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We construct the effective transition operators relevant for neutrinoless double electron capture
leading to final nuclear states different than 0+. From the structure of these operators we see that,
if such a process is observed experimentally, it will be very helpful in singling out the very important
light neutrino mass contribution from the other lepton violating mechanisms.

PACS numbers: 14.60.Pq; 13.15.+g; 23.40.Bw; 29.40.-n; 29.40.Cs

INTRODUCTION

The nuclear double beta decay is process considered very long time ago[1]. It can occur whenever
the ordinary (single) beta decay is forbidden due to energy conservation or greatly suppressed due
to angular momentum mismatch. It could proceed with the emission of two neutrinos or in a
neutrinoless mode. The 2νββ−decay is just an example of a second order weak interaction. The
exotic neutrinoless double beta decay (0νββ−decay) is the most interesting since it violates lepton
number by two units. It was first considered by Furry [2] more than half a century ago as soon it was
realized that the neutrino might be a Majorana particle. To-day, seventy years later, 0νββ-decay:

(A,Z)→ (A,Z + 2) + e− + e−, (0ν ββ decay), (1)

∆ = Q, continues to be one of the most interesting processes, since:

• It will establish whether there exist lepton violating processes in the Universe.

• It is perhaps the only process, which can decide whether the neutrinos are Majorana particles,
i.e. the particle coincides with its charge conjugate, or Dirac particles, if it does not.

• It will aid in settling the outstanding question of the absolute scale of the neutrino masses,
especially if this scale turns out to be very small. Neutrino oscillation experiments can only
determine the mass squared differences.

For recent reviews see [3–6].
If this process is allowed other related processes in which the charge of the nucleus is decreased

by two units may also occur, if they happen to be allowed by energy and angular momentum
conservation laws, e.g.

(A,Z)→ (A,Z − 2) + e+ + e+ (0ν positron emission), (2)

∆ = Q− 4mec
2,

(A,Z) + e− → (A,Z − 2) + e+ (0ν electron positron conversion), (3)

∆ = Q− 2mec
2,

(A,Z) + e− + e− → (A,Z − 2) + xrays (0ν double electron capture ), (4)

∆ = Q, where ∆ is the available energy.
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The last process is always possible, whenever (3) is. It has been first considered long time ago
[7, 8] as a two step process: In the first step the two neutral atoms, (A,Z) and the excited (A,Z-2),
get admixed via the lepton number violating interaction . In the second step the (A,Z-2) atom
de-excites emitting two hard x-rays and the nucleus, if it is found in an excited state, de-excites
emitting γ-rays. The life time expected was very long, since the above mixing amplitude was tiny
compared to the energy difference of the two atoms involved. It has recently, however, been gaining
in importance [9–12] after ion Penning traps [13] made it possible to accurately determine the Q
values, which gave rise to the the presence of resonances, which in turn could lead to an increase of
the width my many orders of magnitude[9]. Decays to excited states are in some cases possible and
provide additional experimental information, e.g γ rays following their de-excitation.
Furthermore neutrinoless double electron capture is of experimental interest, since one expects the

reaction to be essentially free of the two neutrino background, which plagues ordinary neutrinoless
double beta decay. It has, also recently been realized [10] that the resonance condition can be
fulfilled for transitions to excited states. Thus, e.g, in the case of 156Dy→156Gd, such excited states
can be1 0−, 1−, 0+, 1+ and 2+.
Before proceeding further in examining neutrinoless double electron capture, we note the following:

• Transitions to 0−, 1− states have not been considered previously in standard double beta decay,
since they are energetically forbidden. Such transitions can naturally occur, however, in the
presence of right handed currents, arising by interference between the left handed and right
handed currents, i.e. of the type jL × jR, with an amplitude is essentially independent of
the neutrino mass. We will show that this process can occur in double electron capture, even
though the electrons are bound.

• Transitions to 0+ states, both the ground states and excited states, can occur both in the mass
mechanism and the jL×jR. The latter contribution in ordinary double beta decay occurs since
the produced electrons have sufficiently high momenta. In double electron capture instead of
the electron momentum one can exploit the nuclear recoil term.

• transitions to 1+ and 2+ can occur only, if the electron momentum is sufficiently high, as in
neutrinoless double beta decay, or by retaining the nuclear recoil term in the hadronic current.
In double electron capture this can naturally happen, if one of the electrons is captured from
a p-orbit.

