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ABSTRACT

Based on the statistical bootstrap model
of strong interactions, we develop a des-
cription of hadronic matter with parti-
cular emphasis on hot nuclear matter as
created in relativistic heavy ion collis-
ions. We apply our theory to calculate
temperatures and average transverse momen—
ta of nucleons and pions from the decay of

hadronic fireballs.
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We propose a description of hot hadronic matter based on the statistical
bootstrap modell). Our aim is to describe the gross properties of particle
spectra emitted by heated and/or compressed nuclear matter. At present, the data
relevant to our inmvestigatioms begin to be available from experiments involving
relativistic heavy ion collisions, triggered (by high multiplicities) for central

2

collisions only ’. 1In this paper we will focus on temperatures and average trans-—

verse momenta of nucleons and pions produced in such collisions.

While it is quite difficult to master the complexity of the strong inter-

3)

actions in detail, it has been shown™’ that hadronic resonance production dominates
the interactionm in all hadronic reactions. The central rSle is then assumed by

the hadronic mass spectrum t{m?,b), which here, in addition to the usual dependence
on the mass m of the resonance, is also a function of the conserved baryonic
qumber b. T(m%,b)d(m?) is the number of bound states (resomances) in the mass

interval d{m?) at a given baryon number b.

Unlike the case of high energetic proton-proton scattering, the correct treat-
ment i la Van der Waals of the volume occupied by each participating hadron is
essential. We have foundl) that. the "natural volume V " *) of a hadronic fireball
cluster grows proportiomal to its mass. As a consequegce we see at the hadronic
phase boundary a constant maximal energy density which is a free parameter of the
model. The newly reformulatedl) bootstrap model provides us with the required
hadronic mass spectrum T(p®,b) and with the particular energy dependence of the

fireball volume necessary in the thermodynamic approach.

The description of the thermodynamic properties of hot hadronic matter begins
with the grand partition function Z(B,V,A), as obtained from the level density

a(p,V,b):
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We use the covariant generalisationa) of thermodynamics with the inverse temper-
ature four vector BU and the four volume V . In the rest frame of the system

we have B'p = BOE =E/T(h=c=k=1) and VU = (V,0). X is the fugacity,
related in the rest frame to the relativistic chemical potential p : A = exp(W/T);
it is introduced in order to conserve the baryon number in the statistical ensemble.
All quantities of physical interest can be derived as usual by differentiating

gn7 with respect to its variables.

*
)The "hatural volume" 1s assumed when external forces are absent.



Assuming that the mass spectrum T(m®,b) is already known, the grand micro-

*)

canonical level density is given by the invariant phase space integral:

(P Ve, € ) = 6"(p)<f.<u) +
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Above, the first term corresponds to the vacuum state. The Nth term is the sum
over all-possible partitions of the total baryon number and the total momentum

p among N Boltzmannions, each having an internal number of quantum states

given by T(pi,bi). These Boltzmannions are, in general, excited hadronic clusters
of baryon number bi(--oo < bi < ®). Every cluster can move freely in the remaining
volume A left over from the external volume Vex after subtracting the proper

volumina VC of all clusters:

Aﬂ:";-' Z\/
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In the generalisation (2a) of the popular phase space formula, three essential

.. . . . . 1
features of hadronic interactions are now explicitly included ):

a) The dense set of hadronic resonances dominating particle scattering
. 2
via T(mi,bi). )
b) The proper natural volumes of hadronic clusters via A",
c¢) Conservation of baryon number and clustering of hadrons into lumps of

matter carrying their natural volume.
Further features naturally contained in Eqs. (1) and (2) include:
d) co-existence of a pion gas with nucleons,

e} baryon-antibaryon pair creation,

f) chemical equilibrium between all constituents {nucleons, isobars, mesons..).

*

) The extreme richness of the spectrum T(m?b) ~ exp(m/T_) enables us to neglect
Fermi and Bose statistics above T = 50 MeV and treat all particles as "Boltz~-
mann:l.ons
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We assume that members of the same isospin multiplet are present in equal pro-

portions, [e.g. Nﬂ+/Nn—/N“o = 1/1/1] and average over spin and isospin.

