EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Search for Supersymmetry in pp Collisions at \sqrt{s} = 7 TeV in Events with Two Photons and Missing Transverse Energy

The CMS Collaboration*

Abstract

A search for supersymmetry in the context of general gauge-mediated (GGM) breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 pb⁻¹ recorded by the CMS experiment at the LHC. The search is performed using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for GGM supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.

Submitted to Physical Review Letters

^{*}See Appendix A for the list of collaboration members

Supersymmetry (SUSY), in particular the version based on gauge-mediated breaking [1–7], is of particular theoretical interest for physics beyond the standard model (SM). Supersymmetry stabilizes the mass of the SM Higgs boson, drives the grand unification of forces, and incorporates dark matter candidates within its framework. Previous searches for SUSY with gauge-mediated breaking [8–14] were performed using a minimal model [15] as a benchmark. In that model, in order to reduce the number of free parameters, several assumptions, including gaug-ino mass unification, are made. These assumptions lead to a mass hierarchy in which strongly interacting SUSY partners are much heavier than the lightest chargino and neutralino. For example, the current best lower limit on the neutralino mass [9] of 175 GeV corresponds to gluino and squark mass limits of well above 1 TeV. In the more general case, the masses of strongly interacting SUSY partners can be much lighter, leading to large production cross sections at the LHC, and allowing, even at low integrated luminosity, for the exploration of parameter space inaccessible at previous colliders.

In this Letter we consider a general gauge-mediation (GGM) SUSY scenario [16, 17], with the gravitino as the lightest SUSY particle (LSP) and the lightest neutralino as the next-to-lightest (NLSP). In the following, it is assumed that the neutralino decays promptly to a gravitino and a photon. Cases with either a large neutralino lifetime or a large branching fraction into a Z and a gravitino are not considered in this Letter. The gravitino escapes detection, leading to missing transverse energy (E_T^{miss}). If R-parity [18] is conserved, strongly-interacting SUSY particles are pair-produced. Their decay chain includes one or several quarks/gluons, and a neutralino, which in turn decays to a photon and a gravitino. The topology of interest for this search is, therefore, two or more isolated photons with large transverse energy (E_T), at least one hadronic jet, and large missing transverse energy E_T^{miss} .

A detailed description of the CMS detector can be found elsewhere [19]. The detector's central feature is a superconducting solenoid providing a 3.8 T axial magnetic field along the beam direction. Charged particle trajectories are measured by a silicon pixel and strip tracker system, covering $0 \le \phi \le 2\pi$ in azimuth and $|\eta| < 2.5$, where the pseudorapidity $\eta = -\ln \tan \theta/2$, and θ is the polar angle with respect to the counterclockwise beam direction. A lead-tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracker volume. For the barrel calorimeter ($|\eta| < 1.479$), the modules are arranged in projective towers. Muons are measured in gas detectors embedded in the steel return yoke of the magnet. The detector is nearly hermetic, allowing for reliable measurement of $E_{\rm T}^{\rm miss}$. In the 2010 collision data, photons with energy greater than 20 GeV are measured within the barrel ECAL with a resolution of better than 1%, which is dominated by intercalibration precision.

The data used in this analysis, corresponding to an integrated luminosity of 36 pb⁻¹, were recorded during the 2010 run at a center-of-mass energy (\sqrt{s}) of 7 TeV at the Large Hadron Collider (LHC) at CERN. A two-level trigger system was used, based on the presence of at least one photon with a minimum transverse energy of 30 GeV. This data sample is used for the selection of both signal candidates and control samples used for background estimation. The efficiency for offline selected events to pass the trigger is estimated to be above 99%.

The photon candidates are reconstructed from clusters of energy in the ECAL. Candidates are required to have $E_T \ge 30$ GeV and $|\eta| \le 1.4$. The ECAL cluster shape is required to be consistent with that expected from a photon, and the energy detected in the HCAL behind the photon shower is required not to exceed 5% of the ECAL energy. To suppress photons originating from quark/gluon hadronization, the photons are required to be isolated from other activity in the tracker, ECAL and HCAL. The scalar sums of transverse energies of tracks and calorimeter deposits within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ of the candidate's direction are determined, after

excluding the contribution from the candidate itself. These isolation sums are required to be $\leq 0.001 \times E_{\rm T} + 2.0$ GeV, $0.006 \times E_{\rm T} + 4.2$ GeV, and $0.0025 \times E_{\rm T} + 2.2$ GeV, with $E_{\rm T}$ in GeV, for the tracker, ECAL, and HCAL, respectively.

Photons that fail either the shower shape or track isolation requirement are referred to as *fake photons*. Most of these fake photons are quarks/gluons that have hadronized predominantly to π^0 s decaying into photons. They are used for the background estimation derived from data.

The criteria above are efficient for selection of both electrons and photons. To separate them reliably, we search for hit patterns in the pixel detector consistent with a track from an electron (pixel match). The candidates with (without) pixel match are considered to be electrons (photons) [20]. Events in the signal sample (referred to below as the $\gamma\gamma$ sample) are required to have at least two photon candidates.

Jets are reconstructed from energy deposits in the calorimeters using the anti- k_T clustering algorithm [21] with a size parameter of 0.5. The jet energy is corrected using reconstructed tracks [22]. Selected jets must have $E_T \ge 30$ GeV and $|\eta| \le 2.6$. In addition, to separate real jets from anomalous HCAL signals, the fraction of energy contributed to the jet shower by the highest energy HCAL channels must be $\le 98\%$, the jet must have no single HCAL channel containing more than 90% of its total energy, and finally the ECAL energy fraction of the jet must be $\ge 1\%$. To be retained in the signal sample, events must contain at least one such jet isolated from both of the two highest- E_T photon candidates by $\Delta R \ge 0.9$.

The $E_{\rm T}^{\rm miss}$ is determined using calorimeter energy deposits. Corrections are applied by replacing calorimeter tower energies matched to charged hadrons and muons with their corresponding charged-track momenta [23].

Events are generated in the benchmark SUSY model [24] using PYTHIA 6.4 [25] in a threedimensional grid of the NLSP, gluino, and squark masses. The soft masses of the squarks are taken to be degenerate. Sleptons and all other gauginos except the NLSP are assigned a mass of 1.5 TeV. The QCD production cross section at NLO is calculated for these points using PROSPINO 2.1 [26], and is dominated by gluino-gluino, gluino-squark, and squark-squark production. The generated events are passed through the CMS detector simulation program, which is based on the GEANT4 [27] package, and reconstructed using the same program as for the collision data to ensure that all features of the data, such as trigger and reconstruction, are applied to the Monte Carlo (MC) simulated SUSY signal sample.

