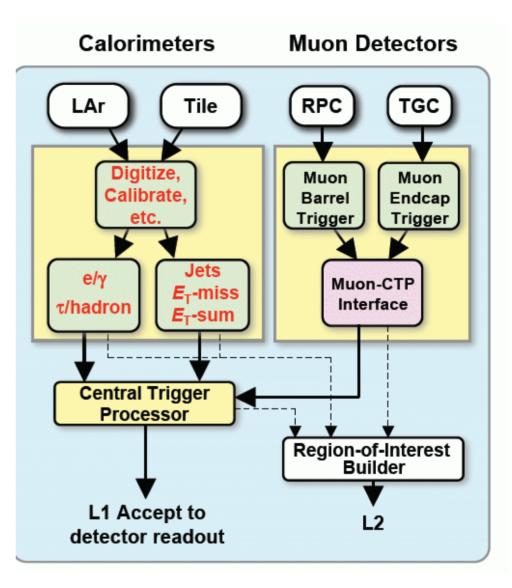
Overview of current ATLAS L1 trigger and plans for Phase 1 upgrades

Juraj Bracinik (University of Birmingham) for ATLAS TDAQ With useful comments from: O. Sasaki, M.Landon, B Barnett, N. Gee, A. Watson, ...

ACES 2011, CERN

- Introduction
- Overview of existing L1 trigger system
- Plans for Phase I upgrade

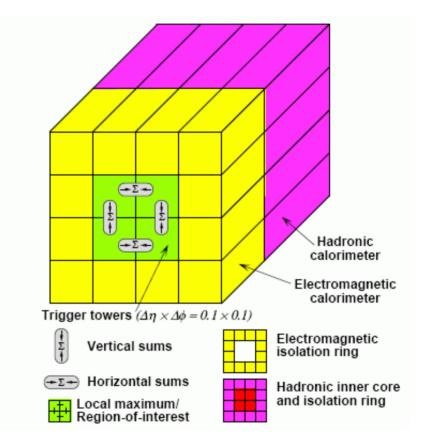


ACES, 9 March 2011

Structure of ATLAS L1 trigger

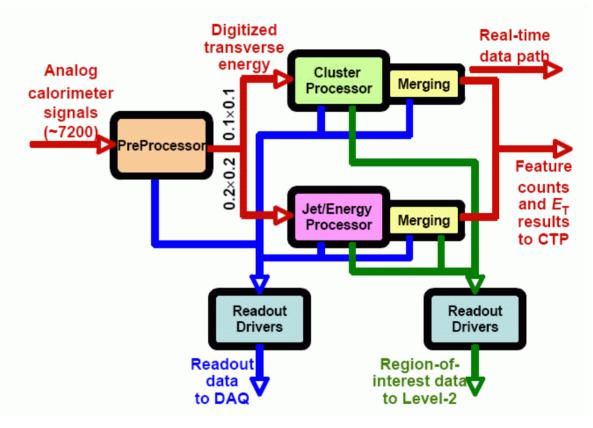
- Level-1
 - Custom built HW (ASICS and FPGAs)
 - Fixed latency < 2.5 μs, L1A~75 kHz</p>
- Level-2
 - ≁ CPU's
 - Full granularity for areas of activity marked by L1 (RoI)
 - Latency ~40 ms, L2 accept rate ~2kHz
- Event Filter (Level-3)
 - ✤ CPU's
 - Offline algorithms on full event
 - Latency~1s, EF accept rate~100Hz
- Level-1 trigger:
 - L1-Muons
 - L1-Calorimeters (L1Calo)
 - ♦ CTP

<u>م</u>


<u>L1 calorimeter trigger I</u>

Hard final state objects in an event:

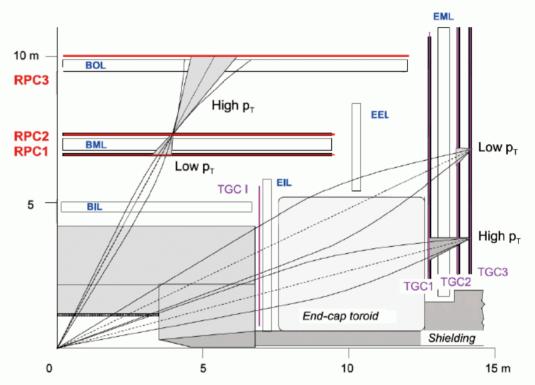
- e/γ and τ/h objects:
- Jet candidates:


Global event properties:

