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Using data collected with the LHCb detector in proton–proton collisions at a centre-of-mass energy
of 7 TeV, the hadronic decay B0

s → J/ψ f0(980) is observed. This CP eigenstate mode could be used
to measure mixing-induced CP violation in the B0

s system. Using a fit to the π+π− mass spectrum

with interfering resonances gives R f0/φ ≡ �(B0
s → J/ψ f0, f0→π+π−)

�(B0
s → J/ψφ,φ→K + K −)

= 0.252+0.046+0.027
−0.032−0.033. In the interval

±90 MeV around 980 MeV, corresponding to approximately two full f0 widths we also find R ′ ≡
�(B0

s → J/ψπ+π−,|m(π+π−)−980 MeV|<90 MeV)

�(B0
s → J/ψφ,φ→K + K −)

= 0.162 ± 0.022 ± 0.016, where in both cases the uncertainties

are statistical and systematic, respectively.
© 2011 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

In B0
s decays some final states can be reached either by a di-

rect decay amplitude or via a mixing amplitude. For the case of
B0

s → J/ψφ decays, the interference between these two ampli-
tudes allows observation of a CP violating phase. In the Stan-
dard Model (SM) this phase is −2βs = −0.036+0.0020

−0.0016 radians,
where βs = arg(−Vts V ∗

tb/V cs V ∗
cb), and the V ij are CKM matrix el-

ements [1]. This is about 20 times smaller in magnitude than the
measured value of the corresponding phase 2β in B0 mixing. Be-
ing small, this phase can be drastically increased by the presence
of new particles beyond the SM. Thus, measuring βs is an impor-
tant probe of new physics.

Attempts to determine βs have been made by the CDF and D0
experiments at the Tevatron using the B0

s → J/ψφ decay mode [2].
While initial results hinted at possible large deviations from the
SM, recent measurements are more consistent [3,4]. However, the
Tevatron limits are still not very constraining. Since the final state
consists of two spin-1 particles, it is not a CP eigenstate. While
it is well known that CP violation can be measured using angular
analyses [5], this requires more events to gain similar sensitivi-
ties to those obtained if the decay proceeds via only CP-even or
CP-odd channels. In Ref. [6] it is argued that in the case of J/ψφ

the analysis is complicated by the presence of an S-wave K +K −
system interfering with the φ that must be taken into account,
and that this S-wave would also manifest itself by the appearance
of f0(980) → π+π− decays. This decay B0

s → J/ψ f0(980) is to a
single CP-odd eigenstate and does not require an angular analysis.
Its CP violating phase in the Standard Model is −2βs (up to correc-
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Fig. 1. Decay diagram for B0
s → J/ψ( f0 or φ) decays.

tions due to higher order diagrams). In what follows, we use the
notation f0 to refer to the f0(980) state.

By comparing D+
s → f0π

+ decays where the f0 was detected
in both K +K − and π+π− modes it was predicted that [6]

R f0/φ ≡ �(B0
s → J/ψ f0, f0 → π+π−)

�(B0
s → J/ψφ,φ → K +K −)

≈ 20%. (1)

A decay rate at this level would make these events very useful for
measuring βs if backgrounds are not too large.

The dominant decay diagram for these processes is shown in
Fig. 1. It is important to realize that the ss system accompanying
the J/ψ is an isospin singlet (isoscalar), and thus cannot produce a
single meson that is anything but isospin zero. Thus, for example,
in this spectator model production of a ρ0 meson is forbidden. The
dominant low mass isoscalar resonance decaying into π+π− is the
f0(980) but other higher mass objects are possible.

Although the f0 mass is relatively well estimated at 980 ±
10 MeV (we use units with c = 1) by the PDG, the width is poorly
known. Its measurement appears to depend on the final state, and
is complicated by the opening of the K K channel close to the
pole; the PDG estimates 40–100 MeV [11]. Recently CLEO mea-
sured these properties in the semileptonic decay D+

s → f0e+ν ,
where hadronic effects are greatly reduced, determining a width
of (91+30

−22 ± 3) MeV [12].
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Fig. 2. The μ+μ− invariant mass for candidates satisfying the trigger and analysis
requirements and having tz > 0.5 ps. The data points are shown as circles; the error
bars are smaller than the circle radii. The dashed line shows the Crystal Ball signal
function [10], the dotted line the background and the solid line the sum.