The SUSY signal can be mimicked in several ways. Irreducible backgrounds from SM processes such as $Z(\rightarrow \nu \bar{\nu})\gamma\gamma$ and $W(\rightarrow \ell \nu)\gamma\gamma$ are negligible. The main backgrounds arise from SM processes with misidentified photons and/or mismeasured E_T^{miss} . The dominant contribution comes from mismeasurement of E_T^{miss} in QCD processes such as direct diphoton, photon plus jets, and multijet production, with jets mimicking photons in the latter two cases. This background is referred to as the *QCD background*. The strategy for determining this background is to use control samples that are kinematically similar to the candidate sample and that can be reasonably assumed to have no significant genuine E_T^{miss} . Two such samples are used. The first is a sample containing two fake photons, referred to as the *ff* sample below, comprising QCD multijet events. The second (*ee*) sample contains events with two electrons [28] with invariant mass between 70 and 110 GeV, and is dominated by Z \rightarrow ee decays.

The $E_{\rm T}$ resolution for electrons and fake photons is similar to the resolution for photons and is much better than the resolution for hadronic energy, so the $E_{\rm T}^{\rm miss}$ resolution is dominated by the latter. The events in both control samples are reweighted to reproduce the diphoton transverse energy distribution in the candidate $\gamma\gamma$ sample and, therefore, the transverse energy of the hadronic recoil against the diphoton system; the reweighting factors range from 0.3 to 1.7. The shapes of the E_T^{miss} distributions obtained from both control samples are identical within the statistical and systematic uncertainties and are used to predict the E_T^{miss} background by normalizing to the number of events with $E_T^{\text{miss}} < 20$ GeV in the candidate sample.

The second background comes from events with real $E_{\rm T}^{\rm miss}$. It is dominated by events with a genuine or fake photon and a W that decays into a neutrino and an electron, with the latter misidentified as a photon. This background is referred to as the *electroweak background*. An electron is misidentified as a photon if it satisfies all the photon selection criteria but has no matching hit pattern in the pixel detector. To model this background, an e γ candidate sample is defined, selected the same way as the $\gamma\gamma$ sample but requiring at least one electron and at least one photon instead of at least two photons. This sample is thus enriched with $W\gamma$ and W plus jets events (with real $E_{\rm T}^{\rm miss}$) similar to those in the candidate $\gamma\gamma$ sample. The probability, $f_{e\to\gamma}$, to misidentify an electron as a photon is measured with $Z \to ee$ events to be $(1.4 \pm 0.4)\%$. The e γ sample is then weighted by $f_{e\to\gamma}/(1 - f_{e\to\gamma})$ in order to estimate the contribution of this background to the signal sample.

Finally, high-energy muons from cosmic rays or beam halo can deposit a large amount of energy in the ECAL, leading to events with two photon candidates and E_T^{miss} . These events are suppressed to a negligible level by the jet requirement described above.

The $E_{\rm T}^{\rm miss}$ distribution in the $\gamma\gamma$ sample is shown in Fig. 1, together with the estimates of the electroweak background and the total background using the QCD prediction from $Z \rightarrow$ ee and their uncertainties. Events with $E_{\rm T}^{\rm miss} \leq 20$ GeV have negligible SUSY signal contribution (0.022 \pm 0.009 event for the GGM SUSY sample point described below). The $E_{\rm T}^{\rm miss}$ distributions for the *ff* and *ee* samples are then scaled so that their integrals below 20 GeV match that of the $\gamma\gamma$ sample minus the estimated electroweak contribution. Their integrals above 50 GeV give predictions of the QCD background.

Table 1 summarizes the number of $\gamma\gamma$ events observed and the numbers of background events expected with $E_{\rm T}^{\rm miss} \geq 50$ GeV. The statistical and systematic uncertainties on the background predictions due to reweighting and normalization are shown separately. One event is observed, while the total background is expected to be 0.53 ± 0.37 (1.71 \pm 0.64) events using the *ff (ee)* samples and including the electroweak background. These two consistent estimates are averaged, using log-normal distributions as probability density functions while taking into account the common component from the electroweak background and the correlated uncertainty due to the normalization, to obtain a prediction of 1.2 ± 0.4 background events. An additional conservative systematic uncertainty of 0.7 events is assigned by taking the largest difference between the average and the individual measurements, resulting in a total background uncertainty of 0.8 events.

The efficiency for SUSY events to satisfy the selection criteria is determined by applying correction factors derived from the data to the MC simulation of the signal. Since there exists no large clean sample of isolated photons in the data, we rely on similarities between the detector response to electrons and photons to extract the photon efficiency. The difference between the efficiencies for electrons and photons according to the MC simulation is 0.5%. The ratio of the electron efficiency from $Z \rightarrow$ ee events that pass all photon identification criteria (except for the pixel match) to the corresponding electron MC efficiencies gives an MC efficiency scale factor of 0.967 \pm 0.015. This scale factor is applied to the efficiency to identify a photon from NLSP decay obtained with the MC simulation. The error on the scale factor also includes possible systematic effects from multiple interactions per bunch crossing (pile-up), estimated to be less than 1%. The additional uncertainty on the efficiency of the requirement for no pixel match for

Figure 1: E_T^{miss} distribution for $\gamma\gamma$ data, including the jet requirement, compared with backgrounds and a possible GGM SUSY signal. The solid circles with error bars represent the data. The double-hatched blue band represents the contribution of the electroweak background. The single-hatched red band shows the sum of the electroweak background with the QCD E_T^{miss} prediction obtained from the Z \rightarrow ee sample. The widths of the bands correspond to the sum of the statistical and systematic uncertainties on the backgrounds. The prediction of the GGM SUSY sample point described in the text is shown in the plot as the solid line histogram.

Table 1: The number of events with $E_T^{\text{miss}} \ge 50$ GeV from the $\gamma\gamma$ event sample as well as the predicted number of background events with $E_T^{\text{miss}} \ge 50$ GeV using either the fake-fake events or the Z \rightarrow ee data.