In the present paper we will derive the effective transition operators relevant for neutrinoless double
electron capture, emphasizing the mode which is independent of the neutrino mass. The neutrino
mass contribution has already previously examined, see e.g. the recent work and references therein
[9].

NUCLEAR TRANSITION OPERATORS LEADING TO NEGATIVE PARITY STATES

To leading order such transitions cannot occur in neutrino mass mechanism. In the jL × jR case,
however, the chiralities involved are such that in the intermediate neutrino propagator one picks the
momentum, not the mass. The neutrino momentum leads to the following:

• The time component of the momentum leads to an average energy difference En,1−En,2, where
En,i =≺ En ≻ −Mi+Ee(i), with Ee(i) the electron energy, i = 1, 2. This can lead to positive
parity transitions in double beta decay, but it is not the dominant contribution.

• the space part of the momentum leads to an effective operator which proportional to r̂ d
dr

1

r
with r = r1 − r2, r = |r1 − r2|. This naturally leads to negative parity transitions.

1 After completion of this work, two papers have been published [14, 15], which show that the resonance condition
can be met for such excited states



Positive parity transitions can, of course, occur in neutrinoless double beta decay via this mechanism
by retaining in the dipole term in the expansion of the essentially distorted plane wave function of
the two electrons, which leads to the term i (p1.r1 + p2.r2) r̂12

d
dr

1

r . This possibility does not exist in
neutrinoless double electron capture. We will, however, examine alternate possibilities in the next
section.
The effective lepton violating transition operator, within the closure approximation over the in-

termediate states, which holds for neutrinoless double beta decay and is expected to be even better
in neutrinoless double electron capture, can be cast in the form:

M =
1√
2

(

GF√
2

)2

2
2i

8πR2
0

uR
µνk

∑

n,m

φn1,0(rn)φn2,0(rm)Jµ
R(n)J

ν
L(m)r̂kn,mf(xn,m) + L↔ R (5)

with φn1,0(rn)φn2,0(rm) (rn = r1, rm = r2) the bound s-electron wave functions and

uR
µνk = ū(p1)γµγkγν(1 − γ5)u

c(p2), uL
µνk = ū(p1)γµγkγν(1 + γ5)u

c(p2) (6)

Jµ
L(n) = τ−(n)(gV ,−gAσn), Jν

R(m) = τ−(m)(gV ,+gAσm) (7)

f(xn,m) =
d

dx

1

x
J(δ0), x = x(n,m) = |rn − rm|/R0 (8)

J(δ0) =
2

π

∫ ∞

0

sin y

y + δ0
dy, δ0 = (≺ En ≻ −Mi)|rn − rm| (9)

in double electron capture:

δ0 ≈ 0, J(δ0) ≈ 1 and f(x) ≈ − 1

x2

For non relativistic electrons one finds that the effective transition operator can be cast in the
form:

1. An operator associated with the time structure of the leptonic current:

ℓ0 = ū(p1)γ0γ5u
c(p2), (10)

which is

Ω̃0 =
G2

F

2
√
2

i

πR2
0

4g2A
∑

n,m

φn1,0(rn)φn2,0(rm)τ−(n)τ−(m)r̂nm.ω0(n,m)f(xn,m), ω0(n,m) = i(σn×σm)

(11)
which can cause 0+ → 0− transitions.

2. An operator associated with the space structure of the leptonic current:

~ℓ = ū(p1)~γu
c(p2) (12)

that is

Ω̃1 =
G2

F

2
√
2

i

πR2
0

gV gA

∑

n,m

φn1,0(rn)φn2,0(rm)2τ−(n)τ−(m) [r̂nm × ω1(n,m)] f(xn,m), ω1(n,m) = (σn − σm)

(13)



Since the 0s electron wave functions vary slowly inside the nucleus one can replace them by there
average value and write:

Ω̃i = Λeff ≺ (0s)2a3B ≻ Ωi, Λeff =
G2

F

2
√
2

i

πR2
0a

3
B

(14)

where the Λeff has dimensions of energy and the average is over the radial part alone (the integral
over the angles is unity). The dimensionless effective transition operators now become:

