
Available on CMS information server CMS CR -2010/308

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
30 December 2010 (v3, 13 January 2011)

The evolution of CMS software performance
studies

Matti Kortelainen for the CMS Collaboration

Abstract

CMS has had an ongoing and dedicated effort to optimize software performance for several years.
Initially this effort focused primarily on the cleanup of many issues coming from basic C++ errors,
namely reducing dynamic memory churn, unnecessary copies/temporaries and tools to routinely mon-
itor these things. Over the past 1.5 years, however, the transition to 64bit, newer versions of the gcc
compiler, newer tools and the enabling of techniques like vectorization have made possible more so-
phisticated improvements to the software performance. This presentation will cover this evolution and
describe the current avenues being pursued for software performance, as well as the corresponding
gains.

Presented at CHEP2010: International Conference on Computing in High Energy and Nuclear Physics 2010



The evolution of CMS software performance studies

M J Kortelainen1, P Elmer2, G Eulisse3, V Innocente4, C D Jones3

and L Tuura3

1 Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland
2 Physics Department Princeton University, Jadwin Hall, Princeton NJ 08544, USA
3 Fermilab, P.O. Box 500, Batavia, IL 60510-5011, USA
4 CERN, Geneva, Switzerland

E-mail: matti.kortelainen@cern.ch

Abstract. CMS has had an ongoing and dedicated effort to optimize software performance for
several years. Initially this effort focused primarily on the cleanup of many issues coming from
basic C++ errors, namely reducing dynamic memory churn, unnecessary copies/temporaries
and tools to routinely monitor these things. Over the past 1.5 years, however, the transition
to 64bit, newer versions of the gcc compiler, newer tools and the enabling of techniques like
vectorization have made possible more sophisticated improvements to the software performance.
This presentation will cover this evolution and describe the current avenues being pursued for
software performance, as well as the corresponding gains.

1. Introduction
The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider [1] has
now collected data for the first year. The computing infrastructure has performed well for the
data taking, reconstruction and physics analysis. Nevertheless, the computing performance still
needs attention in order to use the resources efficiently. In general the computing performance
can be improved in two ways: by using more or faster resources, or by optimizing the software
to run faster. The latter aspect is considered in this paper.

A crucial part of the software optimization process is to measure the quantities of interest.
There are many quantities which can be measured, such as CPU time, memory allocations in
bytes or in number of allocations, CPU/wall clock time ratio, I/O rates and patterns, event
data size, application startup time, compilation time etc. Choosing the most relevant quantities
is problem-specific. In this paper we mainly focus on the CPU time since in our CPU bound
applications the wall clock time is dominated by it. We also focus on the memory allocations,
as there is a strong correlation between the CPU time and the number of allocations.

There are many issues in a software system where improvements can be considered during
the optimization process, for example the compiler, the implementation choices, and the design
choices and the overall architecture of the software system. The compiler plays an important
role in translating the higher level code to assembly or machine code. In the implementation
some important aspects for an efficient programming are the algorithms, memory allocations and
access patterns, and providing such high level program code that the compiler is able to generate
efficient assembly. In order to obtain optimum performance, the high level design has to match
the design of hardware architecture it is supposed to run on and performance measurements are



crucial to decide whether or not this is the case. In the era of modern multi-core and many-
core CPUs the parallelization of the software becomes more and more significant. This can be
achieved in several ways, for example by vectorization, multi-threading or multi-processing [2].

The paper is organized as follows. The evolution of the software performance studies in CMS
and our observations are discussed in Section 2. Section 3 describes the challenges experienced
in updating the CMS developed sampling profiler IgProf to the 64-bit x86-64 architecture.
Section 4 introduces the Intel Performance Tuning Utility (PTU) and our progress in learning
CPU performance events based analysis. Section 5 presents a new tool we have developed to
share PTU reports on the web in our collaboration. Section 6 gives a summary.

2. Performance analysis
The effort to study the performance of the CMS software started with a dedicated campaign, run
by a specially convened Task Force, for cleaning basic C++ errors and in particular to reduce
dynamic memory churn. Since then, the model of work has evolved to be more systematic
and has become an integral part of the software release process. Standard metrics have been
established by making performance measurements on selected physics samples and these are now
generated automatically as part of the twice-daily build procedure that integrates changes on a
continuous basis (the so-called Integration Builds) [3]. Metrics are produced for CPU usage and
memory footprint both as plain numbers and as IgProf profiles. These enable quick detection
of any significant regression in performance.

In the beginning it was observed that over 20 % of the CPU time was being spent in memory
allocation and deallocation [4]. Common causes for this dynamic memory churn originated
from confusion in how std::vector works, the copying of large structures, dynamic memory
allocation in tight loops, allocation of numerous tiny objects, having multiple copies of objects
in memory, and using strings in inappropriate places. Routine monitoring has also helped to
find these defects before they are included in the production releases.

