
hibit a dependence on the invisible particle mass (or
masses) and on the decay topology. As such, we recom-
mend that, since neither of these is known a priori, they
both be included as nuisance variables in the fit. Of course,
one may hope that, in many cases, the dependence on these
nuisance parameters will be small and will not result in an
ambiguity in extracting the number of invisibles. We shall
see instances of this in Sec. VII. As an example of how this
may arise, the fact that transverse mass distributions are
independent of the topology in the massless limit suggests
that the dependence on the topology will remain small as
long as the masses are not too large.

VI. OTHER EFFECTS

A. Matrix element and spin dependence

We now turn to other effects. The first of these is the
modulation of phase-space distributions by matrix ele-
ments, due to spin or other effects. By fitting the phase-
space distribution, we are implicitly assuming that these
effects may be neglected. In this respect, our approach is
reminiscent of the on-shell effective theory approach
[24,25].
It is easy to see, however, that there are cases in which

these effects cannot be neglected for our purposes, in that
they can, in principle, fake the effect of changing the
number of invisible particles. Imagine, for example, that
angular momentum considerations force two invisible par-
ticles to be always produced with equal momenta (or
parallel if massless). Then, it is clear that the resulting
distributions will be indistinguishable from the distribu-
tions that would have resulted from a single invisible
particle (with mass given by the sum of the two individual
masses). However, such effects appear only when decays
occur at threshold and even then will be washed out by
finite width effects. As an explicit example, in the decay
h ! 2W ! 2l2� of a Higgs boson of mass 2mW , the two
neutrinos are parallel in the limit of a narrow-width Higgs,
but the mT distribution still shows the n ¼ 2 endpoint
behavior (8) in practice [26].
A related worry is that the inclusion of spin effects will

lead to two distributions, corresponding to different values
of n, that are indistinguishable near their endpoints, if not
elsewhere. Again, it is easy to construct an example where
this could happen. Consider, following [27], a scalar par-
ticle, A, that decays to an invisible fermion, c , and an
off-shell, Dirac fermion, �, which in turn decays to an
invisible antifermion �c , and a visible scalar, B. Let the
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FIG. 6 (color online). Phase-space distribution of mT for the
process 2M ! 2Pþ 1X, for a massive invisible particle of mass
mX for various values of the mass ratio x ¼ m2

X=M
2.
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relevant Lagrangian couplings be A�PLc þ B�PRc þ
h:c:, where 2PL;R � 1� �5. Then, conservation of angular

momentum forces the matrix element to vanish when the
two invisible particles are parallel, which, we recall, is a
necessary condition to be at the maximum of the mT

distribution. As a result, the observed falloff in the mT

distribution will result in a measured value of n > 2, if we
try to fit the endpoint behavior to (8).

As is well known (see e.g. [28]), similar effects may
also arise if we consider invariant-mass distributions of
neighboring visible particles in cascade decays. Such be-
havior arises because the invariant mass is a function of the
angle between the two visible particles, as measured in
the rest frame of the intermediate particle; a polarization
of the intermediate particle imparted by the first decay can
then result in an angular dependence of the products of
the second decay. Our expectation is that such effects will
be larger for invariant mass observables than for mT or
mT2.

Finally, it is possible that significant matrix-element
effects will arise in another way. We have already seen
that the transverse mass is maximized when the decay
particles are produced perpendicular to the beam direction.
One can imagine that such configurations will be preferred
or disfavored by the hard production process. An obvious
example occurs in Drell-Yan production of W boson,
whose polarization disfavors larger values of mT [29]
(though the power-law falloff is unchanged). However,
we expect that significant effects of this kind are unlikely
to arise at the LHC, where several hard processes typically
contribute to a given final state.

There is little more that can be done about these kinds of
pathology at the general level, other than to be aware of their
existence and to note that instances of them are rather rare
(necessary conditions to generate effects in cascade decays,
for example, are given in [30] and are seen to be rather
stringent). Moreover, even if such effects are present, they
are typically small. As such, we are inclined to take the view
that one should be delighted rather than disappointed if one
is forced to contend with such a pathology in practice, since
it will also give us the opportunity to make inferences about
the matrix elements for processes involving new particles.
The best way to proceed in such a case would seem to be a
painstaking comparison of explicit Lagrangian hypotheses
(with, e.g. differing spins, couplings and numbers of invis-
ible particles) with data.