Ω0 = 4g2A
∑

n,m

τ−(n)τ−(m)r̂nm.ω1(n,m)f(xn,m), ω0(n,m) = i(σn × σm) (15)

Ω1 = 2gV gA
∑

n,m

τ−(n)τ−(m)r̂nm × ω1(n,m)f(xn,m), ω1(n,m) = σn − σm (16)

One can show that averaging over the initial polarizations and summing over the final ones one gets

|ME|2 = 2

1
∑

i=0

| ≺ f ||Ωk
i ||0+ ≻ |2, k = i = Jf = rank of the operator (17)

where the factor of 2 comes from the leptonic current, k = Jf is the rank of the operator and the
double bar indicates its standard reduced ME, which can cause 0+ → 1− transitions. The mixing
V 2 [14] between the two atoms takes the form:

V 2 = Λ2
eff

(

≺ (0s)2a3B ≻
)2 |ME|2 (18)

TRANSITIONS TO POSITIVE PARITY STATES IN ELECTRON CAPTURE

We will distinguish two cases:

The captured electrons are in s states

As we have mentioned the 0+ → 0+ transitions associated with double electron capture have
already been studied during the last few years. The contribution arising from the neutrino mass
independent mechanism has not been studied since the electron wave function cannot provide the
extra parity change. This , however, can be accomplished via the recoil term in the nucleon current2.
In other words one of the hadronic currents is of the form discussed above, but the other is of the
form [16]:

Jµ
L(n) = τ−(n)(gV Dn,−gACn), Jν

R(m) = τ−(m)(gV Dm,+gACm) (19)

with

Cn ==
1

2mN
σn.(qn − 2Pn), D =

1

2mN
[(qn − 2Pn) = iσn × qn] (20)

Where mN and Pn are the nucleon mass and momentum of nucleon n, while qn is the momentum
transfer to that nucleon.
The procedure is a bit tedious but one can proceed as above to arrive at

2 It is interesting to note that in the case of neutrinoless double beta decay for the mass independent contribution
one needs a correction either from the dipole term of the electron wave function or the nucleon recoil. Both are
first order corrections. The nucleon recoil term has not been extensively studied even though it has been suggested
by Kotani al long time ago [16]



1. One operator associated with the leptonic current:

~ℓ = ū(p1)~γγ5u
c(p2) (21)

which is associated with an operator appropriate for 0+ → 1+ transitions, namely:

Ω̃recoil

1 =
G2

F

2
√
2

i

πR2
2
∑

n,m

φn1,0(rn)φn2,0(rm)τ−(n)τ−(m)(~ωnm + ~ω′

nm)I(x(n,m)) (22)

with

~ωnm = gV gAr̂nm(Cn − Cm) (23)

~ω′
mn = g2V i(Dn −Dm)× r̂n,m (24)

2. One operator associated with the leptonic current:

ℓ5 = ū(p1)γ5u
c(p2) (25)

which is suitable for for 0+ → 0+ transitions, namely:

Ω̃recoil

0 =
G2

F

2
√
2

i

πR2
0

2
∑

n,m

φn1,0(rn)φn2,0(rm)τ−(n)τ−(m)(ωnm + ω′

nm) (26)

ωnm = gV gAr̂nm. [i(−σn ×Dm + σm ×Dn)] (27)

and

ω′

nm = g2Ar̂nm. [−σnCm + σmCn] (28)

Under the factorization approximation one can write:

Ω̃recoil

i = Λeff ≺ (0s)2a3B ≻ Ωrecoil

i , i = 0, 1 (29)

Ωrecoil

1 = 2
∑

n,m

τ−(n)τ−(m)(~ωnm + ~ω′

nm)I(x(n,m)), (30)

Ωrecoil

0 = 2
∑

n,m

τ−(n)τ−(m)(ωnm + ω′

nm)I(x(n,m)) (31)

and then use Eqs (17) and (18).
There remains the problem of transforming the operators Cn and Dn into coordinate space. The

operator qn is local and leads to the operator−i 1

R0
r̂ d
dx , where x = r/R0, r being the relative distance

of the two nucleons. The operator Pn is non local. Thus one finds:

Pn → −i
1

R0

(←−▽n −
−→▽n

)