- Total E_T
- Missing $E_{_{T}}$
- Missing E_{T} significance
- Jet sum $E_{_{T}}$
- Sends to Central trigger:
 - Multiplicity of electrons/photons, τ's and jets passing thresholds
 - Thresholds passed by total and missing E_{τ} and missing E_{τ} significance
- Sends to Level 2 trigger:
 - position of RoIs and thresholds passed

L1 calorimeter trigger II

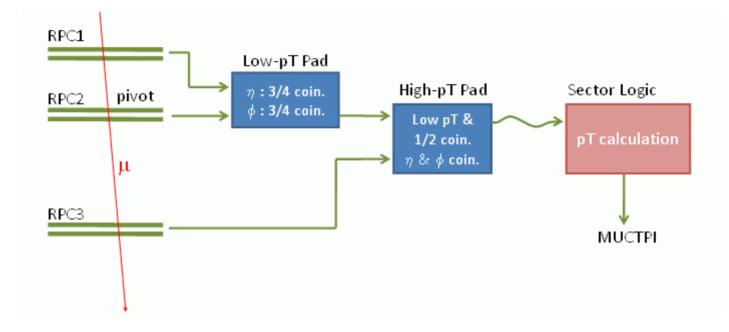
- Highly parallel, FPGA based
- Mainly custom electronics:
 - ~300 VME modules of 10 types housed in 17 crates
- Real-time path:
 - Preprocessor:
 - Conditioning and calibration of analog signals, digitization, bunch crossing identification
 - Algorithmic processors:
 - Cluster processor:
 - Electrons/photons, taus
 - Jet/Energy processor:
 - jets, E_{τ} , Missing E_{τ}
 - Number of objects found is sent to merger modules, these calculate system-wide sums



Level 1 muon trigger I

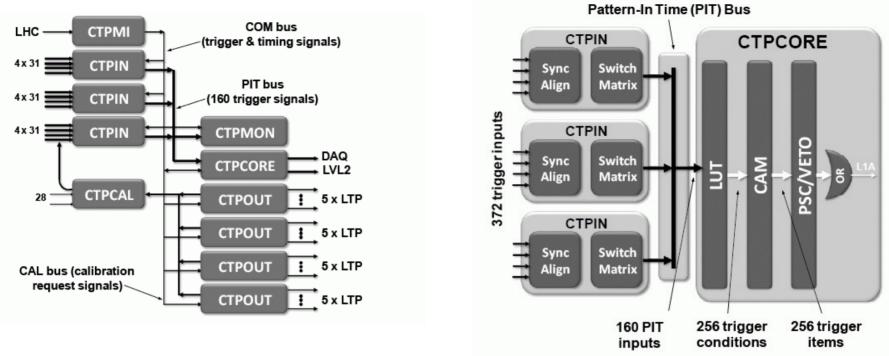
Dedicated muon trigger chambers with good time resolution:

- RPCs (barrel region)
- TGCs (endcap regions)
 - Search for patterns of hits consistent with high P_T muons coming from IP
- Three trigger stations in each region, require coincidence of hits in different stations within a road
- Width of the road defines P_T
 threshold passed
- Low P_{T} trigger:
 - Requires coincidences in two stations
 - Three thresholds


Juraj Bracinik

High P_{T} trigger:

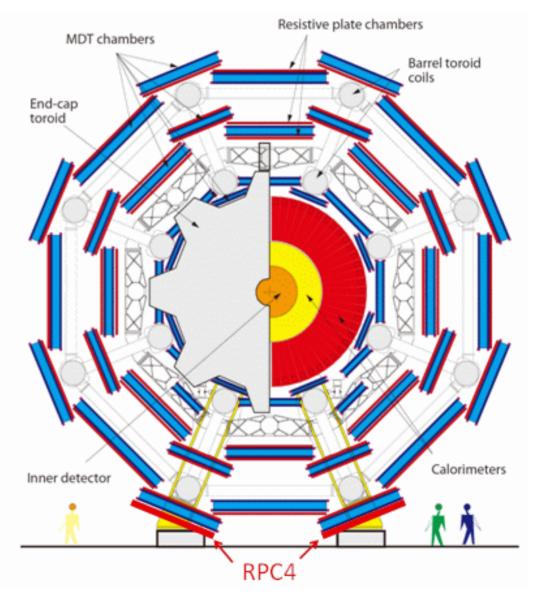
- Requires coincidences in three stations
- Three thresholds


Level 1 muon trigger II

- Each successful hit generates an RoI for L2
- Multiplicities of hits for each threshold summed up
 - Over sectors
 - Over whole system
 - Sent to Central Trigger

