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ABSTRACT

In & thecry where massive fermions interact with
massless scalar field of isospin 1, the behaviour of
the one— fermion Green?! s function is found to differ

from the free Green's function by a factor
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in the limit of large separation Ix—y
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1) that the one-

electron Green's function in guantum electrodynanmies, in the Landau gauge,

It was found by Abrikosov, Landau and Khalatnikov

behaves like
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near the mass shell p2+m2==Ou

The answer io the corresponding problem for Yang-Mills theory 2) is
not known, because of the non-linear self-interaction and the isospin
structure of the interaction with the fermion field. Thus it may be inte-
resting tc look for simple models which have & non~trivial infra—red agymp—-

totiec behaviour different from that of QED.

In this ncte, we consider the interaction of a massive fermion ¥
of isospin + with a massless scalar boson 9, of isospin 1. More precisely,

the action functional in Euclidean space isg

5=-jd“x[$(%a,‘+m+3r¢%)\lf+%3,.% a,aq’a]. (o)

For this theory, we shall find that in the Eueclidean region
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Glx-y :(\P(x)\I(‘é))«Go(K*lJ)(I+%ly‘, m (x-,l) (3)

for large [x—yln In principle, the corresponding formula in momentum gpace
can be cbtained by Fourier transform but the appearance of the logarithmic:

fécfor makes the result less explicit.

We can come to (3} in different ways. It was first cbtained by
summing the perturbation series. However, it is more elegant to derive (3)

by the functional integral approach; where
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After the integration over the fermion fields, we obtain
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where SO [m] is the actional funetional of the free ¢ field, and G(x,y[w)

is the classical ore-fermion Green's function in an extesrnal field ¢.

Let the ¢ field be separated into the "slow" and "fast" paris

©lx) + @),

9 (8 = @,
where the Fourier transform a;o)(k) cf wgo)(x) vanishes for ]kl > Ky,
while that of wgq)(x) vanishes for ]k] < ko, . kg being a fixed momentum
value. We apply the following approximations 3)’4}, previously used in QED,
%o the right-hand side of (5) '

det [1*3(3,.3,‘*’"'-)-'1..%] ~ 1 (6)
and .
“ / to
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where the symbol T denotes ordering the exponential along a straight line
between x and y. With these approximations, the desired Green's function

is given by
G (x-9) ~ { T exp 9]“ ¢ (32d3D CGxyi ¢y (8]
J X 2 Ta o] ; 1

where = 4 are functional averages with the weight factors

(O) >b and < (ﬂ
eso[cP ] and eso[Cp ], respectively.

The non=trivial long range behaviour is due to the first Yinfra-red"

factor in (8)° The second one is a gquantum Green's function of a fermion

interacting only with the "fast" field $(1)- In p space, it is equal to
g 2

akq(mko+if5)(mk:+,;‘)" (9)



near the mass shell p2=-m2u Here
mko-:m-f-ﬁmlko) - : Co T (10)

is a renormalized fermion mass, ay is a renormalization constant of one~

(o]
fermion Green's functionse In x space we will have

(G(x':lq“’)>‘ ~ Go(x-:) akd exP (-Am(k.)r)' (11)
where r=]x-yla

Uging the notaticn
1 d;>
KF)» = (T Flu) exp 9 L Tata (31 A} 0, exp(-amikir) .

we can write

G{x-j) = G (x-y) LK1 = Go tx-y) {er), (13)
The functicn f(r) must not depend cn a parameter ko at all. We will
cbtain a differential equation for f£(r) and solve it in the "leading log
region"

9 << g log mr ~ | (14)

First of all, we have
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where
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lkl< kg

1s a Green's function of a "slow" Tield. Let us suppose for a moment that
T, matrices comrute with each other. In this case we will have ((TaTa(z)>> =

- TaTa<<1 >2 = 3f and come to the equation
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The ko term must cancel Am, and we obtain the eauation

df . _ 33"
ar - " anr T

Its solution

f: ex,;- (" -2—3? [03 M"’)

is similar o that in QED.

The non—commutativity of L matrices changes the situation radically.

We can take it into account, integrating by parts

LPJO(}) ((T,T.;‘j)» d} = 3 [u(o)— u(})]f - er} uf));d}—(<TaT¢(§5>)’
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We have
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S0 we arrive at the equation

%fr-_ = [-0m+ 33‘(u(o)-u(r))lf |

+209' ¢, Lr L djdi, wlz) P-4 1Ty 3T 3152, (19)

The second term in the right-hand side may be written in the following form

r

(9 T L J a3 dy [ugr-ugnl0G-30 U1, T, (3T (30D (20)
We have
lugr-ug ] ©G-30 ~ (42 [35,(;.-3)]-' (21)
if sz, Zyy Iz—z1] are much larger than k;jo

In the "leading log region" (14) the main contributions in the

double integral (20) are due to the domains

- - 1

kU3l e, kK< je<r, k, << <cr, (22)
In the first of these domains we have

CEpe €T T T ~ 283-3,) K TaTalj)d>, (2%)

The coniribution to Eq. (20) is equal to

d
3-3,1 (24)
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The inner integral in (24) is equal to

j ot [N 2 Jog mr

l}',ll (25)

(with a logarithm acouracy)n



Inner integrsls for the two other domains (22) are equal to

j%l:].ﬂ.n.losmr (26)

As a result, we can rewrite {20) as

8‘3’ los mr S" iL

(q',nz)'& . ko j‘_ << Ta Ta f§)>>' (27)

According to Eqe {15) this expression is equal to
[ 9
- 23 d
gz (log mr) ?rt-

up to an addendum, which is proporiional to kof and must cancel ko depen--

dent terms in the equation. So we come to the equation

“-f-=-i’—§-iw3,—uagmn§£.

dr 4nr

(28)

Its soclution

L -3/8
r )
1+ 2 Joq mr
( ae leg mr) (29)
implies (3) to be valid. For a theory with N ¢ fields, we have to
replace =3%/8 - =N/8 in (29). It is interesting that here we have no

leading-log exponentiation.
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