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Transition operators entering neutrinoless double electron capture to excited nuclear states
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We construct the effective transition operators relevant for neutrinoless double electron capture leading to final
nuclear states different than 0+. From the structure of these operators we see that if such a process is observed
experimentally, it will be very helpful in singling out the very important light neutrino mass contribution from
the other lepton violating mechanisms.
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I. INTRODUCTION

The nuclear double β decay is a process that was considered
a very long time ago [1]. It can occur whenever the ordinary
(single) β decay is forbidden due to energy conservation or
greatly suppressed due to angular momentum mismatch. It
could proceed with the emission of two neutrinos or in a
neutrinoless mode. The 2νββ decay is just an example of a
second-order weak interaction. The exotic neutrinoless double
β decay (0νββ decay) is the most interesting since it violates
lepton number by two units. It was first considered by Furry [2]
more than half a century ago as soon it was realized that the
neutrino might be a Majorana particle. Today, 70 years later,
0νββ decay, i.e.,

(A,Z) → (A,Z + 2) + e− + e−, (0νββ decay), (1)

with � = Q the available energy, continues to be one of the
most interesting processes for the following reasons: (i) It
will establish whether lepton violating processes exist in the
universe. (ii) It is perhaps the only process that can reveal
whether neutrinos are Majorana particles, i.e., the particle
coincides with its charge conjugate, or Dirac particles, if it does
not. (iii) It will aid in settling the outstanding question of the
absolute scale of the neutrino masses, especially if this scale
turns out to be very small. Neutrino oscillation experiments
can only determine the mass squared differences. For recent
reviews, see Refs. [3–6].

If this process is allowed, other related processes in which
the charge of the nucleus is decreased by two units may also
occur, if they happen to be allowed by energy and angular
momentum conservation laws, e.g.,

(A,Z) → (A,Z − 2) + e+ + e+, (2)

� = Q − 4mec
2 (0ν positron emission),

(A,Z) + e− → (A,Z − 2) + e+, (3)

� = Q − 2mec
2 (0ν electron positron conversion),

(A,Z) + e− + e− → (A,Z − 2) + x rays , (4)

� = Q (0ν double electron capture ).

*Vergados@cc.uoi.gr; Permanent address: Theoretical Physics Di-
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The last process is always possible whenever Eq. (3) is.
It was first considered long ago [7,8] as a two-step process:
In the first step the two neutral atoms (A,Z) and the excited
atom (A,Z − 2) get admixed via the lepton number violating
interaction. In the second step the (A,Z − 2) atom deexcites,
emitting two hard x rays; and the nucleus, if it is found
in an excited state, deexcites, emitting γ rays. The lifetime
expected is very long, since the above mixing amplitude is tiny
compared to the energy difference of the two atoms involved.
It has recently, however, been gaining in importance [9–12]
after ion Penning traps [13] made it possible to accurately
determine the Q values, which gave rise to the presence
of resonances, which in turn could lead to an increase of
the width by many orders of magnitude [9]. Decays to
excited states are in some cases possible and provide addi-
tional experimental information, e.g., γ rays following their
deexcitation.

Furthermore neutrinoless double electron capture is of
experimental interest, since one expects this reaction to be
essentially free of the two neutrino background, which plagues
ordinary neutrinoless double β decay. It has also recently been
realized [10] that the resonance condition can be fulfilled
for transitions to excited states. Thus, e.g., in the case of
156Dy→156Gd, such excited states can be 0−, 1−, 0+, 1+,
and 2+.

Before proceeding further in examining neutrinoless double
electron capture, we note the following:

(i) Transitions to 0−, 1− states, to the best of our knowl-
edge, have not been considered previously, since they are
energetically forbidden in double β decay. Such transitions
can naturally occur, however, in the presence of right-handed
currents, arising by interference between the left- and right-
handed currents, i.e., of the type jL × jR , with an amplitude
essentially independent of the neutrino mass. We will show
that this process can occur in double electron capture, even
though the electrons are bound.

(ii) Transitions to 0+ states, both the ground states and
excited states, can occur both in the mass mechanism and the
jL × jR . The latter contribution in ordinary double β decay
occurs since the produced electrons have sufficiently high
momenta. In double electron capture, instead of the electron
momentum one can exploit the nuclear recoil term.