2. Data sample and analysis requirements

We use a data sample of approximately 33 pb−1 collected with
the LHCb detector in 2010 [7]. The detector elements are placed
along the beam line of the LHC starting with the Vertex Locator
(VELO), a silicon strip device that surrounds the proton–proton in-
teraction region and is positioned 8 mm from the beam during
collisions. It provides precise locations for primary pp interaction
vertices, the locations of decays of long-lived particles, and con-
tributes to the measurement of track momenta. Other devices used
to measure track momenta comprise a large area silicon strip de-
tector (TT) located in front of a 3.7 Tm dipole magnet, and a
combination of silicon strip detectors (IT) and straw drift chambers
(OT) placed behind. Two Ring Imaging Cherenkov (RICH) detectors
are used to identify charged hadrons. Further downstream an Elec-
tromagnetic Calorimeter (ECAL) is used for photon detection and
electron identification, followed by a Hadron Calorimeter (HCAL),
and a system consisting of alternating layers of iron and chambers
(MWPC and triple-GEM) that distinguishes muons from hadrons
(MUON). The ECAL, MUON, and HCAL provide the capability of
first-level hardware triggering.

This analysis is restricted to events accepted by a J/ψ →
μ+μ− trigger. Subsequent analysis selection criteria are applied
that serve to reject background, yet preserve high efficiencies on
both the J/ψπ+π− and J/ψ K +K − final states, as determined by
Monte Carlo events generated using PYTHIA [8], and LHCb detector
simulation based on GEANT4 [9]. Tracks are reconstructed as de-
scribed in Ref. [7]. To be considered as a J/ψ → μ+μ− candidate
opposite sign tracks are required to have transverse momentum,
pT, greater than 500 MeV, be identified as muons, and form a com-
mon vertex with fit χ2 per number of degrees of freedom (ndof)
less than 11. The μ+μ− invariant mass distribution is shown in
Fig. 2 with an additional requirement, used only for this plot, that
the pseudo proper-time, tz , be greater than 0.5 ps, where tz is
the distance that the J/ψ candidate travels downstream parallel
to the beam, along z, times the known J/ψ mass divided by the z
component of the candidate’s momentum. The data are fit with a
Crystal Ball signal function [10] to account for the radiative tail
towards low mass, and a linear background function. There are
549,000 ± 1100 J/ψ signal events in the entire mass range. For
subsequent use only candidates within ±48 MeV of the known
J/ψ mass are selected.

Pion and kaon candidates are selected if they are inconsistent
with having been produced at the closest primary vertex. The im-
pact parameter (IP) is the minimum distance of approach of the
track with respect to the primary vertex. We require that the χ2

formed by using the hypothesis that the IP is equal to zero be > 9

Fig. 3. The invariant mass of J/ψ K + K − combinations when the K + K − pair is re-
quired to be with ±20 MeV of the φ mass. The data have been fit with a Gaussian
signal function whose mass and width are allowed to float and linear background
function shown as a dashed line. The solid curve shows the sum.

for each track. For further consideration these tracks must be pos-
itively identified in the RICH system. Particles forming opposite-
sign di-pion candidates must have their scalar sum pT > 900 MeV,
while those forming opposite-sign di-kaon candidates must have
their vector sum pT > 1000 MeV, and have an invariant mass
within ±20 MeV of the φ mass.

To select B0
s candidates we further require that the two pions

or kaons form a vertex with a χ2 < 10, that they form a candidate
B0

s vertex with the J/ψ where the vertex fit χ2/ndof < 5, and
that this B0

s candidate points to the primary vertex at an angle not
different from its momentum direction by more than 0.68◦ .