Finally, another special case is the one in which invisible
particles do not have a single mass value, but rather form a
nearly continuous spectrum of masses. Obvious examples
are theories with large extra dimensions and the fundamen-
tal gravity scale close to a TeV, or unparticle theories
possessing a conformal sector. Both of these predict signals
in e.g. monojet plus missing energy channels, which we
might mistakenly interpret as single production of a heavy
colored particlewhich then decays to a single visible particle

plus n invisible particles. We have checked that it should be
relatively easy to distinguish these cases. An obvious dif-
ference is that the graviton/unparticle distributions do not
feature an endpoint and have an extremely rapid falloff in
mT . They are therefore unlikely to be confused.

B. Finite width effects

A decaying particle inevitably has a finite width, given
by a Breit-Wigner distribution. This has two important
effects. Firstly, the distributions above (derived for fixed
mass and zero width) must be convolved with a Breit-
Wigner distribution. Since the latter distribution is non-
vanishing for arbitrarily large masses, the singular end-
points discussed above disappear, to be replaced by
distributions which fall sharply beyond the peak mass. To
illustrate this, consider convolving the phase-space mT

distribution for a two-body decay (A6) with the Breit-
Wigner distribution ððm2

T �M2Þ2 þ �2M2Þ�1; the result is

d�2

dm2
T

/ cos�

ðð1� m2
T

M2Þ2 þ �2

M2Þð1=4Þ
; (16)

where tan2� � �M
M2�m2

T

.19

We plot the distribution for various values of the frac-
tional width �=M, in Fig. 7, together with the correspond-
ing distribution for two invisible particles. The presence of
finite width effects of this type means that it makes no
sense to try to count invisible particles by directly fitting
empirical distributions to phase space. Rather, we should
fit the phase-space distribution (with the normalization
unfixed and the invisible mass kept as a free, nuisance
parameter), convolved with a Breit-Wigner distribution
(whose fractional width is also, in general, a nuisance
parameter), in the region of the endpoint.

C. Backgrounds

It was argued in [31] that the transverse massmT (and its
cousin mT2) also has the desirable property that it provides
a good discrimination between signal and background
events, at least if the new physics signal is sufficiently
heavy.20 To wit, while the signal can have large values of
mT , background events have small values of mT . This
property is not only useful for discovering new physics

19The precise result depends on what one means by ‘‘the phase-
space mT distribution’’. Here we have used 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

M2�m2
T

p , which

corresponds to the decay rate under the assumption that all
kinematic and dynamic dimensionful parameters are set by the
variable parent mass and are distributed according to the Breit-
Wigner formula.
20More precisely, the mass difference between the parents and
the invisible daughter in the new physics signal should be large
compared to mass scales associated with standard model
backgrounds.
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(and indeed the mT2 distribution in the dijets plus missing
energy channel using the 2010 LHC data gave the strongest
constraint on squark masses [19,32]), but it also tells us that
the upper endpoint of the mT or mT2 distributions, where
we propose to carry out the measurement of n, will have a
suppressed background contamination.
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FIG. 7 (color online). Phase-space distribution of mT for the
process M ! Pþ nX, with fractional width y ¼ �=M, for
n ¼ 1, 2.

TABLE I. Goodness-of-fit values for various standard model
processes with neutrinos, fitted with the relevant endpoint power
law (see Table III), convolved with a Breit-Wigner. Fractional
widths of parents are fixed to their true values. Best fits are
shown in Fig. 8.

Process Observable R-squared
n ¼ 1 n ¼ 2 n ¼ 3

W ! ‘� mT 0.982 0.723 0.529

h ! WþW� ! ‘þ‘�� �� mT 0.501 0.977 0.779

mT2 0.630 0.996 0.952

t�t ! WþW�b �b ! ‘þ‘�� ��b �b mT2 0.458 0.999 0.971

FIG. 8 (color online). Standard model examples with final state neutrinos, along with the best and next-best fits for distribution of
transverse mass variables near endpoint. The fits are to the relevant endpoint power law (see Table III) convolved with a Breit-Wigner,
with fractional width set to the true value. Details of Monte Carlo event generation are given in the text.
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D. Upstream transverse momentum