Eq. (2) leaves us with the task of finding the mass spectrum T. Experimental
knowledge of T 1is limited to low excitatioms and /or low baryon number. We
therefore introduce here a theoretical model: 'the statistical bootstrap”, in
order to obtain a complete mass spectrum consistent with direct and indirect ex~
perimental evidence. The qualitative arguments leading to an integral equation
for T(mfb) are the following: when Vex in Eq. (2) is just the proper volume
Vc of a hadronic cluster, then ¢ in Eq. (2), up to a normalization factor, is
essentially the mass spectrum T: indeed, how could we distinguish between a
composite system [as described by Eq. (2)] compressed to the natural volume of a
hadrenic cluster and an "elementary' cluster having the same quantum numbers?

Thus we demand

o(pV, 4) 2 Hrpié)
V=V,

where the "bootstrap constant" H is to be determined below. It is not sufficient
simply to insert Eq. (3) into Eq. (2) to obtaim the bootstrap equation for T;

. 1) . . .
more involved arguments are necessary ) in order to obtain the following "boot—

strap equation' for the mass spectrum T:

Helph6) = Ha,d pime ) +
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The first term is the lowest one-particle contribution to the mass spectrum:

the "input term” b = 0,*1 corresponds to pions and (anti)nucleons respectively.

The index "o" restricts the & function to the positive root only. 2z, is
the multiplicity (2T + 1)(2J+ 1) of the ground state clusters. In the course
of derivingl) the bootstrap equation (4) it turms out that the cluster volume

vV, erows proportional to the invariant cluster mass

\/C ((?q') = \/};/(“3) ()
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(4B) 1is a universal energy density of hadronic clusters chosen here to correspond

to the quark bagS) energy density with B = (145 MeW)"®,

The bootstrap constant H and the bag constant B are the only free para-
meters of the model. We introduce the double integral transforml) [already used

in Eq. (l)] of the one-particle term in Eq. (4):

e )= 2}‘ CRXCLH LA

(6a)

and of the mass spectrum:

Pen): - Z"‘ HT(P“@(}P” W

Considering pions and nucleons only as input, we find:

PlpN ) = JHT [3u K, (FF) + 4lae § ), K, (3)

(7)

Applying this same transform to the entire Eq. (4) results in:

QPBEN) = 2P(p) - e"PL—d)(Pﬂ)] +1 ®)

The well known properties of the inverse function of Eq. (8), G(¥) = ¢(B,)),
shown in Fig. la, and in particular a singularity at wp + @y = {n(4/e) lead to

P 6 . .
the critical temperature ) T of hadronic interactions. We have chosen
o

= 0.724 Gevhz; namely so that To = 190 MeV. The reason for this cheice will

become obvious below. From here on éverything is fixed; no adjustable parameters

remain.

The point @ =¢o in Fig. la defines through Eq. (7) a singular curve
©(ByA} = wo in the w - T plane as shown in Fig. 1b. As we shall shortly see,
this boundary to the hadronic world is characterized also by a constant emergy
density 4B and vanishing hadronic pressure. We note that 1 = 0(A = 1) implies
zero baryon number, U -+ my implies T + Q0 and leads to cold baryonic matter at
about twice the nuclear matter density of O.17mN/fm3. However, as indicated by
the shaded area in Fig. lb, our present approach is inapplicable for too low a

temperature, since there Fermi and Bose statistics play an important rdle.
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With this, the task of determining the mass spectrum is in principle completed,

m/T

as we can now invert Egs. (8) and (6b). We then find that T(m?b) ~ e "0, as is
well known6). We will now show how fnZ, Eqs. (1) and (2), can be given directly
in terms of the known functiom ¢ , without the need for an explicit calculation
of T. Indeed, we can use the formal g¢imilarity between Eq. (4) and Eq. (2a) in

L

order to derive a relation between their integral transforms™’; from here on,

B = VBUB“ :

ba Z (P VM) = 248 (Ve) 2 53 )
) EX =~ (St
! A (m)s B
(9
The remainder of our discussion is a simple application of the rules of statis-—
tical thermodymanics. By investigating the meaning of the thermodynamic averages
it turns out that the apparent (B,A) dependence of the available volume & in
Eq. (9) must be disregarded when differentiating {nz with respect to g and

A. As Eq. (2a) shows explicitly, the density of states of extended particles in

Vex is the same as that of point particles in A. Therefore also

e Z (Ve N = o Zg (f18,2)