Туре	Number of	Stat	Reweight	Normalization
	events	error	error	error
$\gamma\gamma$ events	1			
Electroweak background estimate	0.04 ± 0.03	± 0.02	± 0.0	± 0.01
QCD background estimate (<i>ff</i>)	0.49 ± 0.37	± 0.36	± 0.06	± 0.07
QCD background estimate (ee)	1.67 ± 0.64	± 0.46	± 0.38	± 0.23
Total background (using ff)	0.53 ± 0.37			
Total background (using <i>ee</i>)	1.71 ± 0.64			
Combined total background	1.2 ± 0.8			
Expected from GGM sample point	8.0 ± 1.7			

a photon is estimated by varying the amount of tracker material in the detector simulation and is found to be equal to 0.5%. Other sources of systematic uncertainties in signal yield include the uncertainty on the integrated luminosity (11%) [29], parton distribution function (PDF) uncertainty (10-40%), and renormalization scale uncertainty (10-20%), depending on the SUSY masses.

As a cross check of the analysis method, in particular the determination of the QCD background contribution, the procedure is applied to a data sample selected in the same way as the $e\gamma$ sample described above, except that there is no requirement on the number of jets. The check consists of estimating the QCD background, events with no true E_T^{miss} , in a sample populated with both QCD and events from the two dominant SM processes, $W\gamma$ and W plus jets, which have true E_T^{miss} . An excess in the observed number of events with large E_T^{miss} over the estimated QCD background should be consistent with the yield from the W processes. The E_T^{miss} spectrum of the $e\gamma$ events is shown in Fig. 2 and exhibits a clear deviation from the predicted QCD background.

Figure 2: The $E_{\rm T}^{\rm miss}$ distribution of the e γ candidates (solid circles with error bars) is compared to the QCD expectation for this spectrum from $Z \rightarrow$ ee events (solid histogram). The W γ and W plus jet (with the jet misidentified as a photon) contributions are shown as dashed and dash-dotted histograms, respectively. The hatched red band represents the sum of all expected background components, and its width corresponds to the sum of the statistical and systematic uncertainties on the backgrounds.

This measurement and the estimated acceptance times efficiency are used to set upper limits on the gluino and squark production cross sections, employing a Bayesian method described in Ref. [30]. Both the log-normal and gamma priors are used to integrate over nuisance parameters in order to incorporate uncertainties on the total background rate, integrated luminosity, and total acceptance times efficiency. The observed 95% confidence level (CL) cross section limits, shown in Fig. 3, vary between 0.3 and 1.1 pb for a neutralino mass of 150 GeV as a function of squark and gluino masses. The variation in the limits is due to the dependence of the photon isolation efficiency on the number of jets in the event.

To illustrate the limit-setting procedure, a particular signal point, with a squark mass of 720 GeV, gluino mass of 720 GeV, and neutralino mass of 150 GeV, is considered. The NLO signal cross section for this point is 1.04 pb, the efficiency times acceptance is 0.203 ± 0.004 (stat) ± 0.008 (syst), and the PDF and scale uncertainties are each 13%. The upper limit obtained from this measurement is 0.585 pb, while the expected cross section upper limit at the 95% CL is 0.628 pb. The expected number of events for this SUSY sample point for an integrated luminosity of 36 pb⁻¹ is 8.0 ± 1.7 events. For comparison, the total NLO SUSY production cross section at the Tevatron for the same model point is 0.3 fb, leading to an expectation of less than half of an event for analysis [9].

The benchmark GGM model used in this Letter can be used to interpret these cross section limits as lower limits on squark and gluino masses. For each mass point we compare the predicted cross section with the measured upper limit and claim exclusion if the former is greater than the latter. The exclusion contours for three different choices of neutralino mass are shown in Fig. 4, together with the expected exclusion limit for a 150 GeV neutralino mass. The predicted cross section has uncertainties due to the choice of PDF and scale. We varied the predicted cross section by one standard deviation of its uncertainty to ascertain the impact on the exclusion region. The results for 150 GeV neutralino mass are presented as a shaded band around the central value of the exclusion contour.

In summary, a search for evidence of GGM SUSY production in events that contain two or more high transverse energy isolated photons, one or more jets, and large $E_{\rm T}^{\rm miss}$ is presented. No such evidence is observed, leading to upper limits on the GGM SUSY cross section between 0.3 and 1.1 pb at the 95% CL across the parameter space of a benchmark model, setting the world's best direct lower limits on squark and gluino masses.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

- [1] P. Fayet, "Mixing Between Gravitational and Weak Interactions Through the Massive Gravitino", *Phys. Lett.* **B70** (1977) 461. doi:10.1016/0370-2693(77)90414-2.
- [2] H. Baer, M. Brhlik, C. H. Chen et al., "Signals for the Minimal Gauge-Mediated Supersymmetry Breaking Model at the Fermilab Tevatron Collider", *Phys. Rev.* D55

Figure 3: 95% CL upper limits for GGM production cross section as a function of squark (\tilde{q}) and gluino (\tilde{g}) masses for a neutralino mass of 150 GeV.

Figure 4: Lower 95% CL exclusion limits on the squark (\tilde{q}) and gluino (\tilde{g}) masses in the GGM benchmark model for 50, 150, and 500 GeV neutralino ($\tilde{\chi}_1^0$) masses. The areas below and to the left of the lines are excluded. The expected exclusion limit for 150 GeV neutralino mass is shown by the dashed line. The shaded band represents ±1 standard deviation of theoretical uncertainty on the GGM cross section.

(1997) 4463. doi:10.1103/PhysRevD.55.4463.

