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Abstract—The High Level Trigger (HLT) and Data Acquisition
System select about 2 kHz of events out of the 40 MHz of beam
crossings. The selected events are consolidated into files in onsite
storage and then sent to permanent storage for subsequent anal-
ysis on the Grid. For local and full-chain tests a method to exercise
the data-flow through the High Level Trigger is needed in the ab-
sence of real data. In order to test the system as much as possible
under identical conditions as for data-taking, the solution would be
to inject data at the input of the HLT at a minimum rate of 2 kHz.
This is done via a software implementation of the trigger system
which sends data to the HLT. The application has to simulate that
the data it sends come from real LHCb readout-boards. Data can
come from several input streams, which are selected according to
probabilities or frequencies. Therefore the emulator offers runs
which are not only identical data-flows coming from a sequence on
tape, but physics-like pseudo-indeterministic data-flow, including
lumi events and candidate b-quark events. Both simulation data
and previously recorded real data can be re-played through the
system in this manner. As the data rate is high (100 MB/s), care
has been taken to optimize the emulator for throughput from the
Storage Area Network. The emulator can be run in stand-alone
mode, but even more interesting is that it can emulate any parti-
tion of LHCb in parallel with the real hardware partition. In this
mode it is fully integrated into the standard run-control. The archi-
tecture, implementation, and performance results of the emulator
and full tests will be presented. This emulator is a crucial part of the
ongoing data-challenges in LHCb. Results from these Full System
Integration Tests (FEST) will be presented, which helped to verify
and benchmark the entire LHCb data-flow.

Index Terms—Benchmark, data acquisition, high level trigger,
simulation.

I. INTRODUCTION

T HE LHCb [1] is dedicated to the study of CP-violation, a
subtle asymmetry in the fundamental laws of nature, which

is thought to be responsible for the striking abundance of matter
over anti-matter in the observable universe. The effect of CP-vi-
olation can be particularly well studied in decays of particles that
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contain a b-quark. The distinguishing characteristic of b-decays
is the relatively longlifetimeof theseparticles,whichallowsthem
to fly a measurable distance from the original collision point be-
fore they decay. LHCb selects events mostly by reconstructing
these secondary decay vertices. This reconstruction requires a
large fraction of the detector data, which means that LHCb must
read out the detector times per second; 10 times more often
than the other LHC [2] experiments. On the other hand the total
event size, determined by average number of active electronics
channels, is quite small: 35 kB according to estimates from sim-
ulation.Thedataacquisitionanddatahandling inLHCbarehence
faced with a very high rate of small events.

The purpose of this paper is to present the tool which emulates
the LHCb detector and which is used to perform commissioning
and validation tests of the complete Online and Offline system.
In order to understand how this project was carried out, it is
necessary to have a rough understanding of the Data Acquisition
System (DAQ) [3]. Fig. 1 gives a schematic view of the LHCb
DAQ and the way data flows.

The readout network relies on Ethernet and IP. The 300
readout boards (TELL1) [4] get data from the detector and
build Multi Event Packets (MEP) [5]. Each readout board typi-
cally buffers between 1 and 15 event fragments corresponding
to the relevant sub-detector. A fragment is a set of banks [6],
which consists of an header and physics data.

The events are then assembled in the High Level Trigger
(HLT) [7] farm. An HLT farm node notifies its availability for
data processing, sending a MEP request packet to the readout
supervisor.

The readout supervisor, known as the Timing and Fast Control
(TFC) [8], selects an available node. It sends information via a
Timing, Trigger and Control interface (TTC) [9] to the readout
boards in order to indicate the selected destination node. It sends
a MEP to the destination node in order to supply it with the trigger
information needed for events analysis and reconstruction.

First, the requirements of such a system will be presented,
then the constraints and the specification of the system, its ar-
chitecture, the quest for performance optimization and its use in
the Full Experiment System Test (FEST [10]).