Simulations are used to evaluate our detection efficiencies. For
the J/ψφ final state we use the measured decay parameters from
CDF [3]. The J/ψ f0 final state is simulated using full longitudinal
polarization of the J/ψ meson. The efficiencies of having all four
decay tracks in the geometric acceptance and satisfying the trigger,
track reconstruction and data selection requirements are (1.471 ±
0.024)% for J/ψ f0, requiring the π+π− invariant mass be within
±500 MeV of 980 MeV, and (1.454 ± 0.021)% for J/ψφ, having
the K +K − invariant mass be within ±20 MeV of the φ mass. The
uncertainties on the efficiency estimates are statistical only.

3. Results

The J/ψ K +K − invariant mass distribution is shown in Fig. 3.
The di-muon invariant mass has been constrained to have the
known value of the J/ψ mass; this is done for all subsequent B0

s
invariant mass distributions. The data are fit with a Gaussian sig-
nal function and a linear background function. The fit gives a B0

s
mass of 5366.7 ± 0.4 MeV, a width of 7.4 MeV r.m.s., and a yield
of 635 ± 26 events.

Initially, to search for a f0(980) signal we restrict ourselves
to an interval of ±90 MeV around the f0 mass, approximately
two full f0 widths [12]. The B0

s candidate invariant mass distri-
bution for selected J/ψπ+π− combinations is shown in Fig. 4.
The signal is fit with a Gaussian whose mean and width are al-
lowed to float. We also include a background component due to
B0 → J/ψπ+π− that is taken to be Gaussian, with mass allowed
to float in the fit, but whose width is constrained to be the same
as the B0

s signal. Other components in the fit are B0 → J/ψ K ∗0,
combinatorial background taken to have an exponential shape,
B+ → J/ψ K +(or π+), and other specific B0

s decay backgrounds
including B0

s → J/ψη′ , η′ → ργ , B0
s → J/ψφ, φ → π+π−π0. The

shape of the sum of the combinatorial and B+ → J/ψ K +(π+)

components is taken from the like-sign events. The shapes of the
other components are taken from Monte Carlo simulation with
their normalizations allowed to float.
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Fig. 4. (a) The invariant mass of J/ψπ+π− combinations when the π+π− pair
is required to be with ±90 MeV of the f0(980) mass. The data have been fit
with a signal Gaussian and several background functions. The thin (red) solid curve
shows the signal, the long-dashed (brown) curve the combinatorial background, the
dashed (green) curve the B+ → J/ψ K +(π+) background, the dotted (blue) curve
the B0 → J/ψ K ∗0 background, the dash-dot curve (purple) the B0 → J/ψπ+π−
background, the barely visible dotted curve (black) the sum of B0

s → J/ψη′ and
J/ψφ backgrounds, and the thick-solid (black) curve the total. (b) The same as
above but for like-sign di-pion combinations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this Letter.)

We perform a simultaneous unbinned likelihood fit to the
π+π− opposite-sign and sum of π+π+ and π−π− like-sign event
distributions. The fit gives a B0

s mass of 5366.1 ± 1.1 MeV in good
agreement with the known mass of 5366.3 ± 0.6 MeV, a Gaus-
sian width of 8.2 ± 1.1 MeV, consistent with the expected mass
resolution and 111 ± 14 signal events within ±30 MeV of the B0

s
mass. The change in twice the natural logarithm of the fit like-
lihood when removing the B0

s signal component, shows that the
signal has an equivalent of 12.8 standard deviations of significance.
The like-sign di-pion yield correctly describes the shape and level
of the background below the B0

s signal peak, both in data and
Monte Carlo simulations. There are also 23 ± 9 B0 → J/ψπ+π−
events.