ThemT andmT2 variables (and, ergo, their distributions)
are both invariant under longitudinal boosts of the rest
frame of the decaying parent or parents. The mT2 distribu-
tions in (A28) are, furthermore, invariant under a larger set
of boosts as described in Sec. IVB. Neither variable is
invariant under overall, transverse boosts of the (pair of)
parent(s), however, and we now proceed to consider the
effect of these.21 An additional benefit of the original
definition of mT [11] as used to measure the mass of the
W boson [34,35] is that there is no shift in mT under a
transverse boost �T , at linear order in �T [29]. Any shift
thus goes as �2

T and is small for production of heavy states
near threshold. What is more, since the endpoint of the mT

distribution is invariant under Lorentz boosts, any shift in
the mT distribution must also vanish as some power of the
distance from the endpoint. There is thus a double sup-
pression near to the endpoint.

Unfortunately, neither of these results holds generally
when we extend mT to massive final state particles (visible
or invisible). Indeed, one may easily show that the shift in
mT [as defined in (1)] under a transverse boost vanishes at
linear order only if the correct invisible mass is used in the
definition of mT and only if mI ¼ mV . Similarly, it is easy
to show that the upper endpoint of the mT distribution is
Lorentz invariant only if the correct invisible mass is used
in the definition of mT .

22 Since we do not know the
invisible mass a priori, this cannot be done.

In conclusion, the distributions considered here will be
sensitive to the presence of upstream transverse momen-
tum in the event, in whatever form. Again, we hope the
resulting distortions of distributions will not be so severe
as to lead to a mismeasurement of the number of invisible
particles, but caution should be exercised. Of course, if
one did have confidence in one’s understanding of the
spectrum of upstream transverse momentum associated

with a new physics signal, then one could compensate for
its effects.

VII. EXAMPLES

We now apply our fitting procedure to various examples
including both massless and massive invisibles. These test
cases feature many of the effects discussed above and, as
such, serve to verify the viability of our algorithm for
counting the number of invisibles in the final state in the
presence of, for instance, pdfs, cascade decays, finite
widths and spin effects.

A. Light invisible particles

For realistic examples with massless invisibles, we need
look no further than the standard model. Specifically, we
consider W-boson production and leptonic decay at the
Tevatron; Higgs boson production and dileptonic decay via
a pair of intermediate W bosons at the LHC at 7 TeV, with
mh ¼ 180 GeV; and finally pair production of top quarks
undergoing dileptonic decay at the LHC, again at 7 TeV.
We generate 100 000 events in each case at tree level

using MADGRAPH/MADEVENT [36]. We analyze these at
parton level, using truth information to avoid combinato-
rial ambiguities, e.g. in pairing the b jets with leptons in
pairs of top quark decays. We then fit the transverse mass
(or mT2) distributions in the region of the endpoint using
the relevant power-law behavior for massless invisibles
(summarized in Table III), convolved with a Breit-
Wigner distribution, whose fractional width is fixed to
the true value for simplicity. The resulting R-squared val-
ues, quantifying the goodness of fit, for various n are
shown in Table I.23 The best and next-best fits are super-
imposed on the ‘‘data’’ in Fig. 8.

B. Heavy invisible particles

Processes with heavy invisibles in the final state are
abundant in theories going beyond the standard model.
We choose to fit an example where both spin correlations
and topology dependence are known to play a rôle, namely,

TABLE II. Goodness-of-fit values for the supersymmetric cascade decay in [28], with neutralino mass of 115 GeV, fitted to the
endpoint behavior of generated ð3þ kÞ þ ð3þ lÞ-body phase space, where kþ l ¼ n, with varying invisible mass and convolved with
a Breit-Wigner of fixed fractional width. Best fits are shown in Fig. 9.

mX= GeV R-squared ðm2
T2Þ R-squared ðm2

V1Þ R-squared ðm2
V2Þ

n ¼ 2 n ¼ 3 n ¼ 4 k ¼ 1 k ¼ 2 l ¼ 1 l ¼ 2
0 0.947 0.992 0.899 0.992 0.855 0.987 0.843

100 0.998 0.889 0.822 0.993 0.921 0.998 0.911

450 0.859 0.991 0.870 0.987 0.911 0.994 0.900

21For decays involving jets in the final state, radiation from the
initial state poses an additional combinatorial ambiguity.
Methods to reduce this using the mT2 variable were discussed
in [33].
22Again, it is this phenomenon that is responsible for the kink in
the endpoint of the mT distribution that allows the masses to be
measured with just one visible particle [22].