We thus first calculate the point particle energy and baryon number densities

and pressure

B /2 2
5‘,1; = A"QP sz{' = -H-(Zfl')z /3/3 (b((jlﬁ) (11a)

fa — ,_Eé___ 11b
Vet = AR e = ~ 1 ?\fam)(b ¢((3 a) aw

N
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o pe = T R ()3 @{3 f}s(@,?\) (11c)
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From this, we easily find the energy density, as

P (12)

Using Eq. (5), the available volume A of Eq. (2b)} becomes in the restframe:

<E>
4 = \-/ex— 4R (13)

Inserting Eq. (13) into Eq. (12) and solving for <E> we find:

Spe (B,)
£ = —
((517‘) l‘f‘ gfé((sfk)/qg (lba)

\/ex = 4- (“*’ gp{s((&;?‘)/‘fg) (14b)

and similarly for the baryon density and pressure:

<> 1y v
o = G 2 - A+ /18

(l4c)

P= -——-&Z(P ex’“) I‘f‘gpé/'IB (14d)

With Eq. (14) we have a complete set of equations of state for observable quantities
as functions of the chemical potential MU, temperature T and external volume Vex
While these equations are semi-analytic, one has to evaluate the different
quantities numerically due to the implicit definition of ¢(R,A) that determines
inZ . However, when B,) approach the critical curve, Fig. 1b, we easily find

from the singularity of ¢ that Ept diverges and therefore

£— 48
P> 0
A —=> 0 (15)
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These limits indicate that at the critiecal line, matter has lumped into one
large cluster with the energy density 4B. No available velume is left, and as
only one cluster is present, the pressure has vanished. However, the baryon
density varies along the critical curve; it falls with increasing temperature.

This is easily understood: as temperature is increased, more mesons are produced
that take up some of the available space. Therefore hadronic matter can saturate
at lower baryon density. We further note here that in order to properly understand
the approach to the phase boundary, one has to incorporate and understand the pro-

7

perties of the hadromic world beyond the critical curve — we believe' * that a
transition to the quark-gluon plasma phase occurs. We postpone the discussion of
these aspects until a later paper, and turn now to the study of temperatures and
average transverse momenta of particles emitted from hot hadronic matter in rela-
tivistic heavy ion collisions.

2)

We assume that in relativistic collisions triggered to small impact parameters
a single fireball of hadronic matter can be produced*). fxcept for rare events,
ot all nucleons from projectile and target nuclei will participate in the formation
of the fireballss). However, in particuldr, in nearly symmetric collisioms (pro-
jectile and target muclei are similar) we can argue that the number of participants
in the centre of mass of the fireball originating in the projectile or target are

2)

the same ™ .

Therefore it is irrelevant how many nucleons do form the fireball — the above
symmetry argument leads in a straightforward way to a formula for the centre of

mass energy per participating nucleon:

M = E;‘H/A““" /m“ \//H'(Ex:b IFQL/A)/«Q/M“ (16)

where EE,lab/A is the projectile kinetic emergy per nucleon in the laboratory
frame. While the fireball changes its chemical composition (7 + p +* & etc.)}
during its lifetime through a change in temperature, the comservation of energy
and baryon number assures us that u in Eq. (16) remains constant. The influence

on u of pre—equilibrium emission of hadrons is negligible.

*) We are aware of the whole problematics connected with such an idealization; a
proper treatment should include collective motions and distributions of collective
velocities, local temperatures and so on3); triggering for small impact parameters
hopefully eliminates some of the complications.
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From the ratio of Egs. (l4a) and (l4c) we find that u in the statistical

average is:

@ = gpﬁ (B!lh)

A 4
< 62 Vot ((3, ) an

Thus from Eqs. (16) and (17) we see that the projectile kinetic energy fixes through

u = const. a path ("cooling curve") in the u - T diagram. In Fig. 2a,
g .

some of these paths are shown for the following typical values of Ek lab/A = (1) 0.5
»

(2) 0.703; (3) 1.073 (4) 1.80; (5) 3.96 GeV. In Fig. 2b, the baryon density

of the fireballs along these lines is shown in units of v 0.17/fm3, the normal

nuclear density. As the temperature decreases, the baryon density of the fireballs
falls rapidly, while the entropy increases. This occurs essentially through a
change in the chemical composition of hadronic matter and not through conversion

of an important part of the internal energy into kinetic energy of the radial motion.
The horizontal line in Fig. 2b corresponds to normal nuclear baryon density - had

we chosen a larger value of B it would correspond to a so much higher baryon

density.