II. REQUIREMENTS

The implementation of a test module arises from two needs.
The first LHC beams of the 2008 startup would have been used
for testing and validating the full experiment system, from the
detector to Offline analysis. Unfortunately, due to a failure in
one of the LHC magnets, first LHC collisions have been de-
layed until late 2009. Moreover the LHC is not expected to run
continuously. Such shutdown periods would be opportunities to
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Fig. 1. LHCb data acquisition.

make modifications to the system, but they should be validated
before the next production activity.

A solution for this kind of test would be a program which
injects simulated IP packets into the readout network. Injected
data could be both real physics data taken from previous detector
activity, and simulated data produced Offline. It would be set up
for regular use, involving the LHCb collaboration once a month
for exercises close to a normal operation of the experiment. This
is called the Full Experiment System Test.

The main requirement of the FEST is to test everything in
the way it should be during true data acquisition. Therefore the
development of the test module (or injector) and its integration
in the system is made in order to emulate real runs. This is why
the module is integrated on top of the DAQ (Fig. 2). The HLT
farms get data as if they were coming from the readout boards.
Then, every part of the process, starting from the HLT, can be
tested: Monitoring, file selection and transfer, data quality, etc.

The aim is not to benchmark performance of each part of the
processing, but to test the various features of the DAQ and HLT
for long term runs.

To carry out our objectives the injector needs:
• To be supplied with simulated physics data files, in order

to inject events into the DAQ.
• To assume the role and characteristics of all readout boards

in use by the experiment.
• To produce a minimum output rate of 2 kHz, so an HLT

farm operated in “pass-all” mode can produce an equal
output rate. This calls for the injector throughput to be at
least 70 MB/s, for the standard event size of 35 kB.

• To be triggered by the TFC in order to be used as the de-
tector.

• To be able to mix different input data streams according to
the TFC triggers.

• To be fully integrated into the Experiment Control System
(ECS) [11].

• To be used in parallel with every other activity at LHCb.
All these requirements impose constraints on the software im-

plementation, on the hardware setup and on system operation.

Fig. 2. LHCb data injection.

III. ARCHITECTURE

To address these requirements, software has been developed
using the standard LHCb C++ Gaudi framework [12].

It consists of a set of Gaudi services, which are normal Unix
processes, and which encapsulate a set of POSIX threads. The
Gaudi framework allows the injector to interpret commands re-
ceived from the Experiment Control System. Moreover, it al-
lows the implementation to re-use existing solutions, such as
reading events from files.

This section will focus on the system operation and software
implementation. The hardware setup relies on a general purpose
server node, which provides enough resources to run the imple-
mented software. Its configuration has been chosen in order to
meet requirements. More details on the choices will be given in
Section IV.



CALLOT et al.: HIGH-SPEED DATA-INJECTION FOR DATA-FLOW VERIFICATION AT LHCb 499

Fig. 3. Integration in the DAQ system.

A. Operating the Injector in the Experiment System

We have chosen to operate the injector and FEST the way it
is presented in Fig. 3. This is done in order to answer a technical
issue: the injector needs to be triggered by the TFC, and thus it
needs some trigger information for the simulation processing.
Unlike the readout-boards, however, it cannot be connected to
the TFC TTC interface. The only way to get the trigger infor-
mation is to receive the MEPs sent by the TFC. This is achieved
by implementing the injector like an interface between the TFC
and the HLT nodes. Basically, the injector pretends to be a TFC
board to the HLT farm nodes in order to record their MEP re-
quests (Fig. 3, step 1). In parallel, it pretends to be an HLT node
to a TFC board, in order to forward the HLT node MEP requests
(Fig. 3, step 2), and to receive the answer (Fig. 3, step 3). Once
the injector has received this MEP and read enough raw events
(Fig. 3, step 4), it fragments them in order to build MEPs as any
TELL1 board would do. It then sends each of the 300 produced
MEPs to one of the requesting HLT nodes (Fig. 3, step 5). For
each packet it modifies the IP header, in order to pretend to be
the real TELL1 which would have built the MEP. In the end, the
HLT nodes reassemble the events and send them to the storage
system (Fig. 3, step 6).