23R, known as the coefficient of determination, varies between
0 (no correlation between data and fitted model) and 1 (perfect
correlation).
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the supersymmetric process of ~uL pair production, fol-

lowed by decays ~uL ! uL ~�
0
2 ! uL‘

þ
R
~‘�R ! uL‘

þ
R ‘

�
R ~�0

1

[28]. We use SOFTSUSY [37] to compute the supersymmetry
spectrum, and generate 100 000 events using MADGRAPH/

MADEVENT and BRIDGE [38] (for the final step of the decay

chain). We analyze these using truth information as before.
For the fits we use RAMBO [39] to generate phase space for
the pointlike decays MþM ! ð3þ 3ÞPþ ðkþ lÞX with
varying invisible mass; these are again convolved with a
Breit-Wigner of fixed, true fractional width. The resulting
R-squared values for different n ¼ kþ l and invisible
mass are shown in Table II, with the best and next-best
fits superimposed on the data in Fig. 9. Note that in spite of
spin correlations that significantly affect the invariant-mass
distributions for pairs of visibles in this decay, once again
the best fit formT2 is for the correct value of n, and also for
the invisible mass that is closest to the input value of
115 GeV. Moreover, as in the t�t case, pointlike phase space
gives a very good fit to the distribution, even though the
actual process is a 3-step cascade decay. Unfortunately it is
not possible to say definitively, using the mT2 distribution
alone, that this process is not instead n ¼ 3 with light
invisibles. This is an ambiguity that comes about because
the endpoint behavior of mT2 here is governed by the
unbalanced solution which falls off linearly; it can, how-
ever, be resolved by separately examining the visible
invariant-mass distributions on each leg of the decay [see
Fig. 9(b)].24 Finally, one might worry that the results of the
fits might change if one allowed the fractional width in the
Breit-Wigner distribution to float. We would argue that
plausible values for these, at least for small n, can be

chosen by eye from the distributions, and, moreover, that
scanning over these is unlikely to make a significant dif-
ference to the best fit. (For example it is difficult to see how
a peaked n ¼ 1 distribution could be mistaken for n ¼ 2,
even allowing for arbitrary fractional width.)

VIII. DISCUSSION

The existence of DM in the cosmos is now established
beyond reasonable doubt; the prospect that we may immi-
nently manufacture and be able to study DM in the labo-
ratory is a tremendously exciting one, for particle
physicists and astrophysicists alike. Here we have argued
that a useful preliminary way to study an invisible DM
candidate at the LHC would be to count the invisible
particles produced in an event and we have outlined a
procedure by which such a measurement might be
achieved. Doing so would not only increase one’s confi-
dence that one really had made DM (if multiple production
could be established), but could also yield deep insights
about the nature of DM and its stabilizing symmetry.
To this end, we have shown that certain observables have

a strong, power-law dependence, in their endpoint behav-
ior, on the number of invisible particles; our results are
summarized in Table III. This endpoint behavior follows
from simple kinematic considerations (namely that the
invisible particles should be produced either parallel to
each other or at rest) and is, to some extent, universal.
The universality, together with the strength of the depen-
dence, means that counting invisible particles using the
endpoint behavior should be robust with respect to a num-
ber of conceivable complications and gives us high hopes
that one could reliably count the number of invisible
particles in practice, given favorable conditions.
We have focused on transverse mass variables (and their

cousins, such asmT2) and invariant-mass observables. Both
feature maximal endpoints with a strong dependence on

FIG. 9 (color online). Best and next-best fits for the SUSY cascade process in [28] with 6 visible particles and a pair of 115 GeV
neutralinos in the final state. The fits are to the endpoint behavior of generated ð3þ kÞ þ ð3þ lÞ-body phase space, where kþ l ¼ n,
with varying invisible mass and convolved with a Breit-Wigner of fixed fractional width. Details of the Monte Carlo event generation
are given in the text.

