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Abstract

The Drell–Yan differential cross section is measured in pp collisions at
√

s = 7 TeV,
from a data sample collected with the CMS detector at the LHC, corresponding to
an integrated luminosity of 36 pb−1. The cross section measurement, normalized
to the measured cross section in the Z region, is reported for both the dimuon and
dielectron channels in the dilepton invariant mass range 15–600 GeV. The normalized
cross section values are quoted both in the full phase space and within the detector
acceptance. The effect of final state radiation is also identified. The results are found
to agree with theoretical predictions.

Submitted to the Journal of High Energy Physics

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

10
8.

05
66

v1
  [

he
p-

ex
] 

 2
 A

ug
 2

01
1





1

1 Introduction
The production of lepton pairs in hadron-hadron collisions via the Drell–Yan (DY) process is
described in the standard model (SM) by the s-channel exchange of γ∗/Z. Theoretical calcula-
tions of the differential cross section dσ/dM(``), where M(``) is the dilepton invariant mass,
are well established up to next-to-next-to-leading order (NNLO) [1–3]. Therefore, comparisons
between calculations and precise experimental measurements provide stringent tests of per-
turbative quantum chromodynamics (QCD) and significant constraints on the evaluation of
the parton distribution functions (PDFs). Furthermore, the production of DY lepton pairs con-
stitutes a major source of background for tt̄ and diboson measurements, as well as for searches
for new physics, such as production of high mass dilepton resonances.

This paper presents a measurement of the differential DY cross section in proton-proton col-
lisions at

√
s = 7 TeV, based on dimuon and dielectron data samples collected in 2010 by the

Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), correspond-
ing to an integrated luminosity of 35.9± 1.4 pb−1. The results are given for the dilepton invari-
ant mass range 15 < M(``) < 600 GeV, corresponding to the Bjorken x range 0.0003–0.633 for
the interacting partons, and complement the observations previously reported by the Tevatron
collaborations [4–6]. To reduce systematic uncertainties, the results are normalized to the cross
section in the Z region (60 < M(``) < 120 GeV) as determined in the same measurement. The
inclusive Z cross section in the full phase space was measured previously by CMS [7].

In the analysis presented, the cross sections are calculated as

σ =
Nu

A ε ρL , (1)

where Nu is the unfolded background-subtracted yield, corrected for detector resolution. The
values of the acceptance A and the efficiency ε are estimated from simulation, while ρ is a
factor that accounts for differences in the detection efficiency between data and simulation.
Knowledge of the integrated luminosity L is not required for the measurements described in
this paper, since the cross sections are normalized to the Z region.

This paper is organized as follows: in Section 2 the CMS detector is described, with particular
attention to the subdetectors used to identify charged leptons. Section 3 describes the data and
Monte Carlo (MC) samples used in the analysis and the selection applied to identify the DY
candidates. The signal extraction methods for the muon and electron channels, as well as the
background contributions to the candidate samples are discussed in Section 4. Section 5 de-
scribes the analysis techniques used to unfold the detector resolution from the measurements.
The calculation of the geometrical and kinematic acceptances together with the methods ap-
plied to determine the reconstruction, selection, and trigger efficiencies of the leptons within
the experimental acceptance are presented in Section 6. Systematic uncertainties are discussed
in Section 7. The calculation of the shapes of the DY invariant mass distributions are summa-
rized in Section 8. In that section we report not only results in the full phase space but also
results as measured within the fiducial and kinematic acceptance (both before and after final
state QED radiation corrections), thereby eliminating the PDF uncertainties from the results.

2 The CMS Detector
A detailed description of the CMS detector and its performance can be found in Ref. [8].
The central feature of the CMS apparatus is a superconducting solenoid 13 m in length and
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6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the field volume
are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL), and the
brass/scintillator hadron calorimeter. Charged particle trajectories are measured by the tracker,
covering the full azimuthal angle and pseudorapidity interval |η| < 2.5, where the pseudora-
pidity is defined as η = − ln tan(θ/2), with θ being the polar angle of the trajectory of the
particle with respect to the counterclockwise beam direction. Muons are measured in the pseu-
dorapidity range |η| < 2.4, with detection planes made using three technologies: drift tubes,
cathode strip chambers, and resistive plate chambers. The muons associated with the tracks
measured in the silicon tracker have a transverse momentum (pT) resolution of about 2% in the
muon pT range relevant for the analysis presented in this paper. The ECAL consists of nearly
76 000 lead tungstate crystals, distributed in a barrel region (|η| < 1.479) and two endcap re-
gions (1.479 < |η| < 3), and has an ultimate energy resolution better than 0.5% for unconverted
photons with transverse energies (ET) above 100 GeV. The electron energy resolution is bet-
ter than 3% for the range of energies relevant for the measurement reported in this paper. A
two-level trigger system selects the events for use in offline physics analysis.

3 Event Selection
The basic signature of the DY process is straightforward: two oppositely charged isolated lep-
tons originating in the same primary vertex. The analysis presented in this paper is based on
dilepton data samples selected by inclusive single-lepton triggers. The dimuon data sample
was selected by a single-muon trigger with a pT threshold ranging from 9 to 15 GeV, depend-
ing on the beam conditions. In the offline selection, one of the muons is required to match, in
three-dimensional momentum space, a muon trigger candidate, and must have |η| < 2.1 and
pT > 16 GeV, to ensure that it is on the plateau of the trigger efficiency curve. The second muon
is required to have |η| < 2.4 and pT > 7 GeV. No muon isolation is required at the trigger level.

Muons are required to pass the standard CMS muon identification and quality criteria, based
on the number of hits found in the tracker, the response of the muon chambers, and a set of
matching criteria between the muon track parameters as determined by the inner tracker sec-
tion of the detector and as measured in the muon chambers [9, 10]. These criteria ensure that
only muons with well-measured parameters are selected for the analysis. To eliminate cosmic-
ray muons, each muon is required to have an impact parameter in the transverse plane less
than 2 mm with respect to the center of the interaction region, and the opening angle between
the two muons must differ from π by more than 5 mrad. In order to reduce the fraction of
muon pairs from (different) light-meson decays a common vertex for the two muons is fitted
and the event is rejected if the dimuon vertex χ2 probability is smaller than 2%. Finally, an isola-
tion requirement is imposed on both muons, Irel = (∑ pT(tracks) + ∑ ET(had))/pT(µ) < 0.15,
where ∑ pT(tracks) is the sum of the transverse momenta of all the additional tracker tracks
and ∑ ET(had) is the sum of all transverse energies of hadronic deposits in a cone ∆R =√
(∆φ)2 + (∆η)2 < 0.3 centered on the muon direction and excluding the muon itself. Given

that muons can radiate nearly collinear photons in a process referred to as final state electro-
magnetic radiation (FSR), deposits in the ECAL are not included in the definition. Otherwise
an inefficiency would be introduced in the analysis.