B. Software Architecture

In order to increase performance, and to manage each input
and output whilst taking care of real time constraints, the various
injector interfaces need to be managed asynchronously. The in-
jector software will thus rely on different threads and processes
which share their information using Inter Process Communica-
tion tools. Fig. 4 shows the various threads, Gaudi job instances,
main process entities, and their method of communication.

First, the injector runs two dedicated threads to handle its net-
work interfaces with the TFC and the HLT farm nodes. It allows
the injector to manage HLT requests and TFC answers as fast as
possible. TFC MEPs are stored in a FIFO if they cannot be used
immediately. MEP requests are stored in a map, so the injector
knows how many events have to be sent to each requesting farm.

The injector reads events from files. Events are stored in the
Master Data File (MDF) format. It is necessary to convert them
to the MEP format. It is a computationally complex task be-
cause of the software and hardware operations implied in the
procedure. Then the injector also has to produce and send MEPs
through a network interface to the HLT.

It is better that these hardware related operations do not have
to wait for each other. Therefore the processing has been split
in two:

• A task dedicated to reading events from files and writing
them into a buffer.

• A task dedicated to consuming events, building MEPs and
sending them to the network.

It has been chosen not to separate the MEP building from
sending as this would have required one more layer of syn-
chronization and another layer of buffering. This additional
buffering layer would have needed specific synchronization
and memory management, which would have cost more than
just sending the produced MEPs directly.

The task which reads events from files is a distinct Gaudi
process. This choice allows the input of the injector to be
easily configurable, in order to get several sets of files as input
and to answer the requirement of mixing them according to
TFC trigger types. The injector needs at least one reader, and
can use up to eight. This limit comes from the number of
different trigger types implemented by the TFC. Performance
limits about the input of this architecture will be detailed in
Section IV-A.

The end of the processing is the following. A TFC MEP is
consumed from the FIFO in order to get run information, and a
requesting farm node is selected. According to the trigger infor-
mation, the injector selects a buffer and reads events, produces
the MEPs and sends them to the selected HLT node. It then asks
for another trigger from the TFC to continue the processing.

IV. IMPLEMENTATION

A. Storage Access

Simulated data used as injection input have been produced
Offline and were moved to the LHCb Storage Area Network
(SAN) [13]. This SAN provides a Network File System export
(NFS), and fiber channel access to some selected nodes. There
are two ways for reading data: NFS over Gigabit Ethernet and
StorNext File System (CVFS) [14] via fiber channel.

The injector needs to send events to the HLT farm at a min-
imum rate of 2 kHz. Since the injector is based on the producer-
consumer pattern, the overall performance depends strongly on
how fast events can be produced by reading them from storage.

Consequently, several tests were performed, using the two
available data access configurations and various implementa-
tions of the reading algorithm. To determine the performance
offset of the reading algorithm, each reader was also tested
against a file from residing on a RAM disk. Performance tests
were made using Linux monitoring tools and the following
readers:

• The standard Unix “dd” command was used to get raw per-
formance results. It highlighted the maximum throughput
of 300 MB/s via CVFS, and 100 MB/s for NFS.

• The EventSelector Gaudi Service, which reads input files
and puts event objects into a transient store.

• Our own C/C++ reader in which buffering use has been
improved, which handles events as memory buffers instead
of C++ objects, and pushes them into an LHCb standard
buffer manager.

First, we had to look for the storage access media which was
the most suitable to meet our performance requirements. NFS
wasquicklydismissedbecausethemaximuminjectionratebarely
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Fig. 4. UML collaboration diagram of the injector.

matched the 2 kHz requirement. It was also subject to strong per-
formance fluctuations, since it has to share the networking re-
sources with other exports. It was then decided to connect the
injector directly to the SAN and to connect it to CVFS.

For completeness, however, further tests were also performed
with NFS.

We had to choose a software implementation in order to read
events. The input file format consists of a sequence of events,
with each event comprised of a header followed by data encap-
sulated in banks.

The standard EventSelector reads events one by one and
builds C++ objects for each encapsulation layer, i.e. it reads
35 kB chunks before processing them. Therefore the hardware
access is not optimized at all. Then, data is stored in a Tran-
sient Store, from which they have to be extracted before use.
Reading such small chunks usually incurs a huge performance
penalty. The maximum read-rate that could be achieved was
2.5 kHz. However the data were left in a format that could not
be processed efficiently afterwards.