(iii) Transitions to 1+ and 2+ can occur only if the electron
momentum is sufficiently high, as in neutrinoless double β
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decay, or by retaining the nuclear recoil term in the hadronic
current. In double electron capture this can naturally happen
if one of the electrons is captured from a p orbit.

In the present paper we will derive the effective transition
operators relevant for neutrinoless double electron capture,
emphasizing the mode which is independent of the neutrino
mass. The neutrino mass contribution has been previously
examined, see, e.g., the recent work in Ref. [9] and references
therein.

II. NUCLEAR TRANSITION OPERATORS LEADING TO
NEGATIVE PARITY STATES

To leading order, such transitions cannot occur in a
neutrino mass mechanism. In the jL × jR case, however, the
chiralities involved are such that in the intermediate neutrino
propagator one picks the momentum, not the mass. The
neutrino momentum leads to the following:

(i) The time component of the momentum leads to an
average energy difference En,1 − En,2, where En,i = 〈En〉 −
Mi + Ee(i), with Ee(i) the electron energy, i = 1, 2. This can
lead to positive parity transitions in double β decay, but it is
not the dominant contribution.

(ii) The space part of the momentum leads to an effective
operator which is proportional to r̂ d

dr
1
r

with r = r1 − r2, r =
|r1 − r2|. This naturally leads to negative parity transitions.

Positive parity transitions can, of course, occur in neu-
trinoless double β decay via this mechanism by retaining
the dipole term in the expansion of the essentially distorted
plane wave function of the two electrons, which leads to the
term i(p1 · r1 + p2 · r2)r̂ d

dr
1
r
. This possibility does not exist

in neutrinoless double electron capture. We will, however,
examine alternative possibilities in the next section.

The effective lepton violating transition operator, within
the closure approximation over the intermediate states, which
holds for neutrinoless double β decay and is expected to be
even better in neutrinoless double electron capture, can be cast
in the form

M = 1√
2

(
GF√

2

)2

2
2i

8πR2
0

λuR
μνk

×
∑
n,m

φn1,0(rn)φn2,0(rm)Jμ

R (n)J ν
L(m)r̂ k

n,mf (xn,m)

+L ↔ R, (5)

with λ the lepton violating parameter [3], φn1,0(rn)φn2,0(rm)
(rn = r1, rm = r2) the bound s-electron wave functions, and

uR
μνk = ū(p1)γμγkγν(1 − γ5)uc(p2),

(6)
uL

μνk = ū(p1)γμγkγν(1 + γ5)uc(p2),

J
μ

L (n) = τ−(n)(gV ,−gAσn),
(7)

J ν
R(m) = τ−(m)(gV ,+gAσm),

f (xn,m) = d

dx

1

x
J (δ0),

(8)
x = x(n,m) = |rn − rm|/R0,

J (δ0) = 2

π

∫ ∞

0

sin y

y + δ0
dy,

(9)

δ0 = (〈En〉 − Mi)|rn − rm|;
and in double electron capture,

δ0 ≈ 0, J (δ0) ≈ 1, f (x) ≈ − 1

x2
.

The effective transition operator can be cast in the following
forms:

(i) An operator associated with the time structure of the
leptonic current:

�0 = ū(p1)γ0γ5u
c(p2), (10)

which is


̃0 = λ
G2

F

2
√

2

i

πR2
0

4g2
A

×
∑
n,m

φn1,0(rn)φn2,0(rm)τ−(n)τ−(m)

× r̂nm · ω0(n,m)f (xn,m),

ω0(n,m) = i(σn × σm), (11)

which can cause 0+ → 0− transitions.
(ii) An operator associated with the space structure of the

leptonic current:

	� = ū(p1) 	γ uc(p2), (12)

that is,


̃1 = λ
G2

F

2
√

2

i

πR2
0

gV gA

×
∑
n,m

φn1,0(rn)φn2,0(rm)2τ−(n)τ−(m)

× [r̂nm × ω1(n,m)]f (xn,m),

ω1(n,m) = (σn − σm), (13)

which can cause 0+ → 1− transitions.