For the electron analysis, events are selected with a trigger requiring at least one electron, with
a minimum ET ranging from 15 to 17 GeV, depending on the beam conditions. Electron recon-
struction starts from clusters of energy deposited in the ECAL, and associates with them hits in
the CMS tracker [11]. Energy-scale corrections are applied to individual electrons as described
in Ref. [12]. The electron candidate is required to be consistent with a particle originating from
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the primary vertex in the event. Electron identification criteria based on shower shape and
track-cluster matching are applied to the reconstructed candidates. Electrons originating from
photon conversions are rejected by eliminating those electrons for which a partner track consis-
tent with a conversion hypothesis is found, and requiring no missing hits in the pixel detector,
as discussed in Ref. [7]. Isolation requirements are imposed on each electron, according to
(∑ pT(tracks) + ∑ ET(had) + ∑ ET(em))/pT(e) < 0.1, where ∑ pT(tracks) and ∑ ET(had) are
defined as explained for muons, and ∑ ET(em) is the sum of the transverse energies of elec-
tromagnetic deposits in ∆R < 0.3, excluding the electron candidate itself. The standard CMS
isolation calculation for electrons also excludes ECAL energy deposits that are potentially cre-
ated by FSR photons, while absorbing some of these deposits into electron objects. Thus, the
FSR-related inefficiencies, present for muons, are avoided for electrons and ECAL information
is used in the total isolation calculation. The criteria were optimized to maximize the rejec-
tion of misidentified electrons from QCD multijet production and nonisolated electrons from
heavy-quark decays, while maintaining at least 80% efficiency for electrons from the DY pro-
cess. More details are found in Ref. [7].

Electrons must be reconstructed in the ECAL barrel with |η| < 1.44 or in the ECAL endcaps
with 1.57 < |η| < 2.5. The leading electron is required to have ET > 20 GeV, while the second
electron must have ET > 10 GeV. The leading electron in a candidate pair is required to match,
in η and φ, a trigger electron candidate.

Event samples for simulation studies of electroweak processes involving W and Z production
are produced with the NLO MC generator POWHEG [13–15] interfaced with the PYTHIA
(v. 6.422) [16] parton-shower event generator, using the CT10 [17] parametrization of the PDFs.
PYTHIA is also used for the FSR simulation. The QCD multijet background is generated with
PYTHIA, and the tt̄ background is simulated using MADGRAPH (v. 4.4.12) [18] and PYTHIA
at leading order using the CTEQ 6L PDF set [19] for both samples. Generated events are pro-
cessed through the full GEANT4 [20] detector simulation, trigger emulation, and event recon-
struction chain.

The observed invariant mass distributions, in the dimuon and dielectron channels, are shown
in Fig. 1. Thirteen mass bins are used to cover the observable dilepton mass spectrum. These
are chosen not only to be wide enough to minimize the influence of the mass resolution but also
to provide good statistical power. The mass resolution varies between a few hundred MeV at
the low invariant masses covered and several tens of GeV at the high end of the spectrum. The
mass bins have unequal widths.

4 Backgrounds
Several physical and instrumental backgrounds contribute to both the dimuon and dielectron
analyses. The main backgrounds at high dilepton invariant masses are caused by tt̄ and di-
boson production, while at invariant masses below the Z peak, DY production of τ+τ− pairs
becomes the dominant background. At low dimuon invariant masses, most background events
are QCD multijet events. The expected shapes and relative yields of these several dilepton
sources can be seen in Fig. 1.

For the dimuon channel, the electroweak and tt̄ backgrounds are evaluated through simulation
studies, expected to provide a good description of the real contributions. This is also verified
by related studies in the electron channel presented below. In contrast, the QCD background
is evaluated from data by two independent methods. The first estimates the yield of opposite-
sign (OS) background muon pairs by scaling the yield of same-sign (SS) pairs. The scaling
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Figure 1: The observed dimuon (left) and dielectron (right) invariant mass spectra. No cor-
rections are applied to the distributions. The points with error bars represent the data, while
the various contributions from simulated events are shown as stacked histograms. By “EWK”
we denote Z/γ∗ → ττ, W → `ν, and diboson production. The “QCD” contribution results
from processes associated with QCD and could be genuine or misidentified leptons. The lower
panels show the ratios between the measured and the simulated distributions including the
statistical uncertainties from both.

is based on information from the ratio of OS/SS events when one of the muons is not iso-
lated (a sample dominated by background), and the MC prediction that the same ratio holds
when both muons are isolated. Statistical uncertainties in all the cases are propagated to the
final background estimate. The second method, which is more precise, is based on the sig-
nal/background discriminating variable Irel. We obtain pT-dependent isolation distributions
(templates) from almost pure samples of background and signal events, respectively composed
of SS and OS muon pairs. The latter consist of events in the Z mass peak surviving tight qual-
ity selection criteria. A superposition of these two shape distributions is fitted to the observed
isolation distributions of the two muons, for each invariant mass bin. The dimuon invariant
mass distribution of the QCD background is obtained as the weighted average of the estimates
from the two methods.

There are two categories of dielectron backgrounds: the first category contributes candidates
composed of two genuine electrons and the second contributes candidates in which at least one
particle is a misidentified electron. Most of the genuine dielectron background is due to tt̄, WW,
and tW production, as well as DY production of τ+τ− pairs. We estimate the contribution from
these processes with a sample of e±µ∓ events having the same physical origin. This signal-free
sample contains approximately twice the estimated number of background events contami-
nating the e+e− sample, and provides an evaluation of the background level that agrees with
the estimate based on simulation studies. The genuine dielectron background from WZ and
ZZ production is estimated from simulation. The misidentified electron backgrounds originate
from QCD multijet and W+jet events. These sources of background are relatively small be-
cause of the tight electron identification and kinematic requirements, and are estimated from
data based on the probability that jets or random energy deposits in the calorimeters emulate
electron candidates [21].
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The background estimates in the dimuon and dielectron channels are tabulated in Section 5
(Tables 1 and 2, respectively).

5 Detector Resolution Effects and Unfolding
The effects of the detector resolution on the observed dilepton spectra are corrected through an
unfolding procedure. The original invariant mass spectrum is related to the observed one (in
the limit of no background) by

Nobs,i = ∑
k

Tik Ntrue,k, (2)

where Ni is the event count in a given invariant mass bin i. The element Tik of the “response
matrix” T is the probability that an event with an original invariant mass in the bin k is recon-
structed with an invariant mass in the bin i. The original invariant mass spectrum is obtained
by inverting the response matrix and calculating [22, 23]

Nu,k ≡ Ntrue,k = ∑
i
(T−1)ki Nobs,i. (3)

This procedure is sufficient in the analysis reported in this paper because the response matrix
is nonsingular and nearly diagonal. Two extra dilepton invariant mass bins are included in
the unfolding procedure, to account for events observed with M(``) < 15 GeV or M(``) >
600 GeV.