(32)

where the operator ▽n operates with respect to xn on the nuclear wave functions on the bra and
ket as indicated by the arrows. As a simple example we will rewrite the operator the operator
r̂nm(Cn − Cm) in coordinate space. We find:

r̂nm(Cn − Cm) =
−i

2MnR0

r̂nm

{

(r̂nm.σn − r̂nm.σm)
df

dx

−
[(←−▽nf(x)− f(x)

−→▽n

)

.σn −
(←−▽mf(x)− f(x)

−→▽m

)

.σm

]}

(33)



This can be rewritten by showing the tensor character of the various components as:

r̂nm(Cn − Cm) =
−i

2MnR0

{[

− 1√
3
(σn − σm)− 2

√
2√
3

(

[r̂nm × r̂nm]
2 ⊗ (σn − σm)

)

]

df

dx

− 1√
3

(

r̂nm.
(←−▽nf(x) − f(x)

−→▽n

)

σn − r̂nm.
(←−▽mf(x)− f(x)

−→▽m

)

σm

)

−2
√
2√
3

(

[

r̂nm ⊗
(←−▽nf(x)− f(x)

−→▽n

)]2

⊗ σn

−
[

r̂nm ⊗
(←−▽mf(x) − f(x)

−→▽m

)]2

⊗ σm

)}

(34)

In the case of the local scalar spatial contribution it is understood that:

dI

dx
→ δ(x)

4πx2
(35)

The overall tensor rank is J = 1, the spin rank is one, but it contains both scalar and tensor
components in the orbital sector. It can thus lead to 0+ → 1+ transitions. The decomposition of the
other operators, if needed, can be done in a similar fashion. It is quite tedious but straightforward.
The scale of the nucleon recoil contribution is set by (1/2mNR0) = 0.07A−1/3. In the case of

neurinoless double beta decay the square of this scale should be compared with the ratio of the
phase space of this jL ⊗ jR going through the electron momenta to that of the mass term.

One of the electrons is in a p orbit.

If the resonance condition is met for such an electron, one may consider this possibility, even though
the probability for finding a p-electron inside the nucleus is tiny. The factorization approximation
should not be used in this case and the electron wave function must be part of the nuclear transition
operator. The average over the nucleus of the square of the electron wave function is, however, still
a good measure of the scale of the expected nuclear matrix elements. Thus combining the above
operator for the decays to negative parity states we find that one can have transitions to 0+, 1+ and
2+. The spin structure of the operator is still:

ω0 = iσn ⊗ σm or ω1 = σn − σm (36)

i.e. antisymmetric of rank one. There appears to exist a wealth of orbital contributions.
Indeed let us assume that the p electron has total angular momentum j and the initial angular

momentum of the atom is J . The structure of effective transition operator can be cast in the form:

ω0.r̂ℓ0 → U(1, 1/2, j, 0, 1/2, 1/2, 1, 0, J)δJ,1

[

ω0.r̂~V
]

ℓ0 (37)

for the time component and

(ω1.× r̂).~ℓ→ U(1, 1/2, j, 0, 1/2, 1/2, 1, 0, J)U(1, 1, 0, 1, 1, J, J, 0, J)
[

(ω1 × r̂)⊗ ~V
]J

~ℓ.~s (38)

for the space component (~ℓ is the leptonic current not to be confused with the orbital angular
momentum operator). U(...) are the usual unitary nine-j symbols needed for the re-coupling of the

angular momenta involved and ~V essentially is the two electron orbital wave function:

~V =
1√
4π

√
3√
4π

1√
2

(

A
′′

x2 +A
′

x1

)

(39)



with

A
′′

=
R0

rm
(φn1,0(rn), φn2,1(rm)) , A

′

=
R0

rn
(φn1,1(rn), φn2,0(rm)) (40)

with φni,ℓi , i = 1, 2 the radial electron wave function. We have chosen to express the length in units

of the nuclear radius R0, i.e. x = r/R0, with compensating factors in the definition of A
′

and A
′′

,
a procedure quite standard in the evaluation of the nuclear ME.
We found it convenient to go into the relative x = xn − xm and center of mass 2X = xn + xm

coordinates and thus we get:

~V =
1

4π
(A(n,m)x+B(n,m)X) , A(n,m) =

√
3

1√
2

(A
′ −A

′′

)

2
, B(n,m) =

√
3

1√
2
(A

′

+A
′′

)