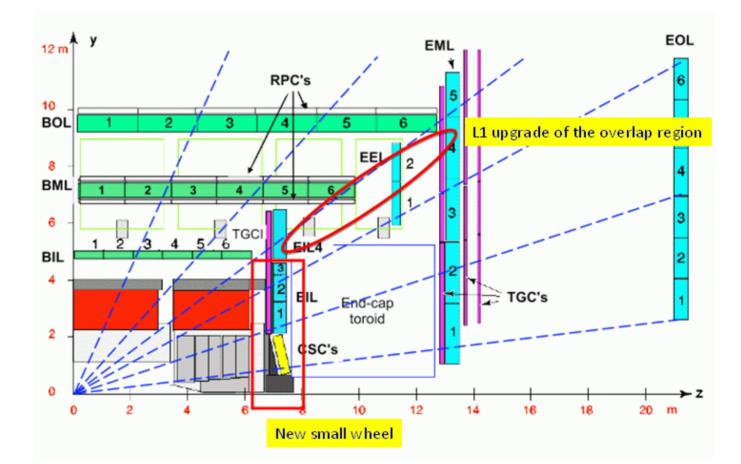
More details in talk by Osamu Sasaki

L1 central trigger


- One custom VME crate
- Input signals received and synchronized by CTPIN modules (372 trigger inputs possible)
- Selected combination of signals distributed via PIT bus (160 of them maximum)
- Received by CTPCORE module, there trigger items generated (using LUT's and CAMs)
- Prescaling, dead time, ...
- Generate L1A (well, sometimes...)

Juraj Bracinik

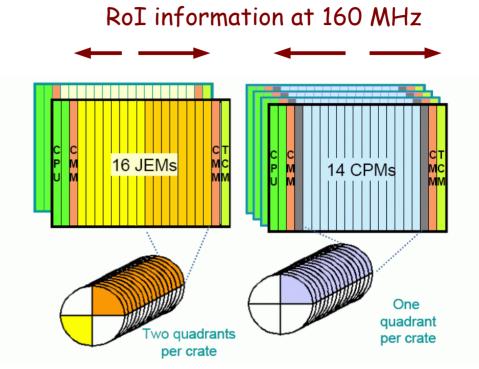
<u>Muon trigger upgrade – barrel</u>


Barrel region:

- L1 muon trigger
 efficiency in the feet
 sectors is lower than one
 in standard sectors
- To improve the efficiency, a fourth layer of RPC (RPC4) has been installed
- Upgrade of electronics is ongoing

<u>Muon trigger upgrade – endcaps</u>

- Replace small
 wheels in endcap
 regions
- Several
 technologies are
 discussed (sTGC,
 RPC, microMegas,
 sMDT) to provide
 L1 trigger
- Possibly additional chambers in overlap region



More details in talk by Osamu Sasaki

Calorimeter trigger upgrade I

Phase 1 L1Calo upgrade:

- plan to replace MCMs for PreProcessor, improved BCID and pedestal subtraction
- No change to trigger algorithms
- Main gain in performance expected from adding more information to L1 path
- Use topology of identified objects!

- Processor modules (CPMs, JEMs) know position of object
- Raise backplane bandwidth by running it at 160 MHz
- Allows RoI coordinates, maybe some energies to be sent in L1 realtime path to merger boards (CMMs)

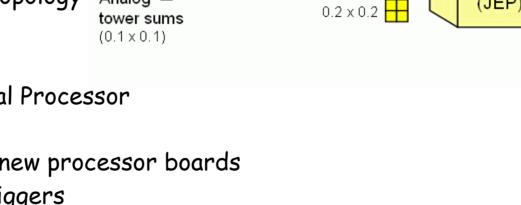
<u>Calorimeter trigger upgrade II</u>

0.1 x 0.1

Pre-

PPr)

Analog 🗖


Processor

E/γ τ/had clusters

(CP)

Clusters

- First step is to build new merger modules (CMM++)
 - Backward compatible with existing HW
 - More links, much higher bandwidth
 - allows some basic topology triggers
- Second step:
 - Add new Topological Processor
- Separate crate with new processor boards
- Use of topology in triggers
- Remove overlap between jet and electron triggers
- (Exciting) possibility to use μ information in TP:
 - μ isolation
 - Include μ in missing E_{τ} calculation

For more details see talk by Sam Silverstein

Muons

Jet / ΣE_{T}

(JEP)

Τo

CTP

TP

Jets

Energy results

to CTP?

Conclusions

Efficient and selective L1 trigger is important for data taking at upgraded LHC

Several R&D projects ongoing in ATLAS for Phase-I

L1 upgrade :

- L1Calo: add topology to L1
- Muons:
 - RPC4 stations in the feet regions (Phase 0 upgrade)
 - Replace small wheels in forward area
- Combine L1Calo and L1Muon information in topological processor