- [3] H. Baer, P. G. Mercadante, X. Tata et al., "Reach of Tevatron Upgrades in Gauge-Mediated Supersymmetry Breaking Models", *Phys. Rev.* D60 (1999) 055001. doi:10.1103/PhysRevD.60.055001.
- [4] S. Dimopoulos, S. Thomas, and J. D. Wells, "Sparticle Spectroscopy and Electroweak Symmetry Breaking with Gauge-Mediated Supersymmetry Breaking", Nucl. Phys. B488 (1997) 39. doi:10.1016/S0550-3213(97)00030-8.
- [5] J. R. Ellis, J. L. Lopez, and D. V. Nanopoulos, "Analysis of LEP Constraints on Supersymmetric Models with a Light Gravitino", *Phys. Lett.* B394 (1997) 354. doi:10.1016/S0370-2693(97)00019-1.
- [6] M. Dine, A. Nelson, Y. Nir et al., "New Tools for Low Energy Dynamical Supersymmetry Breaking", Phys. Rev. D53 (1996) 2658. doi:10.1103/PhysRevD.53.2658.
- [7] G. F. Giudice and R. Rattazzi, "Gauge-Mediated Supersymmetry Breaking", in *Perspectives on Supersymmetry*, p. 355. World Scientific, Singapore, 1998.
- [8] T. Aaltonen et al., "Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events with Missing Transverse Energy at CDF II", *Phys. Rev. Lett.* 104 (2010) 011801. doi:10.1103/PhysRevLett.104.011801.
- [9] V. M. Abazov et al., "Search for Diphoton Events with Large Missing Transverse Energy in 6.3 fb⁻¹ of pp̄ Collisions at √s = 1.96 TeV", Phys. Rev. Lett. 105 (2010) 221802. doi:10.1103/PhysRevLett.105.221802.
- [10] A. Heister et al., "Search for Gauge Mediated SUSY Breaking Topologies in e⁺e⁻
 Collisions at Centre-of-Mass Energies up to 209 GeV", Eur. Phys. J. C25 (2002) 339.
 doi:10.1007/s10052-002-1005-z.
- [11] J. Abdallah et al., "Photon Events with Missing Energy in e⁺e[−] Collisions at √(s) = 130 to 209 GeV", Eur. Phys. J. C38 (2005) 395. doi:10.1140/epjc/s2004-02051-8.
- P. Achard et al., "Single- and Multi-Photon Events with Missing Energy in e⁺e⁻ Collisions at LEP", *Phys. Lett.* B587 (2004) 16. doi:10.1016/j.physletb.2004.01.010.
- [13] G. Abbiendi et al., "Search for Gauge-Mediated Supersymmetry Breaking Topologies in e⁺e⁻ Collisions at LEP2", Eur. Phys. J. C46 (2006) 307. doi:10.1140/epjc/s2006-02524-8.
- [14] A. Aktas et al., "Search for Light Gravitinos in Events with Photons and Missing Transverse Momentum at HERA", *Phys. Lett.* B616 (2005) 31. doi:10.1016/j.physletb.2005.04.038.
- B. C. Allanach, M. Battaglia, G. A. Blair et al., "The Snowmass Points and Slopes: Benchmarks for SUSY Searches", *Eur. Phys. J.* C25 (2002) 113. doi:10.1007/s10052-002-0949-3.
- P. Meade, N. Seiberg, and D. Shih, "General Gauge Mediation", Prog. Theor. Phys. Suppl. 177 (2009) 143. doi:10.1143/PTPS.177.143.

- [17] M. Buican, P. Meade, N. Seiberg et al., "Exploring General Gauge Mediation", JHEP 0903 (2009) 016. doi:10.1088/1126-6708/2009/03/016.
- [18] G. R. Farrar and P. Fayet, "Phenomenology of the Production, Decay, and Detection of New Hadronic States Associated with Supersymmetry", *Phys. Lett.* B76 (1978) 575. doi:10.1016/0370-2693(78)90858-4.
- [19] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 03 (2008) S08004. doi:10.1088/1748-0221/3/08/S08004.
- [20] CMS Collaboration, "Photon reconstruction and identification at \sqrt{s} = 7 TeV", CMS *Physics Analysis Summary* CMS-PAS-EGM-10-005 (2010).
- [21] M. Cacciari, G. P. Salam, and G. Soyez, "The anti-kt jet clustering algorithm", JHEP 0804 (2008) 063. doi:10.1088/1126-6708/2008/04/063.
- [22] CMS Collaboration, "Jet Performance in pp Collisions at \sqrt{s} =7 TeV", CMS Physics Analysis Summary CMS-PAS-JME-10-003 (2010).
- [23] CMS Collaboration, "Missing Transverse Energy Performance in Minimum-Bias and Jet Events from Proton-Proton Collisions at $\sqrt{s} = 7$ TeV", CMS Physics Analysis Summary CMS-PAS-JME-10-004 (2010).
- [24] LHC New Physics Working Group, "Simplified Models for LHC New Physics Searches". June, 2010.
- [25] T. Sjöstrand, S. Mrenna, and P. Z. Skands, "PYTHIA 6.4 Physics and Manual; v6.420, tune D6T", JHEP 05 (2006) 026. doi:10.1088/1126-6708/2006/05/026.
- [26] W. Beenakker, R. Höpker, M. Spira et al., "Squark and Gluino Production at Hadron Colliders", Nucl. Phys. B492 (1997) 51. doi:10.1016/S0550-3213(97)80084-9.
- [27] J. Allison et al., "Geant4 development and applications", IEEE Trans. Nucl. Sci. 53 (2006) 270. doi:10.1109/TNS.2006.869826.
- [28] CMS Collaboration, "Electron Reconstruction and Identification at $\sqrt{s} = 7$ TeV", CMS *Physics Analysis Summary* CMS-PAS-EGM-10-004 (2010).
- [29] CMS Collaboration, "Measurement of CMS Luminosity", CMS Physics Analysis Summary CMS-PAS-EWK-10-004 (2010).
- [30] K. Nakamura et al., "The Bayesian approach", J. Phys. G **37, Section 33.1.4** (2010) 075021. doi:10.1088/0954-3899/37/7A/075021.

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer¹, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, G. Kasieczka, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, H. Rohringer, R. Schöfbeck, J. Strauss, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

L. Benucci, E.A. De Wolf, X. Janssen, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D'Hondt, O. Devroede, R. Gonzalez Suarez, A. Kalogeropoulos, J. Maes, M. Maes, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium

O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium

V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, G. Bruno, J. Caudron, L. Ceard, E. Cortina Gil, J. De Favereau De Jeneret, C. Delaere¹, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, F. Torres Da Silva De Araujo

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

F.A. Dias, T.R. Fernandez Perez Tomei, E. M. Gregores², C. Lagana, F. Marinho, P.G. Mercadante², S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

N. Darmenov¹, L. Dimitrov, V. Genchev¹, P. Iaydjiev¹, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov

University of Sofia, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, L. Zhang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia A. Cabrera, B. Gomez Moreno, A.A. Ocampo Rios, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia N. Godinovic, D. Lelas, K. Lelas, R. Plestina³, D. Polic, I. Puljak