24As expected, the best fits for m2
V are not as good as those for

transverse masses, since we are fitting pointlike phase space in
spite of the known, large dependence of these distributions on
topology.
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the number of invisible particles. The invariant-mass ob-
servables have the advantages that they do not involve the
missing energy, such that the empirical distributions may
be cleaner, and simulations suggest that they have reduced
sensitivity to invisible particle masses in cascade decays. In
contrast, transverse mass observables have the advantage
that they are less sensitive to the details of the decay
topology (indeed, mT is independent of it, in the limit
that invisible particle masses are negligible) and that we
expect them to be less sensitive to spin effects.

There are important respects in which our results are
not universal, which we have taken pains to point out.
The most important of these is the effect of the mass of
invisible particles. This effect may be significant and may
even lead to ambiguities in counting the number of parti-
cles. For example, Table III shows that, for single produc-
tion, one cannot distinguish (n ¼ 3, � ¼ 0) from (n ¼ 4,
� � 0) using the power-law falloff of mV alone. There
is also a secondary dependence on the widths of the parents
involved and, in general, on the topologies via which
they decay. To compensate for this, we propose that
experiments allow these variables to float (within reason-
able ranges) when fitting the endpoint behavior. We have
argued, nevertheless, that there will often be a high degree
of insensitivity, in which case the poor constraint on the
value of the nuisance parameter that results may provide a
useful cross-check. We have also identified pathological
cases, in which matrix-element effects may lead to ambi-
guities or errors in inferring the number of invisible
particles.

In the massless invisible case, we have argued that it
suffices to fit the endpoint power-law behavior (convolved
with finite width and, eventually, detector effects). In the
massive case, there is a transition between massive and
massless power-law behaviors and so the approach needs
to be modified. Concretely, our proposed strategy is as
follows. Given some missing energy signal in a particular
channel and associated transverse or invariant-mass distri-
butions, generate phase-space distributions, corresponding
to single or pair production of parents at rest in the lab
frame, with the observed number of visible particles. This
should be done for varying numbers of invisible particles

and their masses (and, if necessary, for various decay top-
ologies). Convolve these distributions with Breit-Wigner
distributions (of varying width if necessary) and the ap-
propriate detector response.25 Fit the resulting distributions
to the signal in the endpoint region and extract the best fit
value of the number of invisible particles.
Our proposal might be further developed in various

ways. Firstly, we have focused our attention on only a
limited set of observables and only on their maxima.
More generally, many observables feature singular points
in their distributions that result from the projection of
phase space into its observable subspace [40]; the behavior
near these generalized singularities should also contain
information about the number of invisible particles and
merits further exploration. Secondly, we have not dealt
with the issue of combinatoric ambiguities arising in iden-
tical pair decays or from the presence of initial state
radiation. Variables generalizing mT2 that deal with these
(and which enjoy similar boundedness properties) have
been proposed [17,33] and it would be of interest to extend
the study carried out here to them. Thirdly, we have shown
that there can be a dependence on the topology in various
cases and a fuller study of such effects would be desirable.
Finally, even though we have yet to see evidence for new,
invisible particles produced at the LHC, now would seem
to be the ideal time for experiments to validate and refine
our proposal, by counting the neutrinos which certainly
have been abundantly produced in various SM processes,
of which we have discussed various examples.

ACKNOWLEDGMENTS

We thank N. Arkani-Hamed, A. Barr, R. Franceschini,
C. Lester, and R. Rattazzi for discussions. We also thank J.
Alwall, E. Dobson, R. Frederix, M. Reece and P. Skands
for assistance with Monte Carlo event generation and fits.

TABLE III. Endpoint power-law falloffs for transverse- and invariant-mass distributions, for massless (� ¼ 0) and massive (� � 0)
invisible particles. Valid for pointlike decays (arbitrary decay topologies for mT in the � ¼ 0 case) and only for decays with a single
visible particle for mT or mT2 in the � � 0 case. The formula for asymmetric pair decays applies only if there are multiple visible
particles in the decay with fewer invisibles; if not, the formula for symmetric pair decays applies. ThemV observable may be employed
for any production process, provided the visible decay products of a single parent can be isolated.