Having established a clear signal, we perform certain checks to
ascertain if the structure peaking near 980 MeV is a spin-0 ob-
ject. Since the B0

s is spinless, when it decays into a spin-1 J/ψ
and a spin-0 f0, the decay angle of the J/ψ should be distributed
as 1 − cos2 θ J/ψ , where θ J/ψ is the angle of the μ+ in the J/ψ
rest frame with respect to the B0

s direction. The polarization an-
gle, θ f0 , the angle of the π+ in the f0 rest frame with respect
to the B0

s direction, should be uniformly distributed. A simula-
tion of the J/ψ detection efficiency in these decays shows that
it is approximately independent of cos θ J/ψ . The acceptance for
f0 → π+π− as a function of the π+ decay angle shows an in-
efficiency of about 50% at cos θ f0 = ±1 with respect to its value at
cos θ f0 = 0. It is fit to a parabola and the inefficiency corrected in
what follows.

The like-sign background subtracted J/ψ helicity distribution
is fit to a 1 − α cos2 θ J/ψ function as shown in Fig. 5(a). The fit
gives α = 0.81 ± 0.21 consistent with a longitudinally polarized
J/ψ (spin perpendicular to its momentum) and a spin-0 f0 me-
son. The χ2 of the fit is 10.3 for 8 degrees of freedom. Similarly,
we subtract the like-sign background and fit the efficiency cor-
rected π+π− helicity distribution to a constant function as shown

in Fig. 5(b). The fit has a χ2/ndof equal to 15.9/9, still consistent
with a uniform distribution as expected for a spinless particle.

To view the spectrum of π+π− masses, between 580 and
1480 MeV, in the J/ψπ+π− final state we select events within
±30 MeV of the B0

s and plot the invariant mass spectrum in Fig. 6.
The data show a strong peak near 980 MeV and an excess of
events above the like-sign background extending up to 1500 MeV.
Our mass spectrum is similar in shape to those seen previously
in studies of the S-wave π+π− system with ss quarks in the ini-
tial state [13–15]. To establish a value for R f0/φ requires fitting the
shape of the f0 resonance. Simulation shows that our acceptance
is independent of the π+π− mass, and we choose an interval
between 580 and 1480 MeV. Guidance is given by the BES Collab-
oration who fit the spectrum in J/ψ → φπ+π− decays [14]. We
include here the f0(980) and f0(1370) resonances, though other
final states may be present, for example the f2(1270) a 2++ state
[13,14]; it will take much larger statistics to sort out the higher
mass states. We use a coupled-channel Breit–Wigner amplitude
(Flatté) for the f0(980) resonance [16] and a Breit–Wigner shape
(BW) for the higher mass f0(1370). Defining m as the π+π− in-
variant mass, the mass distribution is fit with a function involving
the square of the interfering amplitudes

∣
∣A(m)

∣
∣2 = N0mp(m)q(m)

∣
∣Flatté

[
f0(980)

]

+ A1 exp(iδ) BW
[

f0(1370)
]∣∣2

, (2)

where N0 is a normalization constant, p(m) is the momentum
of the π+ , q(m) the momentum of the J/ψ in the π+π− rest-
frame, and δ is the relative phase between the two components.
The Flatté amplitude is defined as

Flatté(m) = 1

m2
0 − m2 − im0(g1ρππ + g2ρK K )

, (3)

where m0 refers to the mass of the f0(980) and ρππ and ρK K are
Lorentz invariant phase space factors equal to 2p(m)/m for ρππ .
The g2ρK K term accounts for the opening of the kaon threshold.
Here ρK K = 2pK (m)/m where pK (m) is the momentum a kaon
would have in the π+π− rest-frame. It is taken as an imaginary
number when m is less than twice the kaon mass. We use m0 g1 =
0.165 ± 0.018 GeV2, and g2/g1 = 4.21 ± 0.33 as determined by
BES [14].