There are two possible improvements. Firstly, the hardware
access: instead of reading events one by one, it is possible to read
a large chunk of memory and then parse the events in it. Secondly,
the data format on disk is very close to the final MEP format and it
is more efficient to copy data directly into an output buffer instead
of using the indirection of C++ objects in the transient store.

Fig. 5. Storage access performance via fiber channel, using from 1 to 8 dedi-
cated reader process, accessing different set of files.

Therefore, a dedicated reader which follows these improve-
ments has been implemented for the injector. The throughput
reaches 200 MB/s via CVFS for a single reader thread. This
translates into 5.8 kHz of events. This dedicated reader has been
integrated into a Gaudi Service, in order to get the flexible ar-
chitecture presented before and for easier integration in the stan-
dard LHCb software. Adding more readers increases the perfor-
mance even more, as shown in Fig. 5, and allows the injector to
fulfill its requirement for injecting different data for different
trigger types. Care has to be taken though because performance
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starts to drop at eight readers, due to the available number of
CPUs inside the injector machine.

Nevertheless, good performance is ensured while the injector
is using a reasonable number of readers. The injector input rate
will not be a limiting factor on the process to meet required
performance.

B. Multi Event Packet Construction and Sending

The injector has to send MEPs as if they were originating
from the TELL1 readout boards. This has given rise two prob-
lems.

1) Building MEPs From Read Events: The data files as-
sembled events, while the HLT farm expects event fragments
orginating from distinct TELL1 boards. The injector splits each
event into several MEPs, according to which TELL1 it wants to
emulate. It will typically build 300 MEPs for the full detector.
As the DAQ protocol is IP, each MEP is identified by the IP ad-
dress of the TELL1 that it was sent from. However, events read
from the storage do not contain this information. Instead it con-
tains the type of the sub-detector connected to the TELL1, and
a source channel identifier. From these two values, the injector
computes the TELL1 IP address used in production.

Subsequently, several events have to be put into one MEP.
This is done by parsing the MEP received from the readout su-
pervisor, and pushing event fragments into MEP buffers until
the requested number of events has been reached. In the end, all
the generated MEPs are sent from the TELL1 IP addresses.

2) Sending Data From Multiple IP Addresses: The injector
has to send MEPs as if they were coming from real TELL1s.
Therefore it performs IP address spoofing, writing the TELL1
source IP addresses itself. It is done using a raw socket with
specific options requesting management of the IP header in our
user space.

However this disables the IP fragmentation [15] for data-
grams which are bigger than the Maximum Transfer Unit
(MTU) of the network interface. Though the LHCb DAQ
allows the use of jumbo frames, once the MEP is completely
built, its size can be bigger than the configured MTU (typically
9000 Bytes). For this reason the injector has to implement the
IP fragmentation itself.

As for the first stage of the processing, particular care has
been taken for this implementation. As the algorithm relies
mainly on iterations, mapping, and memory copy, the sources
were profiled several times using the Valgrind’s Tool Suite [16].

C. Networking

At LHCb, raw data are stored on a Storage Area Network [17]
accessible from the HLT farm via a dedicated Ethernet Local
Area Network. As the storage LAN is physically separated from
the DAQ LAN,1 a special network configuration using dedicated
routing paths has to be put in place in order to make the injection
of data residing in the storage network into the DAQ network
possible.

The output of the algorithm after the complete processing
with a maximum input rate is almost the line rate of the 1 Gb
network interface. For an average size of 35 kB per event, it

1To ensure maximum robustness and good capability

Fig. 6. Control panel of the FEST partition.

represents a rate of about 3.8 kHz, which is close to twice the
requirement of 2 kHz. This allows us to operate the farm in a
normal mode, and to test various triggers.

D. Integration in the Experiment Control System

Once the injection process was implemented, integration
into the system was required. We needed a flexible and easy
method of operation, which would allow parallel running with
the detector.