Since the 0s electron wave functions vary slowly inside the
nucleus, one can replace them by their average value and write:


̃i = λ�eff
〈
(0s)2a3

B

〉

i, �eff = G2

F

2
√

2

i

πR2
0a

3
B

, (14)

where the �eff has dimensions of energy and the average is
over the radial part alone (the integral over the angles is unity).
The dimensionless effective transition operators now become


0 = 4g2
A

∑
n,m

τ−(n)τ−(m)r̂nm · ω1(n,m)f (xn,m),

ω0(n,m) = i(σn × σm), (15)


1 = 2gV gA

∑
n,m

τ−(n)τ−(m)r̂nm × ω1(n,m)f (xn,m),

ω1(n,m) = σn − σm. (16)

One can show that by averaging over the initial polarizations
and summing over the final ones, one gets

|M|2 = 2
1∑

i=0

∣∣〈f ∣∣∣∣
k
i

∣∣∣∣0+〉∣∣2
, (17)
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with k = i = Jf = rank of the operator (the factor of 2 comes
from the leptonic current) and the double bar indicates its
standard reduced matrix element M , which can cause 0+ →
1− transitions. The mixing V 2 [9] between the two atoms takes
the form

V 2 = |λ|2�2
eff

[〈
(0s)2a3

B

〉]2|M|2. (18)

III. TRANSITIONS TO POSITIVE PARITY STATES IN
ELECTRON CAPTURE

We will describe the transitions to positive parity states for
two cases: one in which the captured electrons are in s states
and one in which an electron is in a p orbit.

A. Captured electrons are in s states

As we have mentioned, the 0+ → 0+ transitions associated
with double electron capture have been studied during the
last few years. The contribution arising from the neutrino
mass independent mechanism has not been studied, since the
electron wave function cannot provide the extra parity change.
This, however, can be accomplished via the recoil term in the
nucleon current.1 In other words one of the hadronic currents
is of the form discussed above, but the other is of the form [14]

J
μ

L (n) = τ−(n)(gV Dn,−gACn),
(19)

J ν
R(m) = τ−(m)(gV Dm,+gACm),

with

Cn = 1

2mN

σn · (qn − 2Pn),
(20)

D = 1

2mN

[(qn − 2Pn) × iσn].

Here mN and Pn are the nucleon mass and momentum of
nucleon n, while qn is the momentum transfer to that nucleon.

The procedure is a bit tedious but one can proceed as above
to arrive at two operators:

(i) One operator associated with the leptonic current:

	� = ū(p1) 	γ γ5u
c(p2), (21)

which is associated with an operator appropriate for
0+ → 1+ transitions, namely,


̃recoil
1 = λ

G2
F

2
√

2

i

πR2
2

×
∑
n,m

φn1,0(rn)φn2,0(rm)τ−(n)τ−(m)

× ( 	ωnm + 	ω′
nm)I [x(n,m)], (22)

1It is interesting to note that in the case of neutrinoless double β

decay for the mass independent contribution one needs a correction
either from the dipole term of the electron wave function or the
nucleon recoil. Both are first-order corrections. The nucleon recoil
term has not been extensively studied even though it was suggested
by Kotani et al. long ago [14].

with

	ωnm = gV gAr̂nm(Cn − Cm),
(23)	ω′

mn = g2
V i(Dn − Dm) × r̂n,m.

(ii) One operator associated with the leptonic current:

�5 = ū(p1)γ5u
c(p2), (24)

which is suitable for 0+ → 0+ transitions, namely,


̃recoil
0 = λ

G2
F

2
√

2

i

πR2
0

2
∑
n,m

φn1,0(rn)φn2,0

× (rm)τ−(n)τ−(m)(ωnm + ω′
nm), (25)

ωnm = gV gAr̂nm · [i(−σn × Dm + σm × Dn)], (26)

and

ω′
nm = g2

Ar̂nm · [−σnCm + σmCn]. (27)

Under the factorization approximation, one can write


̃recoil
i = λ�eff

〈
(0s)2a3

B

〉

recoil

i , i = 0, 1, (28)


recoil
1 = 2

∑
n,m

τ−(n)τ−(m)( 	ωnm + 	ω′
nm)f (xn,m), (29)


recoil
0 = 2

∑
n,m

τ−(n)τ−(m)(ωnm + ω′
nm)f (xn,m), (30)

and then use Eqs. (17) and (18).
There remains the problem of transforming the operators

Cn and Dn into coordinate space. The operator qn is local
and leads to the operator −i 1

R0
r̂ d

dx
, where x = r/R0, r being

the relative distance of the two nucleons. The operator Pn is
nonlocal. Thus one finds