The response matrix is calculated using the simulated sample of DY events, defining the “true
mass” as the “generator level” dilepton invariant mass, after FSR. Only the selected events in
the sample are used to calculate the response matrix. The loss of events caused by reconstruc-
tion inefficiencies or limited acceptance is factored out from the unfolding procedure and taken
into account by means of efficiency and acceptance factors in a subsequent step. Events gener-
ated with a dilepton invariant mass in the window of the analysis but reconstructed with an in-
variant mass too small (below 15 GeV) or too large (above 600 GeV) contribute to the response
matrix. Events generated outside this window but reconstructed inside it are also accounted
for. The sum of probabilities in the columns of the response matrix plus the probabilities of the
bins with too small and too large invariant masses is constrained to be 100%.

The response matrices are nearly diagonal. The few significant off-diagonal elements present
are found immediately next to the diagonal elements. Almost all off-diagonal elements are less
than 0.1 for the muon channel and less than 0.3 for the electron channel, as shown in Fig. 2. The
response matrices in both lepton channels are invertible.

The larger off-diagonal elements in the response matrix for the electron channel reflect a larger
crossfeed among neighboring bins due to the following two factors. First, the detector reso-
lution is worse for electrons than for muons. Second, the electron reconstruction algorithm
attributes the four-momenta of some FSR photons to the electrons. Thus, for electrons, unfold-
ing removes not only the effect of detector resolution on the invariant mass but also the effect
of FSR photons in the electron reconstruction, yielding the original mass spectrum after FSR.
The calculation of the original mass spectrum before FSR from the spectrum resulting from the
unfolding procedure is done in a separate step through FSR corrections and is described in the
next section.

The yields before and after background subtraction and the unfolding corrections are given in
Tables 1 and 2.
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Figure 2: The response matrices for the muon (left) and electron (right) channels from simula-
tion.

6 Acceptance and Efficiency
The reconstructed dilepton invariant mass distributions cannot be directly compared to the
spectra provided by the theoretical models, not only because of the limited acceptance coverage
of the detector but also because the observed spectra are affected by FSR, a process usually not
included in the calculations. We define “pre-FSR” and “post-FSR” as labels to be attached to
any quantity referred to before and after the FSR effects occur. The measurement of dσ/dM(``)
therefore requires a two-step correction procedure. First, the measured, post-FSR spectra are
corrected for acceptance, when applicable, and detector efficiencies. Then the (acceptance and)
efficiency corrected spectra are themselves altered by a bin-by-bin FSR correction factor which
relates the yields before and after the FSR takes place. These spectra can be compared to the
calculations.

The geometrical and kinematic acceptance A is defined, using the simulated leptons after the
FSR simulation, as A ≡ Nacc/Ngen, where Ngen is the number of generated events and Nacc
is the corresponding number of events passing the standard pT and η lepton requirements, in
each dilepton invariant mass bin.

The efficiency ε is the fraction of events within the acceptance that pass the full selection, so
that

A · ε ≡ Nacc

Ngen
· Nε

Nacc
=

Nε

Ngen
, (4)

where Nε is the number of events surviving the reconstruction, selection, and identification
requirements. The values of the product of acceptance and efficiency are obtained from sim-
ulation. A separate correction factor is determined from data and applied to the product, fol-
lowing the procedure used in the inclusive W and Z cross section measurements in CMS [7].
This factor, the efficiency correction, describes the difference between data and simulation in
the efficiency to observe single leptons or dileptons.

The POWHEG simulation combines the next-to-leading-order (NLO) calculations with a par-
ton showering which is insufficient to model fully the low invariant mass region of the dilepton
spectra. The two high-pT leptons required in the analysis must form a small angle at low mass
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Table 1: Observed data yields, estimated backgrounds, and background-corrected and un-
folded signal yields for DY production in the µ+µ− channel. The QCD background is estimated
from data whereas the “Other” background contributions (as indicated in Fig. 1) are based on
simulation.

Invariant mass Nobs Backgrounds Nobs − Nbg Nu
bin (GeV) QCD Other
15–20 253 ± 16 11 ± 8 1 ± 1 241 ± 18 243 ± 19
20–30 809 ± 28 59 ± 21 15 ± 4 735 ± 36 736 ± 37
30–40 986 ± 31 46 ± 15 30 ± 6 910 ± 36 907 ± 37
40–50 684 ± 26 22 ± 8 30 ± 6 632 ± 29 631 ± 30
50–60 471 ± 22 11 ± 7 25 ± 6 435 ± 24 436 ± 26
60–76 797 ± 28 7 ± 6 22 ± 5 768 ± 29 752 ± 31
76–86 1761 ± 42 6 ± 3 1755 ± 42 1471 ± 49
86–96 11786 ± 109 25 ± 6 11761 ± 109 12389 ± 119
96–106 909 ± 30 5 ± 3 904 ± 30 591 ± 38
106–120 194 ± 14 3 ± 2 191 ± 14 178 ± 17
120–150 145 ± 12 4 ± 3 141 ± 12 142 ± 13
150–200 53 ± 7 4 ± 3 49 ± 8 47 ± 9
200–600 30 ± 6 3 ± 2 27 ± 6 28 ± 6

and therefore the dilepton system gets significantly boosted, something to be compensated by
hard gluon radiation in the transverse plane. This means that these low-mass events are of the
type “γ∗ + hard jet” at first order, and therefore the next order of correction (NNLO) becomes
essential for a reliable estimate of acceptance corrections. To account for this, a correction is
applied, determined from the ratio between the differential cross sections calculated at NNLO
with FEWZ [24] and at NLO with POWHEG, both at pre-FSR level. These correction weights,
obtained in bins of dilepton rapidity, pT, and invariant mass, are applied on an event-by-event
basis. The distributions obtained are used for all the simulation based estimations (acceptance,
efficiency, FSR corrections) for DY, and this sample is referred to as “POWHEG matched to
FEWZ (NNLO) distributions”. This procedure changes the acceptance in the lowest invariant
mass bin significantly (by about 50%), but has a small effect, not exceeding 3%, on the rest of
the bins.

Figure 3 shows the variables A, ε, and A · ε as functions of M(``) for dimuons (left) and dielec-
trons (right), the values being listed in Tables 3 and 4, respectively.