University of Split, Split, Croatia Z. Antunovic, M. Dzelalija

Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, S. Duric, K. Kadija, S. Morovic

University of Cyprus, Nicosia, Cyprus A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran⁴, S. Khalil⁵, M.A. Mahmoud⁶

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane

Department of Physics, University of Helsinki, Helsinki, Finland V. Azzolini, P. Eerola, G. Fedi

Helsinki Institute of Physics, Helsinki, Finland

S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France

D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj⁷, C. Broutin, P. Busson, C. Charlot, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux, B. Wyslouch⁸, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram⁹, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte⁹, F. Drouhin⁹, C. Ferro, J.-C. Fontaine⁹, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim⁹, A.-C. Le Bihan, Y. Mikami, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France

F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

C. Baty, S. Beauceron, N. Beaupere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene, H. Brun, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

G. Anagnostou, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, N. Mohr, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, M. Weber, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, W. Bender, E. Dietz-Laursonn, M. Erdmann, J. Frangenheim, T. Hebbeker, A. Hinzmann, K. Hoepfner, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske[†], C. Magass, M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, M. Tonutti

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Bontenackels, M. Davids, M. Duda, G. Flügge, H. Geenen, M. Giffels, W. Haj Ahmad, D. Heydhausen, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl, M. Thomas, D. Tornier, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, W. Behrenhoff, U. Behrens, M. Bergholz¹⁰, A. Bethani, K. Borras, A. Cakir, A. Campbell, E. Castro, D. Dammann, G. Eckerlin, D. Eckstein, A. Flossdorf, G. Flucke, A. Geiser, J. Hauk, H. Jung¹, M. Kasemann, I. Katkov¹¹, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann¹⁰, R. Mankel, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, J. Olzem, D. Pitzl, A. Raspereza, A. Raval, M. Rosin, R. Schmidt¹⁰, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, J. Tomaszewska, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, K. Kaschube, G. Kaussen, R. Klanner, J. Lange, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander,

H. Schettler, P. Schleper, M. Schröder, T. Schum, J. Schwandt, H. Stadie, G. Steinbrück, J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, J. Bauer, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Gruschke, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, D. Piparo, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, V. Zhukov¹¹, E.B. Ziebarth

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece

G. Daskalakis, T. Geralis, K. Karafasoulis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece L. Gouskos, T.J. Mertzimekis, A. Panagiotou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu¹, P. Hidas, D. Horvath¹², A. Kapusi, K. Krajczar¹³, F. Sikler¹, G.I. Veres¹³, G. Vesztergombi¹³

Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J.B. Singh, S.P. Singh

University of Delhi, Delhi, India

S. Ahuja, S. Bhattacharya, B.C. Choudhary, P. Gupta, S. Jain, S. Jain, A. Kumar, K. Ranjan, R.K. Shivpuri

Bhabha Atomic Research Centre, Mumbai, India R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty¹, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India

T. Aziz, M. Guchait¹⁴, A. Gurtu, M. Maity¹⁵, D. Majumder, G. Majumder, K. Mazumdar, G.B. Mohanty, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India

S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

H. Arfaei, H. Bakhshiansohi¹⁶, S.M. Etesami, A. Fahim¹⁶, M. Hashemi, A. Jafari¹⁶, M. Khakzad, A. Mohammadi¹⁷, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali¹⁸

INFN Sezione di Bari^{*a*}, Università di Bari^{*b*}, Politecnico di Bari^{*c*}, Bari, Italy

M. Abbrescia^{*a*,*b*}, L. Barbone^{*a*,*b*}, C. Calabria^{*a*,*b*}, A. Colaleo^{*a*}, D. Creanza^{*a*,*c*}, N. De Filippis^{*a*,*c*,1},

M. De Palma^{*a,b*}, L. Fiore^{*a*}, G. Iaselli^{*a,c*}, L. Lusito^{*a,b*}, G. Maggi^{*a,c*}, M. Maggi^{*a*}, N. Manna^{*a,b*}, B. Marangelli^{*a,b*}, S. My^{*a,c*}, S. Nuzzo^{*a,b*}, N. Pacifico^{*a,b*}, G.A. Pierro^{*a*}, A. Pompili^{*a,b*}, G. Pugliese^{*a,c*}, F. Romano^{*a,c*}, G. Roselli^{*a,b*}, G. Selvaggi^{*a,b*}, L. Silvestris^{*a*}, R. Trentadue^{*a*}, S. Tupputi^{*a,b*}, G. Zito^{*a*}

INFN Sezione di Bologna^{*a*}, Università di Bologna^{*b*}, Bologna, Italy

G. Abbiendi^{*a*}, A.C. Benvenuti^{*a*}, D. Bonacorsi^{*a*}, S. Braibant-Giacomelli^{*a*,*b*}, L. Brigliadori^{*a*}, P. Capiluppi^{*a*,*b*}, A. Castro^{*a*,*b*}, F.R. Cavallo^{*a*}, M. Cuffiani^{*a*,*b*}, G.M. Dallavalle^{*a*}, F. Fabbri^{*a*}, A. Fanfani^{*a*,*b*}, D. Fasanella^{*a*}, P. Giacomelli^{*a*}, M. Giunta^{*a*}, S. Marcellini^{*a*}, G. Masetti, M. Meneghelli^{*a*,*b*}, A. Montanari^{*a*}, F.L. Navarria^{*a*,*b*}, F. Odorici^{*a*}, A. Perrotta^{*a*}, F. Primavera^{*a*}, A.M. Rossi^{*a*,*b*}, T. Rovelli^{*a*,*b*}, G. Siroli^{*a*,*b*}, R. Travaglini^{*a*,*b*}

INFN Sezione di Catania^{*a*}, Università di Catania^{*b*}, Catania, Italy

S. Albergo^{*a,b*}, G. Cappello^{*a,b*}, M. Chiorboli^{*a,b*,1}, S. Costa^{*a,b*}, A. Tricomi^{*a,b*}, C. Tuve^{*a*}

INFN Sezione di Firenze^{*a*}, Università di Firenze^{*b*}, Firenze, Italy

G. Barbagli^{*a*}, V. Ciulli^{*a*,*b*}, C. Civinini^{*a*}, R. D'Alessandro^{*a*,*b*}, E. Focardi^{*a*,*b*}, S. Frosali^{*a*,*b*}, E. Gallo^{*a*}, S. Gonzi^{*a*,*b*}, P. Lenzi^{*a*,*b*}, M. Meschini^{*a*}, S. Paoletti^{*a*}, G. Sguazzoni^{*a*}, A. Tropiano^{*a*,1}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, S. Colafranceschi¹⁹, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy

P. Fabbricatore, R. Musenich

INFN Sezione di Milano-Biccoca^{*a*}, Università di Milano-Bicocca^{*b*}, Milano, Italy

A. Benaglia^{a,b}, F. De Guio^{a,b,1}, L. Di Matteo^{a,b}, A. Ghezzi^{a,b}, S. Malvezzi^a, A. Martelli^{a,b},
A. Massironi^{a,b}, D. Menasce^a, L. Moroni^a, M. Paganoni^{a,b}, D. Pedrini^a, S. Ragazzi^{a,b},
N. Redaelli^a, S. Sala^a, T. Tabarelli de Fatis^{a,b}, V. Tancini^{a,b}

INFN Sezione di Napoli^{*a*}, Università di Napoli "Federico II"^{*b*}, Napoli, Italy

S. Buontempo^{*a*}, C.A. Carrillo Montoya^{*a*,1}, N. Cavallo^{*a*,20}, A. De Cosa^{*a*,*b*}, F. Fabozzi^{*a*,20}, A.O.M. Iorio^{*a*,1}, L. Lista^{*a*}, M. Merola^{*a*,*b*}, P. Paolucci^{*a*}

INFN Sezione di Padova^{*a*}, Università di Padova^{*b*}, Università di Trento (Trento)^{*c*}, Padova, Italy

P. Azzi^a, N. Bacchetta^a, P. Bellan^{a,b}, D. Bisello^{a,b}, A. Branca^a, R. Carlin^{a,b}, P. Checchia^a,
M. De Mattia^{a,b}, T. Dorigo^a, U. Dosselli^a, F. Fanzago^a, F. Gasparini^{a,b}, U. Gasparini^{a,b},
S. Lacaprara^{a,21}, I. Lazzizzera^{a,c}, M. Margoni^{a,b}, M. Mazzucato^a, A.T. Meneguzzo^{a,b},
M. Nespolo^{a,1}, L. Perrozzi^{a,1}, N. Pozzobon^{a,b}, P. Ronchese^{a,b}, F. Simonetto^{a,b}, E. Torassa^a,
M. Tosi^{a,b}, S. Vanini^{a,b}, P. Zotto^{a,b}, G. Zumerle^{a,b}

INFN Sezione di Pavia^{*a*}, Università di Pavia^{*b*}, Pavia, Italy

P. Baesso^{*a*,*b*}, U. Berzano^{*a*}, S.P. Ratti^{*a*,*b*}, C. Riccardi^{*a*,*b*}, P. Torre^{*a*,*b*}, P. Vitulo^{*a*,*b*}, C. Viviani^{*a*,*b*}

INFN Sezione di Perugia^{*a*}, Università di Perugia^{*b*}, Perugia, Italy

M. Biasini^{*a,b*}, G.M. Bilei^{*a*}, B. Caponeri^{*a,b*}, L. Fanò^{*a,b*}, P. Lariccia^{*a,b*}, A. Lucaroni^{*a,b,1*}, G. Mantovani^{*a,b*}, M. Menichelli^{*a*}, A. Nappi^{*a,b*}, F. Romeo^{*a,b*}, A. Santocchia^{*a,b*}, S. Taroni^{*a,b,1*}, M. Valdata^{*a,b*}

INFN Sezione di Pisa^{*a*}, **Università di Pisa**^{*b*}, **Scuola Normale Superiore di Pisa**^{*c*}, **Pisa, Italy** P. Azzurri^{*a,c*}, G. Bagliesi^{*a*}, J. Bernardini^{*a,b*}, T. Boccali^{*a*,1}, G. Broccolo^{*a,c*}, R. Castaldi^{*a*}, R.T. D'Agnolo^{*a,c*}, R. Dell'Orso^{*a*}, F. Fiori^{*a,b*}, L. Foà^{*a,c*}, A. Giassi^{*a*}, A. Kraan^{*a*}, F. Ligabue^{*a,c*}, T. Lomtadze^{*a*}, L. Martini^{*a*,22}, A. Messineo^{*a,b*}, F. Palla^{*a*}, G. Segneri^{*a*}, A.T. Serban^{*a*}, P. Spagnolo^{*a*}, R. Tenchini^{*a*}, G. Tonelli^{*a,b*,1}, A. Venturi^{*a*,1}, P.G. Verdini^{*a*}

INFN Sezione di Roma^{*a*}, Università di Roma "La Sapienza" ^{*b*}, Roma, Italy

L. Barone^{*a,b*}, F. Cavallari^{*a*}, D. Del Re^{*a,b*}, E. Di Marco^{*a,b*}, M. Diemoz^{*a*}, D. Franci^{*a,b*}, M. Grassi^{*a*,1}, E. Longo^{*a,b*}, S. Nourbakhsh^{*a*}, G. Organtini^{*a,b*}, F. Pandolfi^{*a,b*,1}, R. Paramatti^{*a*}, S. Rahatlou^{*a,b*}

INFN Sezione di Torino ^{*a*}, Università di Torino ^{*b*}, Università del Piemonte Orientale (Novara) ^{*c*}, Torino, Italy

N. Amapane^{*a,b*}, R. Arcidiacono^{*a,c*}, S. Argiro^{*a,b*}, M. Arneodo^{*a,c*}, C. Biino^{*a*}, C. Botta^{*a,b*,1}, N. Cartiglia^{*a*}, R. Castello^{*a,b*}, M. Costa^{*a,b*}, N. Demaria^{*a*}, A. Graziano^{*a,b*,1}, C. Mariotti^{*a*}, M. Marone^{*a,b*}, S. Maselli^{*a*}, E. Migliore^{*a,b*}, G. Mila^{*a,b*}, V. Monaco^{*a,b*}, M. Musich^{*a,b*}, M.M. Obertino^{*a,c*}, N. Pastrone^{*a*}, M. Pelliccioni^{*a,b*}, A. Romero^{*a,b*}, M. Ruspa^{*a,c*}, R. Sacchi^{*a,b*}, V. Sola^{*a,b*}, A. Solano^{*a,b*}, A. Staiano^{*a*}, A. Vilela Pereira^{*a,b*}