Pn → −i
1

R0
(
←−∇ n − −→∇ n), (31)

where the operator ∇n operates with respect to xn on the nuclear
wave functions on the bra and ket as indicated by the arrows. As
a simple example we will rewrite the operator r̂nm(Cn − Cm)
in coordinate space. We find

r̂nm(Cn − Cm)

= −i

2MnR0
r̂nm

{
r̂nm · (σn − σm)

df

dx

− [(
←−∇ nf (x) − f (x)

−→∇ n) · σn

− (
←−∇ mf (x) − f (x)

−→∇ m) · σm]

}
. (32)

This can be rewritten by showing the tensor character of the
various components as

r̂nm(Cn − Cm)

= −i

2MnR0

{(
− 1√

3
(σn − σm)

− 2
√

2√
3

[(r̂nm × r̂nm)2 ⊗ (σn − σm)]

)
df

dx

− 1√
3

[(
←−∇ n · r̂nmf (x) − f (x)r̂nm · −→∇ n)σn

− (
←−∇ m · r̂nmf (x) − f (x)r̂nm · −→∇ m)σm]
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− 2
√

2√
3

([(
←−∇ n ⊗ r̂nmf (x) − f (x)r̂nm ⊗ −→∇ n)]2 ⊗ σn

− [(
←−∇ m ⊗ r̂nmf (x) − f (x)r̂nm ⊗ −→∇ m)]2 ⊗ σm)

}
.

(33)

In the case of the local scalar spatial contribution, it is
understood that

dI

dx
→ δ(x)

4πx2
. (34)

The overall tensor rank is J = 1, the spin rank is unity,
but it contains both scalar and tensor components in the
orbital sector. It can thus lead to 0+ → 1+ transitions. The
decomposition of the other operators, if needed, can be done
in a similar fashion. It is quite tedious but straightforward.

The scale of the nucleon recoil contribution is set by
(1/2mNR0) = 0.07A−1/3. In the case of neutrinoless double
β decay, the square of this scale should be compared with
the ratio of the phase space of this jL ⊗ jR going through the
electron momenta to that of the mass term.

B. One of the electrons is in a p orbit.

If the resonance condition is met for such an electron, one
may consider this possibility, even though the probability for
finding a p electron inside the nucleus is tiny. The factorization
approximation should not be used in this case and the electron
wave function must be part of the nuclear transition operator.
The average over the nucleus of the square of the electron
wave function is, however, still a good measure of the scale
of the expected nuclear matrix elements. Thus in combining
the above operator for the decays to negative parity states, we
find that one can have transitions to 0+, 1+, and 2+. The spin
structure of the operator is still

ω0 = iσn ⊗ σm or ω1 = σn − σm, (35)

i.e., antisymmetric of rank one. There appears to exist a wealth
of orbital contributions.

Indeed let us assume that the p electron has total angular
momentum j and the initial angular momentum of the atom is
J . The structure of effective transition operator can be cast in
the form

ω0 · r̂�0 → U (1, 1/2, j, 0, 1/2, 1/2, 1, 0, J )δJ,1

× [ω0 · r̂ 	V ]�0 (36)

for the time component, and

(ω1 × r̂) · 	� →
∑

J

U (1, 1/2, j, 0, 1/2, 1/2, 1, 0, J )

×U (1, 1, 0, 1, 1, J, J, 0, J )

× [(ω1 × r̂) ⊗ 	V ]J 	� · 	s (37)

for the space component (	� is the leptonic current not to be
confused with the orbital angular momentum operator). U (. . .)
are the usual unitary nine-j symbols needed for the recoupling
of the angular momenta involved. 	V is essentially the two

electron orbital wave function

	V = 1√
4π

√
3√

4π

1√
2

(A
′′
xm + A

′
xn), (38)

with

A
′′ = R0

rm

(φn1,0(rn), φn2,1(rm)),
(39)

A
′ = R0

rn

(φn1,1(rn), φn2,0(rm)),

with φni,�i
, i = 1, 2, the radial electron wave function. We have

chosen to express the length in units of the nuclear radius R0,
i.e., x = r/R0, with compensating factors in the definition of
A

′
and A

′′
, a procedure quite standard in the evaluation of the

nuclear matrix element.
We found it convenient to go into the relative x = xn − xm

and center of mass 2X = xn + xm coordinates and thus we get

	V = 1

4π
[A(n,m)x + B(n,m)X],

A(n,m) =
√

3
1√
2

(A
′ − A

′′
)

2
, (40)

B(n,m) =
√

3
1√
2

(A
′ + A

′′
).