Production Observable Invisibles Exponent

� ¼ 0 � � 0

Single mT n n� 3
2

3n
2 � 2

Symmetric pair mT2 n ¼ kþ l kþ l� 3
2

3ðkþlÞ
2 � 5

2

Asymmetric pair mT2 n ¼ kþ l, k < l 2k� 1 -

- mV n 2n� 1 3n
2 � 1

25One might be concerned about the effect of finite jet resolu-
tion on distributions, with multiple visible jets closely aligned
near the endpoint. In fact, the large phase-space suppression here
results in events that are far enough away from true alignment so
as to make jet resolution effects negligible [18].
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APPENDIX A: USEFUL FORMULAE

The differential phase space for the decay of a particleM
into n final state particles Pi is

d�nðM! P1 . . .PnÞ

¼
�
�n

i¼1

d3pi

ð2�Þ32Ei

�
ð2�Þ4	

�
E�Xn

i¼1

Ei

�
	3

�
P�Xn

i¼1

pi

�
:

(A1)

Here P, E and pi, Ei are the momenta and energies of the
initial and final state particles, respectively. In the case in
which all particles Pi are massless, the integrated phase
space is

�nðM ! P1 . . .PnÞ ¼ M2ðn�2Þ

ðn� 1Þ!ðn� 2Þ!24n�5�2n�3
:

(A2)

In the case in which all particles Pi are massive, with
masses mi, the integrated phase space is given, in general,
by an elliptic integral. For the endpoint behavior of distri-
butions, we need only its behavior near threshold, M !
�n � �imi, which is given by [23]

�nðM ! P1 . . .PnÞ !M!�n 1

2ðð5nþ7Þ=2Þ�ðð3n�5Þ=2Þ�ð3n�3
2 Þ

	
�
�imi

�3
n

�
1=2ðM��nÞðð3n�5Þ=2Þ:

(A3)

To compute the mT distribution for a single parent of
mass M decaying at rest to a single, massless, visible
particle (P) and n, massless, invisible particles (X), we
note that the definition of mT reduces, in this case, to

m2
T � 4p2

T: (A4)

The differential phase space for the decay process M !
Pþ nX can be conveniently written by taking the convo-
lution of the two-body decay process with the system of n
invisible particles (collectively denoted as I), having in-
variant mass mI

d�nþ1ðM ! Pþ nXÞ

¼
Z M2

0

dm2
I

2�
d�2ðM ! PIÞd�nðI ! nXÞ: (A5)

Using (A2), we obtain the normalized phase-space distri-
bution in m2

T , in the center-of-mass frame (or a frame
boosted orthogonally to the transverse plane)

M2

�nþ1

d�nþ1

dm2
T

ðM ! Pþ nXÞ ¼ An

�
m2

T

M2

�
; (A6)

where

A1ðzÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p (A7)

and

AnðzÞ ¼ nðn� 1Þ
2

Z 1� ffiffi
z

p

0
dx

xn�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� xÞ2 � z
p ; for n > 1;

(A8)

such that

A2ðzÞ ¼ log

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p
ffiffiffi
z

p
�
; (A9)

A3ðzÞ ¼ 3 log

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p
ffiffiffi
z

p
�
� 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p
; (A10)

A4ðzÞ ¼ 3ð2þ zÞ log
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p
ffiffiffi
z

p
�
� 9

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p
; &c:

(A11)

To compute the distribution with two visible particles, it
is convenient to write the differential phase space as a
convolution between the visible (V ¼ 2P) and invisible
(I ¼ nX) systems, having invariant masses mV and mI,
respectively,

d�nþ2ðM ! 2Pþ nXÞ

¼
Z
mVþmI<M

dm2
Vdm

2
I

ð2�Þ2 d�2ðM ! VIÞ
	 d�2ðV ! 2PÞd�nðI ! nXÞ: (A12)

The normalized phase-space distribution of the transverse
mass ([2]) of the two visible particles, in the center-of-mass
frame (or boosted orthogonally to the transverse direc-
tions), is then

M2

�nþ2

d�nþ2

dm2
T

ðM ! 2Pþ nXÞ ¼ Bn

�
m2

T

M2

�
; (A13)

where

B1ðwÞ ¼ 1

2

�
1� ð1� 2wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wð1� wÞp arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w