INFN Sezione di Trieste^{*a*}, Università di Trieste^{*b*}, Trieste, Italy

S. Belforte^{*a*}, F. Cossutti^{*a*}, G. Della Ricca^{*a*,*b*}, B. Gobbo^{*a*}, D. Montanino^{*a*,*b*}, A. Penzo^{*a*}

Kangwon National University, Chunchon, Korea S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea

S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro, D. Son, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

Zero Kim, J.Y. Kim, S. Song

Korea University, Seoul, Korea

S. Choi, B. Hong, M.S. Jeong, M. Jo, H. Kim, J.H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, H.B. Rhee, E. Seo, S. Shin, K.S. Sim

University of Seoul, Seoul, Korea

M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martisiute, P. Petrov, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, R. Lopez-Fernandez, R. Magaña Villalba, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland

T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Musella, A. Nayak, J. Seixas, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, I. Belotelov, P. Bunin, I. Golutvin, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, V. Kaftanov[†], M. Kossov¹, A. Krokhotin, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

E. Boos, M. Dubinin²³, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, S. Bitioukov, V. Grishin¹, V. Kachanov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, S. Slabospitsky, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic²⁴, M. Djordjevic, D. Krpic²⁴, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cepeda, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini²⁵, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez²⁶, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell²⁷, D. Benedetti, C. Bernet³, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, M. Bona, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara, J.A. Coarasa Perez, B. Curé, D. D'Enterria, A. De Roeck, S. Di Guida, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi, S. Gennai, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido, M. Gouzevitch, P. Govoni, S. Gowdy, L. Guiducci, M. Hansen, C. Hartl, J. Harvey, J. Hegeman, B. Hegner, H.F. Hoffmann, A. Honma, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, P. Lecoq, C. Lourenço, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, A. Maurisset, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold¹, M. Nguyen, T. Orimoto, L. Orsini, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, G. Polese, A. Racz, J. Rodrigues Antunes, G. Rolandi²⁸, T. Rommerskirchen, C. Rovelli²⁹, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, I. Segoni, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas³⁰, M. Spiropulu²³, M. Stoye, P. Tropea, A. Tsirou, P. Vichoudis, M. Voutilainen, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille³¹, A. Starodumov³²

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

P. Bortignon, L. Caminada³³, N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar, J. Eugster, K. Freudenreich, C. Grab, A. Hervé, W. Hintz, P. Lecomte, W. Lustermann, C. Marchica³³, P. Martinez Ruiz del Arbol, P. Meridiani, P. Milenovic³⁴, F. Moortgat, C. Nägeli³³, P. Nef, F. Nessi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, M.-C. Sawley, B. Stieger, L. Tauscher[†], A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universität Zürich, Zurich, Switzerland

E. Aguiló, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, R. Volpe, J.H. Wu, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, J.G. Shiu, Y.M. Tzeng, M. Wang

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci³⁵, S. Cerci³⁶, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, A. Kayis Topaksu, A. Nart, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut³⁷, D. Sunar Cerci³⁶, B. Tali, H. Topakli³⁵, D. Uzun, L.N. Vergili, M. Vergili, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliev, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

M. Deliomeroglu, D. Demir³⁸, E. Gülmez, B. Isildak, M. Kaya³⁹, O. Kaya³⁹, S. Ozkorucuklu⁴⁰, N. Sonmez⁴¹

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Bostock, J.J. Brooke, T.L. Cheng, E. Clement, D. Cussans, R. Frazier, J. Goldstein, M. Grimes, M. Hansen, D. Hartley, G.P. Heath, H.F. Heath, J. Jackson, L. Kreczko, S. Metson, D.M. Newbold⁴², K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, S. Ward

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso⁴³, K.W. Bell, A. Belyaev⁴³, C. Brew, R.M. Brown, B. Camanzi, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, J. Ballin, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, B.C. MacEvoy, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko³², A. Papageorgiou, M. Pesaresi, K. Petridis, M. Pioppi⁴⁴, D.M. Raymond, S. Rogerson, N. Rompotis, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, S. Tourneur, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, D. Wardrope, T. Whyntie

Brunel University, Uxbridge, United Kingdom

M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu

Baylor University, Waco, USA

K. Hatakeyama

Boston University, Boston, USA

T. Bose, E. Carrera Jarrin, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA

A. Avetisyan, S. Bhattacharya, J.P. Chou, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA

R. Breedon, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, P.T. Cox, J. Dolen, R. Erbacher, E. Friis, W. Ko, A. Kopecky, R. Lander, H. Liu, S. Maruyama, T. Miceli,

M. Nikolic, D. Pellett, J. Robles, S. Salur, T. Schwarz, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, C. Veelken

University of California, Los Angeles, Los Angeles, USA

V. Andreev, K. Arisaka, D. Cline, R. Cousins, A. Deisher, J. Duris, S. Erhan, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein[†], J. Tucker, V. Valuev

University of California, Riverside, Riverside, USA

J. Babb, A. Chandra, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, S.C. Kao, F. Liu, H. Liu, O.R. Long, A. Luthra, H. Nguyen, B.C. Shen[†], R. Stringer, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA

W. Andrews, J.G. Branson, G.B. Cerati, E. Dusinberre, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, H. Pi, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA

D. Barge, R. Bellan, C. Campagnari, M. D'Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, J.R. Vlimant

California Institute of Technology, Pasadena, USA

A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, K. Shin, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

J.P. Cumalat, M.E. Dinardo, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner, S.L. Zang

Cornell University, Ithaca, USA

L. Agostino, J. Alexander, D. Cassel, A. Chatterjee, S. Das, N. Eggert, L.K. Gibbons, B. Heltsley, W. Hopkins, A. Khukhunaishvili, B. Kreis, G. Nicolas Kaufman, J.R. Patterson, D. Puigh, A. Ryd, E. Salvati, X. Shi, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA

A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, M. Atac, J.A. Bakken, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, F. Borcherding, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, W. Cooper, D.P. Eartly, V.D. Elvira, S. Esen, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, D. Green, K. Gunthoti, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, H. Jensen, M. Johnson, U. Joshi, R. Khatiwada, B. Klima, K. Kousouris, S. Kunori, S. Kwan, C. Leonidopoulos, P. Limon, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, T. Miao, K. Mishra, S. Mrenna, Y. Musienko⁴⁵, C. Newman-Holmes, V. O'Dell, R. Pordes, O. Prokofyev, N. Saoulidou, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan,