The operator 	V must be symmetric under the interchange of
particles n and m to yield a total operator which is overall
symmetric under the exchange of the particles n and m. So
only the B terms survive.

The next step is to perform an additional recoupling,
bringing together the two spacial parts. One then finds

1. For the time component,

ω0 · r̂�0 → B(n,m)

4π

∑
L

C0(j, L)[ω0 ⊗ T L(r̂ , 	R)]J δJ,1�0,

(41)

with

C0(3/2, L) = − 1√
2
C0(1/2, L)

=
( √

2

3
√

3
,− 1√

6
,−

√
2√

15

)

for L = 0, 1, 2, respectively, and

T 0 = r̂ · X, T 1 = r̂ × X, T 2 = [r̂ ⊗ X]2. (42)

2. For the space component,

ω1 × r̂�0 → B(n,m)

4π

∑
L,J

C2(j, J, L)

× [ω1 ⊗ T L(r̂ , 	R)]J 	� · 	s, (43)

where the coefficients C2(j, J, L) are given in Table I.
By combining Eqs. (11) and (41) as well as Eqs. (13)

and (43), we obtain the complete operators relevant for the
decay of 0+ to positive parity states with J = 0, 1, and 2.

To simplify matters, one may seek an approximation
familiar from the 0s case, i.e., to take the radial part of the
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TABLE I. Coefficients C2(j, J, L) discussed in the text.

j J L C2(j, J, L)

1
2 0 1 − 1

2

1
2 1 0 −

√
2

9
1
2 1 1 − 1

2
√

6

1
2 1 2

√
5
2

3
3
2 1 0 − 1

9
3
2 1 1 − 1

4
√

3

3
2 1 2

√
5

6
3
2 2 1 1

4

3
2 2 2

√
3

2

electron wave function outside of the integrals and replace it
with its average value over the nucleus. Thus,


̃i = λ�eff

√〈
a6

BB2
〉

i, �eff = G2

F

2
√

2

1

πR2
0a

3
B

,

B ↔ B(n,m), (44)

where aB is the Bohr radius and, again, the averaging is over
the radial part alone. Thus the effective transition operators
now become


0 = 4g2
A

∑
n,m

τ−(n)τ−(m)f (xn,m)

×
∑
L,J

C0(j, L)[ω0 ⊗ T L(r̂ , R̂)]J δJ,1, (45)


1 = 2gV gA

∑
n,m

τ−(n)τ−(m)f (xn,m)

×
∑
L,J

C2(j, J, L)[ω1 ⊗ T L(r̂ , R̂)]J . (46)

In fact it will be adequate to consider

〈B2〉 −→ 〈(Rn,0)2〉
〈

3

(
R0

r
Rn,1

)2
〉

,

where Rn,� are the radial parts of the bound electron
wave functions. Note that the p wave function involved in
the averaging has been stripped of an extra power of r ,
since the 	r has been incorporated into the nuclear matrix
element M .

The expression for the nuclear matrix element is the same as
that of Eq. (17), where k = J = Jf is the rank of the operator
and the coupling of the two atoms is given by

V 2 = |λ|2�2
eff

〈
a6

BB2
〉|M|2. (47)

We will check the factorization approximation using real-
istic atomic 3s and 4p3/2 wave functions provided to us by
Shabaev [15], which were obtained by standard methods (see,
e.g., Grant [16] and Bratsev et al. [17]).

Using the density profile shown in Fig. 1, corresponding to a
phenomenological normalized to unity Woods-Saxon density,
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FIG. 1. (Color online) Normalized Woods-Saxon density profile
employed in obtaining the average electron wave functions.

we find 〈
a3

B(R3s)
2
〉 = 2.4 × 103,

〈
3a3

B

(
R0

r
R4p3/2

)2
〉

= 3.2 × 10−2 −→

〈
3

(
R0

r
R4p3/2

)2
〉 /

〈(R3s)
2〉 = 1.3 × 10−5.