1� w

r �
(A14)

and

BnðwÞ ¼ n2ðn2 � 1Þ
Z w

0
dy

Z ð1� ffiffiffi
w

p Þð1�y=
ffiffiffi
w

p Þ

0

	 dx
xn�2ð1� y2w�2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� xÞ2 � w� 2xyþ y2ð1� w�1Þp ;

for n > 1; (A15)

such that
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B2ðwÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w

p � ð1� wÞ þ 4w log

�
1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w
p
w

ffiffiffiffi
w

p
�

� ð1� 4wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w

w

s
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w

1� w

r
; &c: (A16)

The normalized phase-space distribution in the invariant
mass of the two visible particles is

M2

�ðnþ2Þ
d�ðnþ2Þ

dm2
V

�
M ! 2Pþ nX

�
¼ Cn

�
m2

V

M2

�
; (A17)

where

C1ðaÞ ¼ 2ð1� aÞ (A18)

and

CnðaÞ ¼ n2ðn2 � 1Þ
Z ð1� ffiffi

a
p Þ2

0
dxxn�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a� xÞ2 � 4a

q
for n > 1; (A19)

such that

C2ðaÞ ¼ 6ð1� a2Þ þ 12a loga; (A20)

C3ðaÞ ¼ 12ð1� aÞð1þ 10aþ a2Þ þ 72að1þ aÞ loga;
(A21)

C4ðaÞ ¼ 20ð1� a2Þð1þ 28aþ a2Þ
þ 240að1þ 3aþ a2Þ loga;&c: (A22)

For a pointlike decay of a single particle to two, mass-
less, visible particles and an invisible particle of mass mX,
the mT distribution is given by

M2

�3

d�3

dm2
T

ðM ! 2Pþ XÞ ¼ D

�
m2

T

M2
;
m2

X

M2

�
; (A23)

where

Dðw;xÞ¼ 1

2ð1�wÞ2ð1þ2xlnx�x2Þ

8>>><
>>>:
gðw;xÞþð1�w�3xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�xÞ2�2wð1þxÞþw2

p
�ð1�x�wÞð1�x�wð3þ2x�2wÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

wð1�wÞ
p arccosð� ffiffiffiffi

w
p 1þx�w

1�x�wÞ; for
ffiffiffiffi
w

p �1� ffiffiffi
x

p
;

gðw;xÞ�ð1�x�wÞð1�x�wð3þ2x�2wÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
wð1�wÞ

p �; for 1� ffiffiffi
x

p
<

ffiffiffiffi
w

p �1�x;

and

gðw; xÞ ¼ 3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ2 � w

q
þ ð1� x� wÞð1� x� wð3þ 2x� 2wÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wð1� wÞp
	 arccos

�
�

ffiffiffiffi
w

p
x

1� x� w

�
: (A24)

For a one-step cascade decay with two, massless, visible
particles and a massless, invisible particle, the distribution
of mT is given by

M2

�2
2

d�2
2

dm2
T

ðM ! Pþ Y ! 2Pþ XÞ ¼ E

�
m2

T

M2
;
m2

Y

M2

�
; (A25)

where

Eðy; zÞ � 1

2ð1� zÞ ffiffiffi
y

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p

	
Z ffiffi

y
p

a
dx

xð2 ffiffiffi
y

p � xÞ
ð1þ x

ffiffiffi
y

p � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð ffiffiffi

y
p � xÞ2

q
(A26)

and where

a ¼
�
0; if y � 1� z;
y�ð1�zÞffiffi

y
p ; if y > 1� z : (A27)

For events in which two parents, both of mass M, are
produced at rest and each decays into a visible particle (P)
and to k or l invisible particles, where kþ l ¼ n, the
normalized phase-space distribution in m2

T2 is given by

M2

�kþ1�lþ1

dð�kþ1�lþ1Þ
dm2

T2

ð2M ! 2Pþ ðkþ lÞXÞ

¼ Fkl

�
m2

T2

M2

�
c; (A28)

where

FklðzÞ ¼ 4

�

Z 1

z
da

Z 1

z=a
db

abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðab� zÞp Akða2ÞAlðb2Þ;

(A29)

and the integrals AnðzÞ were defined above.
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