(41)

The operator ~V must be symmetric under the interchange of particles n and m to yield a total
operator which is overall symmetric under the exchange of the particles n and m. So only the
B-terms survive.
The next step is to perform an additional re-coupling bringing together the two spacial parts. One

then finds:

1. For the time component:

ω0.r̂ℓ0 →
B(n,m)

4π

∑

L

C0(j, L)[ω0 ⊗ TL(r̂, ~R)]J δJ,1ℓ0 (42)

with

C0(3/2, L) = −
1√
2
C0(1/2, L) = (

√
2

3
√
3
,− 1√

6
,−
√
2√
15

for L = 0, 1, 2

and

T 0 = r̂.X, T 1 = r̂ ×X, T 2 = [r̂ ⊗X]2 (43)

2. For the space component:

ω1 × r̂ℓ0 →
B(n,m)

4π

∑

L

C2(j, J, L)[ω1 ⊗ TL(r̂, ~R)]J~ℓ.~s (44)

where the coefficients C2(j, J, L) are given in table I

By combining Eqs (11) and (42) as well as Eqs (13) and (44) we obtain the complete operators
relevant for the decay of 0+ to positive parity states with J = 0, 1 and 2.
To simplify matters one may seek an approximation familiar from the 0s case, i.e. to take the

radial part of the electron wave function outside of the integrals and replace it with its average value
over the nucleus. Thus:

Ω̃i = Λeff

√

≺ a6BB
2 ≻Ωi, Λeff =

G2
F

2
√
2

1

πR2
0a

3
B

, B ↔ B(n,m) (45)

where aB is Bohr radius and, again, the averaging is over the radial part alone. Thus the effective
transition operators now become:

Ω0 = 4g2A
∑

n,m

τ−(n)τ−(m)f(xn,m)
∑

L

C0(j, L)[ω0 ⊗ TL(r̂, R̂)]J δJ,1 (46)

Ω1 = 2gV gA
∑

n,m

τ−(n)τ−(m)f(xn,m)
∑

L

C2(j, J, L)[ω1 ⊗ TL(r̂, R̂)]J (47)



In fact it will be adequate to consider

≺ B2 ≻−→≺ (Rn,0)
2 ≻≺ 3

(

R0

r
Rn,1

)2

≻

where Rn,ℓ are the radial parts of the bound electron wave functions. Note that the p wave function
involved in the averaging has been stripped of an extra power of r, since the ~r has been incorporated
into the nuclear matrix element.
The expression for the nuclear ME is the same with that of Eq. (17), where k = J = Jf is the

rank of the operator and the coupling of the two atoms is given by:

V 2 = Λ2
eff
≺ a6BB

2 ≻ |ME|2 (48)

We will check the factorization approximation using realistic atomic 3s and 4p3/2 wave functions
provided to us by Shabaev [17], which were obtained by standard methods (see, e.g., Grant [18] and
Bratsev et al [19]).

• Using the density profile shown in Fig. 1, corresponding to a phenomenological normalized to
unity Woods-Saxon density, we find:

≺ a3B (R3s)
2 ≻= 2.4× 103, ≺ 3a3B

(

(
R0

r
R4p3/2

)2

≻= 3.2× 10−2 −→

≺ 3

(

R0

r
R4p3/2

)2

≻ / ≺ (R3s)
2 ≻= 1.3× 10−5

• Using the density profile corresponding to a simplified S.M. wave function shown in Fig. 2, we
find:

≺ a3B (R3s)
2 ≻= 1.4× 104, ≺ 3a3B

(

R0

r
R4p3/2

)2

≻= 1.8× 10−1 −→

≺ 3

(

(
R0

r
R4p3/2

)2

≻ / ≺ (R3s)
2 ≻= 1.4× 10−5,

Had we not used the factor 3(R0/r)
2 the p-integrals would have been quite a bit smaller. The

agreement in the ratio of 4p to 3s probabilities between the two nuclear densities is quite good. Fur-
thermore, using a simple 0s HO wave function, we find that the factorization approximation works
to within 10%. More detailed computations using realistic and more accurate shell model wave
functions are currently underway. The results, with and without employng the factorization approx-
imation, will be published elsewhere [20]. The nuclear matrix elements leading to the 156Dy→156Gd
leading to sharp resonaces [15] 0−, 1−, 0+, 1+ and 2+ will also be calculated [20], using realistic wave
functions both for the intial and the final nuclear states.