The FSR correction factors listed in Tables 3 and 4 for a given invariant mass range are ob-
tained from simulation by dividing the post-FSR cross sections by the corresponding pre-FSR
quantities. They are applied on (corrected) data as an additional step as described earlier in
the section. The factors obtained within the detector acceptance and in the full phase space (as
shown in the tables) are applied to the corresponding measurements. Systematic uncertainties
related to the FSR simulation are discussed in Section 7.

The total dimuon event selection efficiency is factorized as

ε(event) = ε(µ1) · ε(µ2) · ε[µµ|(µ1)&(µ2)] · ε(event, trig|µµ), (5)

where ε(µ) is the single muon selection efficiency; ε[µµ|(µ1)&(µ2)] is the dimuon selection effi-
ciency, which includes the requirement that the two muon tracks be consistent with originating
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Table 2: Observed data yields, estimated backgrounds, and background-corrected and un-
folded signal yields for DY production in the e+e− channel.

Invariant mass Nobs Backgrounds Nobs − Nbg Nu
bin (GeV) genuine e+e− misidentified e+e−

15–20 16 ± 4 0.0 ± 0.2 0.4 ± 0.7 16 ± 4 16 ± 6
20–30 91 ± 10 2.5 ± 1.7 0.9 ± 1.1 88 ± 10 94 ± 12
30–40 179 ± 13 14.3 ± 4.6 1.5 ± 1.4 163 ± 14 164 ± 17
40–50 243 ± 16 31.4 ± 6.9 3.7 ± 2.7 208 ± 18 219 ± 22
50–60 211 ± 15 19.9 ± 5.2 3.9 ± 2.8 187 ± 16 234 ± 25
60–76 455 ± 21 22.4 ± 5.3 4.9 ± 3.3 428 ± 22 620 ± 45
76–86 1599 ± 40 8.5 ± 2.8 2.5 ± 2.1 1588 ± 40 1277 ± 89
86–96 6998 ± 84 12.5 ± 1.8 4.4 ± 3.1 6981 ± 84 7182 ± 117
96–106 587 ± 24 3.5 ± 1.8 2.1 ± 1.8 581 ± 24 441 ± 36
106–120 132 ± 11 3.2 ± 1.9 1.5 ± 1.4 127 ± 12 127 ± 15
120–150 67 ± 8 7.8 ± 3.1 2.0 ± 1.7 57 ± 9 53 ± 10
150–200 34 ± 6 5.5 ± 2.5 1.6 ± 1.4 27 ± 7 25 ± 7
200–600 26 ± 5 3.0 ± 1.9 1.4 ± 1.4 22 ± 6 21 ± 5
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Figure 3: DY acceptance (blue, filled circles), efficiency (red, open triangles), and their product
(black, open squares) per invariant mass bin, for the µ+µ− (left) and e+e− (right) channels.

from a common vertex and that they satisfy the angular criteria; and ε(event, trig|µµ) is the
efficiency of triggering an event including the efficiency that an identified muon is matched to
a trigger object. The single muon efficiency is factorized as

ε(µ) = ε(track|accepted) · ε(reco + id|track) · ε(iso|reco + id), (6)

where ε(track|accepted) is the offline track reconstruction efficiency in the tracker detector;
ε(reco + id|track) is the muon reconstruction and identification efficiency; and ε(iso|reco + id)
is the muon isolation efficiency. The trigger efficiency ε(event, trig|µµ) is given by

ε(event, trig|µµ) = ε(µ1, trig|µ1) + ε(µ2, trig|µ2)− ε(µ1, trig|µ1) · ε(µ2, trig|µ2), (7)

where ε(µ, trig|µ) is the efficiency of an offline selected muon to fire the trigger.
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Table 3: DY acceptance and acceptance times efficiency per invariant mass bin for the µ+µ−

channel. In addition, the FSR correction factors are given. All uncertainties are statistical.
Invariant mass Acceptance (%) Acc × Eff (%) FSR correction (%) FSR correction in
bin (GeV) the acceptance (%)
15–20 1.23 ± 0.01 1.00 ± 0.01 97.28 ± 0.02 96.30 ± 0.02
20–30 5.69 ± 0.03 4.44 ± 0.03 97.28 ± 0.02 97.99 ± 0.02
30–40 23.5 ± 0.1 19.6 ± 0.1 98.43 ± 0.03 98.77 ± 0.03
40–50 34.8 ± 0.2 30.1 ± 0.2 104.0 ± 0.1 105.9 ± 0.1
50–60 41.2 ± 0.2 36.2 ± 0.2 120.2 ± 0.3 125.1 ± 0.3
60–76 47.4 ± 0.2 41.9 ± 0.2 166.4 ± 0.5 175.1 ± 0.6
76–86 50.6 ± 0.1 45.5 ± 0.1 167.1 ± 0.4 169.8 ± 0.4
86–96 51.8 ± 0.1 47.1 ± 0.1 91.63 ± 0.03 91.62 ± 0.03
96–106 53.1 ± 0.2 48.5 ± 0.2 88.0 ± 0.1 88.1 ± 0.1
106–120 54.6 ± 0.4 49.6 ± 0.4 91.3 ± 0.2 91.2 ± 0.2
120–150 56.6 ± 0.6 51.8 ± 0.6 93.2 ± 0.3 93.1 ± 0.3
150–200 60.8 ± 0.9 55.0 ± 0.9 94.3 ± 0.4 95.0 ± 0.4
200–600 67.7 ± 1.2 60.9 ± 1.3 92.8 ± 0.7 93.1 ± 0.6

Table 4: DY acceptance and acceptance times efficiency per invariant mass bin for the e+e−

channel. In addition, the FSR correction factors are given. All uncertainties are statistical.
Invariant mass Acceptance (%) Acc × Eff (%) FSR correction (%) FSR correction in
bin (GeV) the acceptance (%)
15–20 0.56 ± 0.01 0.10 ± 0.01 93.8 ± 0.1 98.7 ± 1.9
20–30 1.19 ± 0.01 0.54 ± 0.01 93.9 ± 0.2 102.9 ± 1.8
30–40 9.1 ± 0.1 3.6 ± 0.1 96.8 ± 0.3 109.5 ± 1.3
40–50 26.5 ± 0.2 12.8 ± 0.2 107.7 ± 0.6 117.8 ± 1.2
50–60 37.5 ± 0.2 18.3 ± 0.2 139.3 ± 1.0 156.2 ± 1.8
60–76 45.1 ± 0.2 22.4 ± 0.2 230.7 ± 1.4 256.3 ± 2.4
76–86 47.9 ± 0.1 26.4 ± 0.1 224.1 ± 1.0 235.0 ± 1.5
86–96 49.3 ± 0.1 30.6 ± 0.1 83.9 ± 0.1 85.6 ± 0.2
96–106 50.8 ± 0.2 31.6 ± 0.2 78.5 ± 0.5 80.1 ± 0.7
106–120 52.6 ± 0.4 33.3 ± 0.4 83.9 ± 1.0 85.2 ± 1.4
120–150 54.2 ± 0.6 33.4 ± 0.6 87.9 ± 1.4 88.5 ± 1.9
150–200 58.1 ± 0.9 36.1 ± 0.9 89.1 ± 2.2 90.3 ± 3.0
200–600 67.2 ± 1.3 42.4 ± 1.3 87.5 ± 3.2 88.9 ± 4.0

The track reconstruction efficiency is very high (99.5%). The angular criterion is nearly 100%
efficient for signal DY events, and the vertex probability requirement is more than 98% efficient
and has a negligible (< 0.3%) dependence on M(``).