Another common cause of software inefficiency has been the code size. Typical CMS
applications have from about 500 to over 1000 shared libraries. We have seen in the previous
studies [4, 5] that code bloat may be adversely influencing with the CPU memory hierarchy and
thereby affecting CPU performance. We are therefore now starting tests in which software is
packaged in a small number of large big binaries, such that shared libraries are used only for
the external libraries.

We are also studying other factors that may influence performance, namely 64-bit
architectures, the GCC compiler version update and vectorization. We are planning to change
the production architecture of the CMS software from the 32-bit x86 architecture to the 64-bit
x86-64 architecture, because we have seen improvements of 5–20 % in CPU time, as compared to
32-bit. The reasons for the improvement include that the x86-64 architecture provides more, and
wider, registers and suffers from a smaller function call overhead, as compared to the 32-bit x86
architecture. The architecture update also includes the transition from the x87 math instruction
set to SSE (Streaming SIMD Extensions), which significantly speeds up for virtually all match
operations, especially with vectorization. Transcendental functions are a notable exception, the
32-bit x87 versions are currently much faster than any of the 64-bit SSE math libraries we have
tried.

Our initial 64-bit tests showed very significant memory footprint increase, roughly doubling
the virtual memory size. On closer inspection much of this turned out to be caused by 2 MB
virtual memory alignment of shared library segments, versus 4 kB on 32-bit system. As we load
hundreds of libraries, virtual memory size ballooned. Real memory footprint increase was 25–30
%, which is significant in itself and quite likely due to our data structures rich in pointers, and
not at all optimized for data type alignment. However, because our environment accounts by
virtual memory use, we decided to force shared library segment alignment to 4 kB.



At the moment our production compiler is GCC 4.3.4. Tests with GCC 4.5 are beginning.
We are evaluating performance potential of the features planned for the next C++ standard
(C++0x). The prospects in vectorization are being investigated, both in terms of support by
the compiler1 as well as by direct implementation in some CMSSW algorithms (e.g. geometrical
vectors and rotations). In regard to these issues, performance measurements are just starting.

3. IgProf for x64-64 architecture
IgProf is a simple tool, developed by CMS, for measuring memory allocations and memory
leaks, plus a sampling performance profiler [6]. It works in Linux, both in 32-bit and 64-bit
x86 architectures, and it does not require recompilation of the program to be measured. The
support for 64-bit has been added recently. The experience gained in the update are described
in the following.

Originally approximately 10 % of the profile hits were lost due to stack unwinding issues.
Stack unwinding is needed to determine the function call chain. Issues were found in the GCC
compiler [7] and in the libunwind library [8].

It was found that GCC versions prior to 4.5.0 did not generate correct unwind information
for function epilogues, and sometimes no unwind information was generated at all, which results
in incorrect stack unwinds. This manifests as bogus addresses right above the profiling signal
frame, or shortly thereafter. It also affects the ability of GDB to show reasonable stack traces.
The required fix is to rebuild as much as possible with GCC version 4.5.0 or later. Especially in
the computing applications it is important to note that also libm needs to be rebuilt. Unwind
information for global constructors, both in C++ standard library and each shared library, was
not generated by GCC.

The libunwind library had several problems. Unwinding through Procedure Linkage Table
(PLT) did not work, for which a special handler was added. The library was not robust against
bad addresses, for which we contributed a number of fixes. Unwinding through functions that
were interrupted at function entry point was failing. This was fixed by tracking separately the
interrupted and the call cases, so that now the library knows whether a frame was interrupted or
a caller, and looks for the unwind information with the correct address. This was very important
because function entry point is a popular place to trap profile signals, presumably because it
comes after expensive cross-library transition. In addition, the unwinding on x86-64 was very
slow which especially affected the IgProf memory profiler due to heavy-duty stack walking. We
have contributed a patch for speeding up the tracing significantly, by a factor of 5–6.

4. Profiling with the CPU performance events
In the course of these studies we have learned what to do with the dynamic memory allocations
and we know how to use tools like Valgrind [9] and IgProf to detect and measure them.
A sampling profiler like IgProf is sufficient for providing a good high-level understanding of
performance issues, but inadequate for line-by-line source code analysis. Hence tools providing
much more detailed and localized performance data are very helpful. In addition, the modern
CPUs and the memory architectures are becoming more and more complex, thus complicating
interpretation of the reports.

Fortunately modern x86 CPUs from both Intel and AMD have for many years included
a so-called Performance Monitoring Unit (PMU). The PMU provides counters for various
performance events, such as the number of retired instructions, the number of unhalted and
stalled cycles, for cache hits and misses, and for local and remote memory accesses for Non-
Uniform Memory Access (NUMA) architectures. Most recently we have been testing two tools
for the performance events, namely Perfmon2 for Linux kernel [10], and the Intel Performance

1 For example -ftree-vectorize in GCC



Tuning Utility (PTU) [11], which is discussed further below. In HEP software some functions or
classes are typically called multiple times but with different arguments and sometimes it would
be necessary to see the impact of the arguments on the performance. PTU is usually used to
measure the performance of the software as a whole such that this kind of differentiation is not
possible. Perfmon2 can be used to collect the event counts for modules with different arguments
with the aid of a new tool [12].