L. Taylor, S. Tkaczyk, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA

D. Acosta, P. Avery, D. Bourilkov, M. Chen, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, K. Matchev, G. Mitselmakher, L. Muniz, C. Prescott, R. Remington, M. Schmitt, B. Scurlock, P. Sellers, N. Skhirtladze, M. Snowball, D. Wang, J. Yelton, M. Zakaria

Florida International University, Miami, USA

C. Ceron, V. Gaultney, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, D. Mesa, J.L. Rodriguez

Florida State University, Tallahassee, USA

T. Adams, A. Askew, D. Bandurin, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, L. Quertenmont, S. Sekmen, V. Veeraraghavan

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner, R. Cavanaugh, C. Dragoiu, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, G.J. Kunde⁴⁶, F. Lacroix, M. Malek, C. O'Brien, C. Silvestre, A. Smoron, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA

U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, C.K. Lae, E. McCliment, J.-P. Merlo, H. Mermerkaya⁴⁷, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA

B.A. Barnett, B. Blumenfeld, A. Bonato, C. Eskew, D. Fehling, G. Giurgiu, A.V. Gritsan, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, N.V. Tran, A. Whitbeck

The University of Kansas, Lawrence, USA

P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA

A.f. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze, Z. Wan

Lawrence Livermore National Laboratory, Livermore, USA

J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA

A. Baden, M. Boutemeur, S.C. Eno, D. Ferencek, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, Y. Lu, A.C. Mignerey, K. Rossato, P. Rumerio, F. Santanastasio, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA

B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, P. Everaerts,

G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee, W. Li, C. Loizides, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, E.A. Wenger, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA

S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, P.R. Dudero, G. Franzoni, J. Haupt, K. Klapoetke, Y. Kubota, J. Mans, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky

University of Mississippi, University, USA

L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA

K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, T. Kelly, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA

U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA

G. Alverson, E. Barberis, D. Baumgartel, O. Boeriu, M. Chasco, S. Reucroft, J. Swain, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA

A. Anastassov, A. Kubik, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA

L. Antonelli, D. Berry, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, J. Ziegler

The Ohio State University, Columbus, USA

B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

Princeton University, Princeton, USA

N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, A. Hunt, J. Jones, E. Laird, D. Lopes Pegna, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA

J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA

E. Alagoz, V.E. Barnes, G. Bolla, L. Borrello, D. Bortoletto, A. Everett, A.F. Garfinkel, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, C. Liu, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA

P. Jindal, N. Parashar

Rice University, Houston, USA

C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, H. Flacher, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, D. Orbaker, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian, M. Yan

Rutgers, the State University of New Jersey, Piscataway, USA

O. Atramentov, A. Barker, D. Duggan, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, R. Patel, A. Richards, K. Rose, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

J. Asaadi, R. Eusebi, J. Gilmore, A. Gurrola, T. Kamon, V. Khotilovich, R. Montalvo, C.N. Nguyen, I. Osipenkov, Y. Pakhotin, J. Pivarski, A. Safonov, S. Sengupta, A. Tatarinov, D. Toback, M. Weinberger

Texas Tech University, Lubbock, USA

N. Akchurin, C. Bardak, J. Damgov, C. Jeong, K. Kovitanggoon, S.W. Lee, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA

E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, M. Issah, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA

M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, R. Yohay

Wayne State University, Detroit, USA

S. Gollapinni, R. Harr, P.E. Karchin, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA

M. Anderson, M. Bachtis, J.N. Bellinger, D. Carlsmith, S. Dasu, J. Efron, K. Flood, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, F. Palmonari, D. Reeder, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg

†: Deceased

- 1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 2: Also at Universidade Federal do ABC, Santo Andre, Brazil
- 3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
- 4: Also at Suez Canal University, Suez, Egypt
- 5: Also at British University, Cairo, Egypt
- 6: Also at Fayoum University, El-Fayoum, Egypt
- 7: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
- 8: Also at Massachusetts Institute of Technology, Cambridge, USA

- 9: Also at Université de Haute-Alsace, Mulhouse, France
- 10: Also at Brandenburg University of Technology, Cottbus, Germany
- 11: Also at Moscow State University, Moscow, Russia
- 12: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 13: Also at Eötvös Loránd University, Budapest, Hungary
- 14: Also at Tata Institute of Fundamental Research HECR, Mumbai, India
- 15: Also at University of Visva-Bharati, Santiniketan, India
- 16: Also at Sharif University of Technology, Tehran, Iran
- 17: Also at Shiraz University, Shiraz, Iran
- 18: Also at Isfahan University of Technology, Isfahan, Iran
- 19: Also at Facoltà Ingegneria Università di Roma "La Sapienza", Roma, Italy
- 20: Also at Università della Basilicata, Potenza, Italy
- 21: Also at Laboratori Nazionali di Legnaro dell' INFN, Legnaro, Italy
- 22: Also at Università degli studi di Siena, Siena, Italy
- 23: Also at California Institute of Technology, Pasadena, USA
- 24: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
- 25: Also at University of California, Los Angeles, Los Angeles, USA
- 26: Also at University of Florida, Gainesville, USA
- 27: Also at Université de Genève, Geneva, Switzerland
- 28: Also at Scuola Normale e Sezione dell' INFN, Pisa, Italy
- 29: Also at INFN Sezione di Roma; Università di Roma "La Sapienza", Roma, Italy
- 30: Also at University of Athens, Athens, Greece
- 31: Also at The University of Kansas, Lawrence, USA
- 32: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 33: Also at Paul Scherrer Institut, Villigen, Switzerland
- 34: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 35: Also at Gaziosmanpasa University, Tokat, Turkey
- 36: Also at Adiyaman University, Adiyaman, Turkey
- 37: Also at Mersin University, Mersin, Turkey
- 38: Also at Izmir Institute of Technology, Izmir, Turkey
- 39: Also at Kafkas University, Kars, Turkey
- 40: Also at Suleyman Demirel University, Isparta, Turkey
- 41: Also at Ege University, Izmir, Turkey
- 42: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
- 43: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
- 44: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
- 45: Also at Institute for Nuclear Research, Moscow, Russia
- 46: Also at Los Alamos National Laboratory, Los Alamos, USA
- 47: Also at Erzincan University, Erzincan, Turkey