The muon reconstruction and identification efficiency is estimated using clean samples of muon
pairs in the Z peak (tag and probe, T&P, method [7]). The properties of one muon are probed,
after imposing tight requirements on the other one. To determine the isolation efficiency, the
Lepton Kinematic Template Cones (LKTC) method [9] is applied. The essence of the LKTC
method is to choose predefined directions in events with an underlying event environment
similar to that of the signal sample. The isolation variable is defined as if these directions
represent signal leptons, and the chosen isolation-based criteria are subsequently studied.
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To describe the observed efficiency variations between data and simulation, efficiency correc-
tion factors are obtained in bins of pT and η as the ratio of the efficiencies measured with data
and with the simulated events:

ρeff(pT, η) =
εdata(pT, η)

εsim(pT, η)
. (8)

The corrections to the efficiencies in simulation are implemented by reweighting simulated
events, with weights computed as W = ρreco

1 ρreco
2 ρiso

1 ρiso
2 ρtrig where ρtrig = (ε

trig
data,1 + ε

trig
data,2 −

ε
trig
data,1ε

trig
data,2)/(ε

trig
MC,1 + ε

trig
MC,2 − ε

trig
MC,1ε

trig
MC,2). If pT < 16 GeV or |η| > 2.1 for a given muon i =

1, 2, its trigger efficiency is set to zero.

The systematic uncertainty related to the efficiency correction is evaluated by generating one
hundred variations of the (pT, η) correction maps, where the weight in each (pT, η) bin is ob-
tained by adding to the original value a Gaussian-distributed shift of mean zero and width
equal to the statistical uncertainty of the original correction factor (Eq. (8)). Signal corrected
yields are evaluated using event weights obtained from each of the alternative correction maps
and the RMS spread of the resulting values is taken as the systematic uncertainty. The system-
atic error computed with this procedure includes an irreducible statistical component, yielding
a conservative uncertainty which also covers generous variations in the efficiency-correction
shape. The resulting uncertainties are shown in Table 5.

The total event efficiency in the dielectron channel analysis is defined as the product of the two
single electron efficiencies, which incorporate three factors: 1) the efficiency εreco to reconstruct
an electron candidate from an energy deposit in the ECAL; 2) the efficiency εid for that candi-
date to pass the selection criteria, including identification, isolation, and conversion rejection;
3) the efficiency εtrig for the leading electron to pass the trigger requirements. Each of these
efficiencies is obtained from simulation and corrected by ρeff(pT, η), as for the muon channel
(Eq. (8)). The T&P method is used for all efficiency components. The event efficiency correction
and its uncertainty are derived as for the muon channel by reweighting simulated events. The
correction factors are listed in Table 5.

7 Systematic Uncertainties
Systematic uncertainties have been evaluated for each step in the determination of the dilepton
invariant mass spectrum. The acceptance-related uncertainties are a special case as they only
apply to the acceptance corrected results, i.e., results in the full phase space, and are approx-
imately the same for the dimuon and dielectron channels (the FSR uncertainties are treated
separately). The acceptance uncertainty resulting from the knowledge of the PDFs is estimated
using PYTHIA with the CTEQ6.1 PDF set by a reweighting technique [25], with a negligible
statistical uncertainty given the very large simulated sample. Since we are making a shape
measurement, normalizing the DY cross section to the dilepton cross section in the Z region,
the analysis only depends on the uncertainty of the ratio of acceptances, Ai/Anorm, where Ai is
the acceptance for the invariant mass bin i and Anorm is the acceptance for the invariant mass
region of the Z.

The uncertainty of the acceptance is estimated, for each dilepton invariant mass bin, using
FEWZ, at NLO and NNLO accuracy in perturbative QCD. Variations of the factorization and
renormalization scales lead to a systematic uncertainty smaller than 1% (at NNLO) for most of
the invariant mass range used in the analysis presented here.
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Table 5: Combined efficiency corrections for the muon and electron channels per mass bin.
They account for the data vs. simulation differences in reconstruction, identification, isolation
and trigger efficiencies.

Invariant mass Combined efficiency correction
bin (GeV) Muon channel Electron channel
15–20 0.917± 0.010 1.098± 0.087
20–30 0.915± 0.010 1.089± 0.091
30–40 0.918± 0.011 1.107± 0.103
40–50 0.931± 0.011 1.076± 0.081
50–60 0.943± 0.008 1.034± 0.053
60–76 0.952± 0.006 1.008± 0.033
76–86 0.958± 0.004 0.995± 0.024
86–96 0.960± 0.003 0.979± 0.019
96–106 0.961± 0.003 0.973± 0.018
106–120 0.961± 0.003 0.960± 0.018
120–150 0.956± 0.010 0.953± 0.019
150–200 0.957± 0.021 0.945± 0.020
200–600 0.957± 0.021 0.940± 0.020

Special care is needed to calculate the acceptance of low invariant mass dileptons, where differ-
ences between NLO and NNLO values can be significant, given the relatively high thresholds
imposed on the transverse momentum of the leptons. Since the POWHEG MC (NLO) simu-
lation, modified to match the FEWZ (NNLO) calculations, is used to calculate the acceptance
corrections used in the analysis, an additional (model-dependent) systematic uncertainty on
the acceptance calculation is determined from the observed differences in acceptances based on
FEWZ spectra and POWHEG distributions matched to FEWZ. These differences are caused
by variations in the kinematic distributions within the bins where bin sizes are chosen to take
into account the limited reliability of perturbative QCD calculations in parts of the phase space.
This systematic uncertainty reaches up to 10% in the dilepton invariant mass range considered
in the analysis and is included in the comparison between the measurements and the theoreti-
cal expectations.