The LHCb software architecture is made of a processing layer
and a control layer. They communicate with a lightweight com-
munication middleware, DIM (Distributed Information Man-
agement System) [18]. The use of the Gaudi framework to im-
plement the injector made it receptive to such commands. The
injector implements a finite state machine which is controlled
by a dedicated LHCb Run Control [19] partition. Fig. 6 shows
that the injector is completely integrated into the ECS, equally to
all other subsystems (HLT, storage, TFC, etc.). In parallel, other
partitions for normal detector runs or sub-detector runs can be
used, sharing all common sub-systems.

Flexibility is also achieved through the Run Control inter-
faces. On injector dedicated panels, the user can configure the
input files, the number of readers, the trigger type which will
enable the reader, etc. The run configuration information is con-
figured with Run Information panels and with TFC panels, like
in normal detector use.

The integration is complete and a single click is enough to
start the simulated run, like for the detector.

V. FULL EXPERIMENT SYSTEM TEST

The FEST is the main objective of the injector development.
At least one week per month since January 2009 is a FEST week,
and this will continue at least until the LHC start-up. FEST
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weeks will also be held during periods of LHC shutdown. Ex-
perts from both Offline and Online teams are working together
to achieve the commissioning and the validating of the data pro-
cessing and its monitoring. The injector proves its use as a key
tool in the validation of the LHCb Offline and Online system.
It is constantly used outside FEST weeks in order to validate
single project upgrades, mainly for the HLT farm.

An example where the injector has been found useful was
in the diagnosis of a system configuration issue. During FEST
runs, the HLT tasks were complaining that a few MEPs were not
received. This problem was occurring quite randomly. After in-
vestigation, we noticed that these errors were occurring only on
the most recent nodes. Although the HLT farm nodes have all
approximately the same hardware, these new nodes have a dif-
ferent network interface card. The unfortunate combination of
these cards, a specific module version and a specific kernel ver-
sion, sometimes caused troubles with the interrupt management.
Such issues could have been found only during a run in which
the data traffic is high enough: either a FEST run or normal de-
tector run. However in the latter case it would have meant loss
of physics data.

Other examples of FEST achievements, concerning triggers
and physics analysis, are described in [10].

Therefore the injector has proved useful for debugging the
full system, from the system configurations at every stage of the
Online data flow, to the Offline analysis and reconstruction.

VI. CONCLUSION

This paper describes how in LHCb we can perform high-
speed data-injection in order to validate our system in a situa-
tion similar to a normal run of the LHC, using mainly software.
There are some areas in which improvements to the simulator
could be made. Other experiments have also Online and Offline
test modules. For example ATLAS [20] can store a few events in
the buffers of the DAQ input components, which are commodity
computers. Then a test run uses these data buffers instead of the
detector, and the data-flow can be tested into the DAQ. How-
ever, data are limited by the buffer size.

Another example is the second stage of the CMS [21] Event
Builder, which is made of a PC farm and a multi Gigabit Eth-
ernet network. Data fragments from simulation or from previ-
ously taken data can be played into the system at the level of the
Readout Units. They are then transferred through the data net-
work to the Builder Units which deliver the complete events to
the Filter Processors which are housed in the same PCs as the
Builder Units. After processing, the events are saved to local
storage and transfered Offline in the same way as during global
data taking.

We note that each solution is dedicated to its experiment, and
that flexibility was never foreseen because the implementation
relied on system particularities. Testing procedures might be the
same in every experiment, but the test setup has to be dedicated.

The second possible improvement is that for the next upgrade
of the detector, the current solution may not be powerful enough.
This is why a project is currently being carried out, involving
FPGA development and 10 Gigabit Ethernet communication. A

solution based on an FPGA implementation would have a better
integration at the readout level. It would be possible to directly
interface it with the TFC via the TTC media, as with a standard
readout board. Moreover, as the integration would be better, we
could easily use several FPGA injectors synchronized by TTC,
in order to reach the upgraded readout boards data rate.

The current injector, however, has already been a major con-
tribution to the LHCb collaboration for the few months in which
it has been used in production, and hopefully this will continue
in the future.
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