Along the cooling curves in Fig. 2, particles are continuously emitted with
characteristic momenta corresponding to the momentary temperature and relative
intensity belonging to the chemical composition. The experimentally observable
temperature is then obtained by averaging along the cooling curves, while assuming
that there the temperature T decreases approximately linearly with the time,
as long as particle emission is significant. As the emitted particles can be re-
absorbed by the hadronic clusters present before reaching free space, we must in-
clude a factor A/Vex, Eq. (14b), which is the relative probability to escape.

Thus we find:

<y =T /‘)“T/ G pomTp )T

where £ 1s the 1ntegrated momentum spectrum :

£y Sk

ﬂ(m’t/‘ ) -_%38 2(4“) /& (19l)

The integration along the cooling curves is carried out by inserting the function

W(T) ¢that follows at comstant given energy per baryen u. The average
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temperature, as a function of the range of integratica described by T, Treaches
different limiting values for different particles. The thus obtained limiting
value is the observable "average temperature” of the debris of the interactiomn,
while the initial temperature is difficult to observe. When integrating along the
cooling line, we can easily determine the average hadronic cluster mass. The

integration for protons is interrupted (protons are frozen out) when the average

cluster mass is about half the nucleon isobar mass, so that the nucleon—enitting
clusters have essentially died out. This slightly model-dependent procedure
will be described in more detail elsewhere. This is also the place to comment 0T

our choice of the bootstrap constant H s0 that TO ~ 190 MeV: the oEservedll)

"experimental To of the order of 160 MeV is an average in the above sense;.

our T leads, for very large FE_, to an average vaiue of the order of 160 MeV.

k’
In Fig. 3a, we show the expected pion and nucleon average temperatures as a function
of the heavy ion kinetic energy. The baryon average temperature is consistently

higher than that of pions. Two effects contribute to this strange result:

1) the particular shape of the cooling curves (Fig. 2a): the chemical poten—
tial drops rapidly from the critical curve, thereby damping baryon emission.
Hence baryons are emitted dominantly earlier at the higher remperature,
while pions, which do not feel the baryonm chemical potential, continue

being created also at lower temperatures.

2) the freeze~out of baryons occurs when no significant number of clusters
with a mass greater or equal to the nuclear isobar mass remain, while
pions are still being emitted from lower mass clusters umtil all clusters
have disappeared, and <T> has reached its lowest attainable value along

the cooling line.

It may be more practical to discuss the average transverse momentum of the
emitted particles. In principle, to obtain this result we have to perform a
similar averaging as above; for the average transverse momentum at given T, we

findlo)

"(WT"/‘)/T iy AT
<EL(4“I—’T/")> = §P.Le o dSP: @Kgﬂ(?k
4 S‘e"( Pﬁ&zd/“)rdfp Kl(g)eﬂ/'r (20)

The average over the cooling curve is then:
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c Ly

We did verify numerically that the order of averages does not matter;

Pl T 1) & L pumTi4)>
P pc (22)
which shows that the mean transverse momentum measurement is the simplest (and
safest) method to determine the average temperature (indeed better tham fitting
ad hoc exponential type functions to p, distributions). In Fig. 3b we show
the dependence of the average transverse momenra of pions and nucleons on the

kinetic energy of the heavy ion projectiles.

In this paper we have shown how a theory of hadronic matter that includes
important features of hadronic interactions and limiting hadronic temperatures
may be formulated and applied to the description of relativistic heavy ion col-
lisions. While the measurement of the average temperature and transverse momenta
already provide a certain test of our present understanding of hot hadronic matter,
more work is needed to understand particle multiplicities and exclusive reactions.
We intend to return to the discussion of these and further features of our theery

in the near future.
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Figure Captions
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Bootstrap function G{v) - the dashed line represents the
unphysical branch. The root singularity is at
o = In(4/e) = 0.3863.

The critical curve corresponding to ®(T,u) = <, in the u - T

plane. Beyond it the usual hadronic world ceases to exist.

Paths of constant energy per barvon, per given projectile

energies, and

the corresponding baryon densities in units of nuclear baryon
density. The kinetic energies of projectiles per nucleon are
(1) 0.55 (2) 0.7033 (3) 1.07; (4) 1.8; (5) 3.96 GeV.

the average temperature and
the average transverse momentum for nucleons (full lines)

and pions (dashed lines) as a function of the projaectile

laboratory energy per nucleon.
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