The dominant systematic uncertainty on the cross section measurement in the dimuon channel
is the uncertainty on the background estimation, which is, however, relatively small given the
low background levels. This uncertainty is evaluated from data using two independent back-
ground subtraction methods, as described in Section 4. The next most important uncertainties
are related to the muon efficiency and to the muon momentum scale and resolution. The for-
mer is determined using the large sample of Z events decaying to dimuons. Uncertainties in the
latter are mostly caused by residual misalignment between the muon chambers and the silicon
tracker, potentially not reproduced in the simulation. The Z line shape is used to constrain the
level of such possible limitations in the simulation. The momentum resolution and the momen-
tum scale uncertainties are included in the unfolding procedure and, hence, the resulting shape
is affected by these systematic effects. The level of the momentum scale uncertainty is evalu-
ated by introducing a bias in the MC reconstruction and unfolding the resulting dimuon mass
distribution with the unfolding matrix determined from the nominal (unbiased) MC sample.
The bias is on the reconstructed invariant mass and is based on the maximal difference between
MC and data Z peak positions as obtained with variations in the pT and η requirements.

Studies of photons reconstructed near a muon in a DY event indicate that the FSR simulation



12 7 Systematic Uncertainties

is remarkably accurate. A corresponding systematic uncertainty is evaluated by examining
how the results change when the fraction of FSR events as well as the energy and angular
distributions of the radiated photon are modified within proper statistical variations.

Other systematic effects that could affect the dimuon yield have been considered, such as the
impact of additional soft pp collisions that occur in the same bunch crossing as the studied
interaction and the effects of the dimuon vertex probability requirement and of residual data-
simulation discrepancies. A combined uncertainty is reported for these “other” sources in
Table 6, where all systematic uncertainties in the dimuon channel are listed.

Table 6: Summary of systematic uncertainties in the muon channel (in percent). The “Total” is
a quadratic sum of all sources without “Acceptance”. With the exception of “Acceptance”, the
numbers correspond to the individual measurements per bin and not the ratio to the Z region.

Invariant mass Efficiency Background Unfolding FSR Other Total Acceptance
bin (GeV) correction
15–20 1.1 3.6 0.4 1.5 1.0 4.2 +2.2/−3.0
20–30 1.1 3.1 0.2 1.1 1.0 3.6 +1.9/−3.2
30–40 1.2 1.9 0.1 0.7 1.0 2.6 +1.7/−3.0
40–50 1.2 1.7 0.2 0.7 1.0 2.4 +1.7/−2.9
50–60 0.8 2.1 0.2 0.5 0.5 2.4 +1.7/−2.8
60–76 0.6 1.0 0.2 1.4 0.5 1.9 +1.6/−2.6
76–86 0.4 0.2 1.7 2.0 0.5 2.7 +1.5/−2.5
86–96 0.3 0.05 0.2 0.5 0.5 0.8 +1.5/−2.4
96–106 0.3 0.4 3.8 0.5 0.5 3.9 +1.5/−2.4
106–120 0.3 1.4 0.7 0.5 3.0 3.4 +1.5/−2.3
120–150 1.1 2 0.4 0.5 1.0 2.6 +1.5/−2.1
150–200 2.1 6 0.9 0.5 1.0 6.5 +1.4/−1.8
200–600 2.1 10 0.1 0.5 1.0 10.3 +1.2/−1.4

In the electron channel, the leading systematic uncertainty is associated with the energy scale
corrections of individual electrons. The corrections affect both the placement of a given candi-
date in a particular invariant mass bin and the likelihood of surviving the kinematic selection.
The energy scale correction itself is calibrated to 2% precision for the dataset used. The asso-
ciated error on signal event yields is calculated by varying the energy scale correction value
within this amount and remeasuring the yields. This uncertainty takes its largest values for the
bins just below and above the central Z peak bin because of bin migration. The energy scale
uncertainty for the electron channel is on the order of 20 times larger than the momentum scale
uncertainty for muons, for which the associated systematic uncertainties on the cross section
are rather small.

The second leading uncertainty for electrons is caused by the uncertainty on the efficiency scale
factors. The precision of the scale factor calibration is limited by the size of the data sample
available for the T&P procedure. The systematic uncertainty on the scale factors as well as the
resulting error on the normalized cross section are found with the same procedure as for the
muon channel.

The dielectron background uncertainties are evaluated by comparing the background yields
calculated as described in Section 4 with predictions from simulation. These uncertainties are
only dominant at the highest invariant masses considered. The uncertainty associated with
the unfolding procedure in the electron channel comes primarily from the uncertainty on the
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Table 7: Summary of systematic uncertainties in the electron channel (in percent). The “Total”
is a quadratic sum of all sources without “Acceptance”. With the exception of “Acceptance”,
the numbers correspond to the individual measurements per bin and not the ratio to the Z
region.

Invariant mass Energy Efficiency Background Unfolding Total Acceptance
bin (GeV) scale correction
15–20 23.4 9.2 6.2 8.7 27.3 +2.1/−2.9
20–30 3.6 8.5 2.8 2.1 9.9 +1.7/−2.8
30–40 2.7 9.4 4.0 1.5 10.6 +1.5/−2.7
40–50 3.3 7.5 5.2 1.4 9.9 +1.5/−2.5
50–60 3.3 5.2 4.6 1.9 7.9 +1.5/−2.4
60–76 10.3 3.3 2.2 2.0 11.2 +1.4/−2.3
76–86 39.5 2.5 0.8 3.1 39.7 +1.3/−2.2
86–96 3.9 1.9 0.2 0.6 4.4 +1.2/−2.1
96–106 45.6 2.0 0.9 3.6 45.8 +1.3/−2.0
106–120 13.2 2.1 2.6 2.4 13.9 +1.3/−1.9
120–150 6.0 2.4 8.2 2.6 10.8 +1.3/−1.8
150–200 5.7 2.8 12.9 2.4 14.5 +1.2/−1.5
200–600 4.6 3.2 11.8 1.6 13.1 +1.0/−1.1

unfolding matrix elements due to imperfect simulation of detector resolution. This simulation
uncertainty for electrons is significantly larger than for muons, leading to a larger systematic
uncertainty on the normalized cross section. The uncertainties due to FSR effects are estimated
with a method similar to that for the muon channel discussed above with similar values. Be-
cause of significantly higher systematic uncertainty for all mass bins for the electron channel
than for the muon channel, the FSR related contribution to the electron channel systematic
uncertainty is neglected.

The systematic uncertainties for the electron channel are summarized in Table 7. At present
the dominant systematic uncertainties are driven by the limited size of calibration samples
available for energy scale and efficiency scale factor calculations, and therefore the uncertainties
could be reduced significantly with larger data samples.