DISCUSSION

As we have mentioned the observation of neutrinoless double decay will be a great event in
particle and nuclear physics. It will establish the existence of flavor violating interactions and it will
demonstrate that, independently of the dominant mechanism causing it, the neutrinos are Majorana
particles. More importantly, it is expected to complement the great successes on neutrino oscillations
by determining the elusive up to now absolute scale of neutrino mass. For this last great contribution
to become unambiguous, it will be necessary to determine what fraction of this decay is due to the
light neutrino mass compared to all the other competing mechanisms [3]. That is a very difficult
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Figure 1: The (normalized) Woods-Saxon density profile employed in obtaining the average
electron wave functions.

Ψ
S
M
(r
)2

→

2 4 6 8 10 12 14

0.002

0.004

0.006

0.008

(a)

r
2
Ψ

S
M
(r
)2

→

2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b)

r →fm

Figure 2: The nuclear S.M. density profile employed in in obtaining the average electron wave
functions and checking the factorization approximation.

task indeed. It may become feasible, if there exist data in as many targets as possible. In fact it has
recently been shown that, within the mass terms alone, even if both left and right handed currents
are involved, this is, in principle, possible [21, 22]. Provided, of course, that experimental data
involving a sufficient number of targets become available. It will be much more difficult to achieve
this, if the mass independent contribution involving the jL × jR contribution becomes important.
In this direction the observation of double electron capture will be very useful. More specifically we
have seen that:

Table I: The coefficients C2(j, J, L) discussed in the text

j J L C2(j, J, L)
1

2
0 1 −

1

2
1

2
1 0 −

√
2

9
1

2
1 1 −

1

2
√

6

1

2
1 2

√

5

2

3
3

2
1 0 −

1

9
3

2
1 1 −

1

4
√

3

3

2
1 2

√
5

6
3

2
2 1 1

4
3

2
2 2

√
3

2



1. The neutrino mass term can proceed in neutrinoless double electron capture as in ordinary
double beta decay. For the latter to be practical, of course, the resonance condition must be
met.

2. Neutrinoless transitions to 0+ → J± 6= 0+ can occur only if there exist right handed interac-
tions through the right left interference in the leptonic sector (jL ⊗ jR). Then:

• The unusual transitions to the negative parity 0− and 1− sates can naturally occur in
double electron capture, since they are energetically allowed, if the resonance condition is
met. So such an observation will unambiguously determine the neutrino mass independent
lepton violating parameter, which is hard to get in neutrinoless double beta decay.

• Transitions to positive parity states 6= 0+ in ordinary double beta decay can occur either
through the dipole component of the electron wave functions, the most favored scenario,
or if one of the hadronic currents involved contains the parity changing nucleon recoil
terms.

• Transitions to positive parity states with angular momentum less than 3 in neutrinoless
double electron capture can proceed if a) one of the hadronic currents involves the recoil
term, while both electrons are in s-states or b) more naturally via the negative parity
operator involving ordinary nucleon currents, if one s-electron and one p-electron are
involved in the capture. The probability of finding a p-electron in the nucleus is, however,
quite small, but this disadvantage maybe overcome by the collaborative effect of the
expected large nuclear matrix elements and the resonance condition for capture to 2+.

• The transition operators involved have a reasonable structure, but nuclear matrix ele-
ments of such operators have not yet been calculated for any system. We have no reason
to expect them to be suppressed. The nuclear structure calculations involving such nu-
clear systems may be a true challenge to nuclear theorists.

It is clear from the above that the neutrinoless double electron capture can distinguish between the
mass term contribution and the neutrino mass independent jL × jR interference term. It can do
it more efficiently than ordinary beta decay due to the possibility of the negative parity nuclear
transitions. It cannot, of course, distinguish between the various mass terms (light neutrino, heavy
neutrino, SUSY contribution etc), but neither can ordinary double beta decay. This can only be
done by exploiting the results of at least four different experiments (leading to 0+), or a suitable
combination of a sufficient number of both ground state and exited 0+ state transitions. In this
multiple experiment analysis, double electron capture can be come a very useful partner.
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