Using the density profile corresponding to a simplified shell
model (SM) wave function shown in Fig. 2, we find〈

a3
B(R3s)

2
〉 = 1.4 × 104,

〈
3a3

B

(
R0

r
R4p3/2

)2
〉

= 1.8 × 10−1 −→

〈
3

(
R0

r
R4p3/2

)2
〉 /

〈(R3s)
2〉 = 1.4 × 10−5,
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FIG. 2. (Color online) Nuclear shell model (SM) density profile
employed in obtaining the average electron wave functions and
checking the factorization approximation.

Had we not used the factor 3(R0/r)2 the p integrals would have
been quite a bit smaller. The agreement in the ratio of 4p to 3s

probabilities between the two nuclear densities is quite good.
Furthermore, using a simple 0s harmonic oscillator (HO) wave
function, we find that the factorization approximation works
to within 10%. More detailed computations using realistic
and more accurate shell-model wave functions are currently
underway. The results, with and without employing the
factorization approximation, will be published elsewhere [18].
The nuclear matrix elements for the process 156Dy→156Gd
leading to sharp resonaces [10] 0−, 1−, 0+, 1+, and 2+ will
also be calculated [18], using realistic wave functions both for
the initial and the final nuclear states.

IV. DISCUSSION

As we have mentioned, the observation of neutrinoless
double decay will be a great event in particle and nuclear
physics. It will establish the existence of flavor violating
interactions and it will demonstrate that, independent of
the dominant mechanism causing this decay, the neutrinos
are Majorana particles. More importantly, it is expected to
complement the great successes on neutrino oscillations by

determining the elusive up to now absolute scale of neutrino
mass. For this last great contribution to become unambiguous,
it will be necessary to determine what fraction of this decay
is due to the light neutrino mass compared to all the other
competing mechanisms [3]. That is a very difficult task indeed.
It may become feasible if data exist in as many targets as
possible. In fact it has recently been shown that within the
mass terms alone, even if both left- and right-handed currents
are involved, this is, in principle, possible [19,20]. Provided,
of course, that experimental data involving a sufficient number
of targets become available. It will be much more difficult to
achieve this if the mass independent contribution involving the
jL × jR contribution becomes important. In this direction, the
observation of double electron capture will be very useful.
More specifically we have seen that (i) the neutrino mass
term can proceed in neutrinoless double electron capture as
in ordinary double β decay; for this to be practical, of course,
the resonance condition must be met. And (ii) neutrinoless
transitions to 0+ → J± �= 0+ can occur only if there exist
right-handed interactions through the right-left interference
in the leptonic sector (jL ⊗ jR). Then, in the latter case, the
following is noted:

(i) The unusual transitions to the negative parity 0− and 1−
states can naturally occur in double electron capture,
since they are energetically allowed if the resonance
condition is met. So such an observation will unambigu-
ously determine the neutrino mass independent lepton
violating parameter, which is hard to get in neutrinoless
double β decay.

(ii) Transitions to positive parity states �= 0+ in ordinary
double β decay can occur either through the dipole
component of the electron wave functions, the most
favored scenario, or if one of the hadronic currents
involved contains the parity changing nucleon recoil
terms.

(iii) Transitions to positive parity states with an angular
momentum less than 3 in neutrinoless double electron
capture can proceed (1) if one of the hadronic currents
involves the recoil term, while both electrons are in
s states or (2) more naturally, via the negative parity
operator involving ordinary nucleon currents, if one s
electron and one p electron are involved in the capture.
The probability of finding a p electron in the nucleus
is, however, quite small, but this disadvantage may be
overcome by the collaborative effect of the expected
large nuclear matrix elements and the resonance condi-
tion for capture to 2+.

(iv) The transition operators involved have a reasonable
structure, but nuclear matrix elements of such operators
have not yet been calculated for any system. We have
no reason to expect them to be suppressed. The nuclear
structure calculations involving such nuclear systems
may be a true challenge to nuclear theorists.

It is clear from the above that neutrinoless double electron
capture can distinguish between the mass term contribution
and the neutrino mass independent jL × jR interference term.
It can do it more efficiently than ordinary β decay due to
the possibility of the negative parity nuclear transitions. It
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cannot, of course, distinguish between the various mass terms
(light neutrino, heavy neutrino, SUSY contribution, etc.), but
neither can ordinary double β decay. This can only be done by
exploiting the results of at least four different experiments
(leading to 0+), or a suitable combination of a sufficient
number of both ground state and exited 0+ state transitions. In
this multiple experiment analysis, double electron capture can
become a very useful partner.
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