8 Results
The DY cross section per invariant mass bin i, σi, is calculated according to Eq. (1).

In order to provide a measurement independent of the luminosity uncertainty and to reduce
many systematic uncertainties, the σi is normalized to the cross section in the Z region, σ``,
defined as the DY cross section in the invariant mass region 60 < M(``) < 120 GeV. The result
of the analysis is presented as the ratio

Ri
post-FSR =

Nu,i

Ai ε i ρi

/ Nu,norm

Anorm εnorm ρnorm
, (9)

where Nu,i is the number of events after the unfolding procedure, and the acceptances Ai, the
efficiencies εi, and the corrections estimated from data, ρi, were defined earlier; Nu,norm, Anorm,
εnorm, and ρnorm refer to the Z region. For both lepton channels, the cross sections in the Z region
measured in this analysis are in excellent agreement with the previous CMS measurement [7].
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In order to allow a more direct and precise comparison with theory predictions, the shape
measured before the acceptance correction is also reported, thus eliminating PDF and theory
uncertainties from the experimental results:

Ri
det, post-FSR =

Nu,i

ε i ρi

/ Nu,norm

εnorm ρnorm
. (10)

The post-FSR shapes, Rpost-FSR and Rdet,post-FSR, are modified by the FSR correction factors from
Tables 3 and 4 to obtain the pre-FSR shapes, R and Rdet, respectively. The shapes integrated in
the normalization region are equal to one by construction.

The results are presented in Tables 8 and 9, respectively, for the dimuon and dielectron chan-
nels. The two shape measurements, shown in the last column of the tables, are in good agree-
ment for 11 out of 13 invariant mass bins and remain statistically consistent (although margin-
ally) for the remaining two bins, 40–50 GeV and 120–150 GeV.

As a semi-independent check, a measurement was performed using a data sample collected
with a double-muon trigger with a lower pT requirement of 7 GeV on each muon. The signal
yield is increased tenfold at the lowest invariant masses at the expense of larger systematic
uncertainties on the background. The result agrees with the measurement made with the single
muon trigger, having a similar precision in the two lowest invariant mass bins.

Table 8: Results for the DY spectrum normalized to the Z region in the dimuon channel. The
statistical and systematic uncertainties are summed in quadrature. Rpost-FSR and Rdet,post-FSR
are calculated using Eqs. (9) and (10), respectively. The Rdet and R are calculated using the FSR
corrections given in Table 3.

Invariant mass bin (GeV) Rdet,post-FSR (10−3) Rdet (10−3) Rpost-FSR (10−3) R (10−3)
15–20 18 ± 2 19 ± 2 772 ± 67 780 ± 69
20–30 58 ± 3 58 ± 3 528 ± 33 533 ± 34
30–40 67 ± 3 67 ± 3 147 ± 8 147 ± 8
40–50 44 ± 2 41 ± 2 66 ± 4 62 ± 4
50–60 30 ± 2 23 ± 2 37 ± 3 30 ± 2
60–76 51 ± 2 28 ± 1 55 ± 3 32 ± 2
76–86 97 ± 4 56 ± 3 98 ± 5 58 ± 3
86–96 803 ± 14 861 ± 15 799 ± 23 857 ± 26
96–106 38 ± 3 43 ± 3 37 ± 3 41 ± 3
106–120 12 ± 1 12 ± 1 11 ± 1 12 ± 1
120–150 9.2 ± 0.9 9.7 ± 1.0 8.4 ± 0.8 8.8 ± 0.9
150–200 3.1 ± 0.6 3.2 ± 0.7 2.6 ± 0.5 2.7 ± 0.6
200–600 1.8 ± 0.4 1.9 ± 0.5 1.4 ± 0.3 1.5 ± 0.4

The theoretical cross section is calculated with FEWZ and three sets of PDFs: CT10, CTEQ66 [26],
and MSTW2008 [27]. The calculations include leptonic decays of Z bosons with full spin corre-
lations as well as nonzero width effects and γ∗-Z interference. However, they do not simulate
FSR effects. The calculations are cross-checked with the program DYNNLO, based on [2, 3],
which offers features similar to FEWZ. The predictions for the shape of the DY spectrum agree
well between the two programs, typically within 1%.

The uncertainties on the theoretical predictions due to the imprecise knowledge of the PDFs are
calculated with the LHAGLUE interface to the PDF library LHAPDF [28, 29], using a reweight-
ing technique with asymmetric uncertainties [25]. Since this is a shape measurement, and the
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Table 9: Results for the DY spectrum normalized to the Z region in the dielectron channel. The
statistical and systematic uncertainties are summed in quadrature. Rpost-FSR and Rdet,post-FSR
are calculated using Eqs. (9) and (10), respectively. The Rdet and R are calculated using the FSR
corrections given in Table 4.

Invariant mass bin (GeV) Rdet,post-FSR (10−3) Rdet (10−3) Rpost-FSR (10−3) R (10−3)
15–20 6 ± 3 6 ± 3 487 ± 230 508 ± 238
20–30 13 ± 2 13 ± 2 536 ± 96 559 ± 97
30–40 24 ± 4 22 ± 4 129 ± 22 131 ± 21
40–50 28 ± 4 24 ± 4 52 ± 8 47 ± 7
50–60 30 ± 5 19 ± 3 39 ± 6 27 ± 4
60–76 78 ± 12 30 ± 4 84 ± 13 36 ± 5
76–86 144 ± 60 61 ± 25 147 ± 60 64 ± 26
86–96 722 ± 62 839 ± 60 715 ± 62 834 ± 60
96–106 44 ± 21 55 ± 26 43 ± 20 53 ± 25
106–120 13 ± 3 15 ± 3 12 ± 2 14 ± 3
120–150 5.4 ± 1.2 6.0 ± 1.3 4.8 ± 1.1 5.4 ± 1.2
150–200 2.5 ± 0.8 2.8 ± 0.8 2.1 ± 0.6 2.3 ± 0.7
200–600 2.1 ± 0.6 2.4 ± 0.7 1.5 ± 0.5 1.7 ± 0.5

normalization of the spectrum is defined by the number of events in the Z region, the uncer-
tainty is calculated for the yield ratio, Yi/Ynorm, where Yi is the predicted yield in the invariant
mass bin i and Ynorm is the yield in the Z region. The uncertainties for these ratios are much
smaller than those for the individual yields because of the correlations between Yi and Ynorm,
especially in the dilepton invariant mass region close to the Z mass.

The factorization and renormalization scales were varied between 0.5 and 2 times the dilepton
invariant mass. The resulting variations of the cross sections at NNLO are much smaller than
at NLO, and are less than 1.4% around the Z peak. The dependence of the DY cross section
on the strong coupling constant αs was evaluated by varying αs between 0.116 and 0.120, using
FEWZ and the CT10 PDF set. The cross section variations are at the percent level. Higher-order
electroweak corrections for DY, evaluated with HORACE [30], showed a negligible influence
(typically well below 1%) on the shape measurements in the investigated invariant mass range.
The theoretical predictions from FEWZ at NNLO are presented in Table 10.