The Performance Tuning Utility is a commercial product from Intel available for Linux and
Windows. It is a plugin to the Eclipse IDE, and for Linux it provides a kernel module for the
PMU interaction. This is in contrast to Perfmon2 which requires a patch to the kernel. The
PTU is able to aggregate the event counts per process, module, source file and function. It
can also show the event counts for source lines, basic blocks and even assembly lines, although
the precision of the event position is limited in these cases and can be even 50 instructions off,
depending on the event in question. By default the event counts are provided in a spreadsheet,
which can be exported to a comma separated value (CSV) file. There are also more sophisticated
analysis tools, such as a graph of the basic blocks, cache line access distributions and differences
of two profiles.

We have found the ability to actually see from the retired instructions and unhalted cycles
events what code is executed to be very interesting. We have been able to identify and
fix functions consuming large number of cycles combined with a high ratio of cycles per
instructions, or CPI. We have also found and reduced the number of divisions and square roots
by restructuring the calculations, as these operations are clearly quite costly.

We continue to observe CPU looks to be instruction starved. Now half of the cycles of a typical
reconstruction job are spent in front end decoder stalls. This is still poor, but an improvement
to 2/3rds time spent in stall we saw earlier [4]. We have not yet analyzed the effect in detail, but
the known causes include bad branch prediction performance and high sensitivity to instruction
cache misses. Possible sources include code size and locality, and function pointer chasing caused
by e.g. virtual functions in C++. Single big binaries are expected to yield more insight to this
problem too.

We have found PTU a very valuable and powerful tool, and specifically provides crucial
further insight to sampling profiles. Effective use however requires one to learn much more
about CPU architectures.

5. Web viewer for PTU reports
The reports produced with PTU can be analyzed in PTU itself, or exported to spreadsheet
files in CSV format as mentioned in the previous section. However, neither of these methods
is adequate for sharing the reports in a large collaboration. Hence we started to write a tool
named ptuview [13] to show the basic reports in a web browser. The tool is a CGI script written
in Python. It utilizes JavaScript for some user interface improvements like table sorting and
collapsing and expanding of some elements, but it is fully usable also without JavaScript. The
spreadsheet files exported from PTU are used as the data store. The implemented reports
contain the list of events per function, and also the source and assembly code lists. It has also a
tree diagram of the total event counts for a predefined set of events to allow intuitive navigation
through them. We hope this to be valuable for those users who are not yet familiar with all the
details in performance events.

6. Summary
The CMS collaboration has made a strenuous efforts to measure and improve the performance
of its offline software. The work was started by a dedicated task force that has coordinated
software improvement campaigns. Performance measurements have become an integral part of
the release integration and testing process. Tools are an essential ingredient and efforts continue



to improve existing tools, such as IgProf, and to acquire new tools, such as Perfmon2 and
the Intel Performance Tuning Utility (PTU). PTU has proved to be particularly valuable and
therefore CMS has developed a new tool, ptuview, that eases the sharing of performance reports
amongst the members of a large collaboration.

Acknowledgments
For support, space and contributions to discussion we would like to thank the rest of the CMS
Offline Software Group, the CERN MultiCore R&D group, and Dr. David Levinthal. M J
Kortelainen would like to gratefully acknowledge the Waldemar von Frenckell Foundation, the
ACEOLE project, and the Graduate School in Particle and Nuclear Physics (GRASPANP) in
Finland. This work was in part supported by Department of Energy of the U.S.A.

References
[1] CMS Collaboration 2008 The CMS experiment at the CERN LHC JINST 3 S08004
[2] Jones C D, Elmer P, Sexton-Kennedy L, Green C and Baldooci A Multi-core aware applications in CMS these

proceedings
[3] Sexton-Kennedy L Release Strategies: CMS approach for Development and Quality Assurance these

proceedings
[4] Tuura L, Innocente V and Eulisse G 2007 Analysing CMS software performance using IgProf, OProfile and

callgrind J. Phys: Conf. Series 119 042030
[5] Eulisse G, Tuura L and Elmer P 2010 HEP C++ meets reality J. Phys: Conf. Series 219 032007
[6] Eulisse G and Tuura L A 2004 IgProf profiling tool CHEP04, Computing in High Energy Physics (Interlaken)

See also http://igprof.sourceforge.net/

[7] GCC home page http://gcc.gnu.org/

[8] The libunwind project home page http://www.nongnu.org/libunwind/

[9] Nethercote and Seward 2007 Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation Proc.
PLDI 2007 (San Diego, California, USA) See also http://valgrind.org/

[10] Eranian S 2006 Perfmon2: a flexible performance monitoring interface for Linux Proc. of the 2006 Ottawa
Linux symposium (Ottawa) See also http://perfmon2.sourceforge.net/

[11] Intel PTU home page http://software.intel.com/en-us/articles/intel-performance-tuning-utility/
[12] Kruse D and Kruzelecki K Modular Software Performance Monitoring these proceedings
[13] Ptuview home page http://mkortela.web.cern.ch/mkortela/ptuview/