The results are also normalized to the invariant mass bin widths, ∆Mi, defining

ri =
Ri

∆Mi
. (11)

Assuming lepton universality, the dimuon and dielectron results for ri are combined in a
weighted average, using as weights the inverse of the respective squared total uncertainties,
where the statistical and systematic uncertainties are added in quadrature.

The only expected source of correlation between the dimuon and dielectron results is due to the
use of the same MC model for the acceptance and FSR corrections. Given that the uncertainties
on these corrections are much smaller than most other uncertainties, especially in the dielectron
channel, this correlation has a negligible influence on the combined results.

There are correlations between the invariant mass bins, induced by the various corrections
applied in the analysis, especially those related to the efficiencies and resolutions. The effi-
ciency corrections are highly correlated between adjacent invariant mass bins, since they tend
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Table 10: Theoretical predictions at NNLO with FEWZ and three sets of PDFs. The cross sec-
tions in this table are calculated in the full phase space with 1% statistical precision. The the-
oretical predictions of the ratio R and its uncertainties are also given. “Other” contains uncer-
tainties from EWK correction, scale dependence, and αs.

Invariant mass Cross section (pb) R (10−3) Uncertainties on R (%)
bin (GeV) CT10 CTEQ66 MSTW2008 MSTW2008 PDF Other
15–20 787 811 819 812 +4.3/−3.3 +2.5/−2.7
20–30 476 483 499 494 +3.6/−2.8 +1.9/−3.6
30–40 135 137 142 141 +2.7/−2.3 +3.1/−2.1
40–50 53 54 56 55 +2.1/−1.9 +2.4/−2.5
50–60 27 27 29 28 +1.6/−1.5 +2.6/−2.0
60–76 32 32 33 33 +0.9/−0.9 +2.0/−2.4
76–86 56 57 58 58 +0.2/−0.2 +2.1/−2.5
86–96 822 825 852 844 +0.1/−0.1 +1.8/−2.2
96–106 51 51 53 52 +0.2/−0.2 +2.8/−2.0
106–120 12 12 13 13 +0.5/−0.5 +2.6/−2.2
120–150 6.7 6.7 7.0 6.9 +0.9/−0.9 +2.5/−1.7
150–200 2.6 2.6 2.7 2.7 +1.5/−1.6 +2.0/−1.8
200–600 1.3 1.3 1.3 1.3 +2.8/−2.9 +1.8/−2.1

to use the same T&P factors, derived from the same single-lepton pT bins. Nevertheless, for
the dimuon channel the efficiency uncertainty is at most 20% of the total uncertainty, signifi-
cantly diluting the effect of these correlations in the final results. The resolution correlations,
introduced through the unfolding procedure, only have a visible effect around the Z peak. In
summary, the level of correlations does not affect the combination of results in a significant
way.

Table 11 gives the measured shape r, defined in Eq. (11), both in the dimuon and dielectron
channels and also the combined result. Figure 4 compares the measured (combined) results
with the prediction from the FEWZ NNLO calculations, performed with the MSTW08 PDF
set. To provide a meaningful comparison, each data point is located on the horizontal axis
at the position where the theoretical function has a value equal to its mean value over the
corresponding bin, following the procedure described in Ref. [31]. The measurements are very
well reproduced by the theoretical calculations.

9 Summary
The Drell–Yan differential cross section normalized to the cross section in the Z region has been
measured in pp collisions at

√
s = 7 TeV, in the dimuon and dielectron channels in the invariant

mass range 15 < M(``) < 600 GeV. The measurement is based on event samples collected by
the CMS experiment, corresponding to an integrated luminosity of 35.9 ± 1.4 pb−1. Results
are presented both inside the detector acceptance and in the full phase space, and the effect
of final state QED radiation on the results is reported as well. A correct description of the
measurements requires modeling to NNLO for dilepton invariant masses below about 30 GeV.
The measurements are in good agreement with the NNLO theoretical predictions, as computed
with FEWZ.
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Table 11: Results for the DY spectrum normalized to the Z region and to the invariant mass bin
width, using Eq. (11), before and after combining the two channels. The results presented are
in GeV−1 units.

Invariant mass bin (GeV) r (muons) r (electrons) r (combined)
15–20 (15.6 ± 1.4)× 10−2 (10.2 ± 4.8)× 10−2 (15.2 ± 1.3)× 10−2

20–30 (5.3 ± 0.3)× 10−2 (5.6 ± 1.0)× 10−2 (5.4 ± 0.3)× 10−2

30–40 (1.5 ± 0.1)× 10−2 (1.3 ± 0.2)× 10−2 (1.5 ± 0.1)× 10−2

40–50 (6.2 ± 0.4)× 10−3 (4.7 ± 0.7)× 10−3 (5.9 ± 0.3)× 10−3

50–60 (3.0 ± 0.2)× 10−3 (2.7 ± 0.4)× 10−3 (3.0 ± 0.2)× 10−3

60–76 (2.0 ± 0.1)× 10−3 (2.2 ± 0.3)× 10−3 (2.1 ± 0.1)× 10−3

76–86 (5.8 ± 0.3)× 10−3 (6.4 ± 2.6)× 10−3 (5.8 ± 0.3)× 10−3

86–96 (85.7 ± 2.6)× 10−3 (83.4 ± 6.0)× 10−3 (85.6 ± 2.4)× 10−3

96–106 (4.1 ± 0.3)× 10−3 (5.3 ± 2.5)× 10−3 (4.2 ± 0.3)× 10−3

106–120 (8.4 ± 0.9)× 10−4 (9.6 ± 1.9)× 10−4 (8.6 ± 0.8)× 10−4

120–150 (2.9 ± 0.3)× 10−4 (1.8 ± 0.4)× 10−4 (2.5 ± 0.2)× 10−4

150–200 (5.4 ± 1.2)× 10−5 (4.6 ± 1.4)× 10−5 (5.1 ± 0.9)× 10−5

200–600 (3.7 ± 1.0)× 10−6 (4.3 ± 1.3)× 10−6 (3.9 ± 0.8)× 10−6
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Figure 4: DY invariant mass spectrum, normalized to the Z resonance region, r =
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Nucléaire de Lyon, Villeurbanne, France
C. Baty, S. Beauceron, N. Beaupere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene,
H. Brun, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon,
B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi,
P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi,
Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen,
K. Klein, J. Merz, N. Mohr, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael,
D. Sprenger, H. Weber, M. Weber, B. Wittmer, V. Zhukov11

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, E. Dietz-Laursonn, M. Erdmann, T. Hebbeker, C. Heidemann, A. Hinzmann,
K. Hoepfner, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske†, J. Lingemann, C. Magass,
M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein,
J. Steggemann, D. Teyssier

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, V. Cherepanov, M. Davids, G. Flügge, H. Geenen, M. Giffels, W. Haj Ahmad,
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