The f0(1370) mass and width values used here are 1434 ±
20 MeV, and 172 ± 33 MeV from an analysis by E791 [15]. We
fix the central values of these masses and widths in the fit, as well
as m0 g1 and the g2/g1 ratio for the f0(980) amplitude. The mass
resolution is incorporated as a Gaussian convolution in the fit as a
function of π+π− mass. It has an r.m.s. of 5.4 MeV at 980 MeV.
We fit both the opposite-sign and like-sign distributions simulta-
neously. The results of the fit are shown in Fig. 6. The χ2/ndof is
44/56. We find an f0(980) mass value of 972 ± 25 MeV. There are
265 ± 26 events above background in the extended mass region,
of which (64+10

−6 )% are associated with the f0(980), (12 ± 4)% are

ascribed to the f0(1370) and (24+2
−6)% are from interference. The

fit determines δ = 61 ± 36◦ . The fit fraction is defined as the in-
tegral of a single component divided by the coherent sum of all
components. The f0(980) yield is 169+31

−21 events. The lower mass
cutoff of the fit region loses 1% of the f0(980) events. The change
in twice the log likelihood of the fit when removing the f0(980)

component shows that it has an equivalent of 12.5 standard devi-
ations of significance.

Using the 169 f0 events from J/ψπ+π− , and the 635 φ events
from J/ψ K +K − , correcting by the relative efficiency, and ignor-
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Fig. 5. Angular distributions of events within ±30 MeV of the B0
s mass and ±90 MeV of the f0 mass after like-sign background subtraction. (a) The cosine of the angle of

the μ+ with respect to the B0
s direction in the J/ψ rest frame for B0

s → J/ψπ+π− decays. The data are fit with a function f (cos θ J/ψ ) = 1 − α cos2 θ J/ψ . (b) The cosine of
the angle of the π+ with respect to the B0

s direction in the di-pion rest frame for B0
s → J/ψπ+π− decays. The data are fit with a flat line.
Fig. 6. The invariant mass of π+π− combinations when the J/ψπ+π− is required
to be within ±30 MeV of the B0

s mass. The dashed curve is the like-sign background
that is taken from the data both in shape and absolute normalization. The dotted
curve is the result of the fit using Eq. (2) and the solid curve the total.

ing a possible small S-wave contribution under the φ peak [17],
yields

R f0/φ ≡ �(B0
s → J/ψ f0, f0 → π+π−)

�(B0
s → J/ψφ,φ → K +K −)

= 0.252+0.046+0.027
−0.032−0.033.

(4)

Here and throughout this Letter whenever two uncertainties
are quoted the first is statistical and the second is system-
atic. This value of R f /φ depends on the decay amplitudes used
to fit the π+π− mass distribution and could change with dif-
ferent assumptions. To check the robustness of this result, an
incoherent phase space background is added to the above fit
function. The number of signal f0(980) events is decreased
by 7.3%. If we leave the f0(1370) out of this fit, the origi-
nal f0(980) yield is decreased by 6.5%. The larger number of
these two numbers is included in the systematic uncertainty.
The BES Collaboration also included a σ resonance in their fit
to the π+π− mass spectrum in J/ψ → φπ+π− decays [14].
We do not find it necessary to add this component to the
fit.

The systematic uncertainty has several contributions listed in
Table 1. There is an uncertainty due to our kaon and pion iden-
tification. The identification efficiency is measured with respect
to the Monte Carlo simulation using samples of D∗+ → π+D0,
D0 → K −π+ events for kaons, and samples of K 0

S → π+π− de-
cays for pions. The correction to R f0/φ is 0.947 ± 0.009. This cor-
rection is already included in the efficiencies quoted above, and

Table 1
Relative systematic uncertainties on R f0/φ (%). Both negative and positive changes
resulting from the parameter variations are indicated in separate columns.

Parameter Negative change Positive change

f0(1370) mass 0.3 1.9
f0(1370) width 2.3 2.6
π+π− mass dependent efficiency 2.3 2.3
m0 g1 4.2 3.6
g2/g1 0.7 0.7
Addition of non-resonant π+π− 7.3 0
MC statistics (efficiency ratio) 2.3 2.3
B0

s pT distribution 0.5 0.5
B0

s mass resolution 0.5 0.5
PID efficiency 1.0 1.0
φ detection 9.0 9.0

Total 13.1 10.8

the 1% systematic uncertainty is assigned for the relative particle
identification efficiencies.

The efficiency for detecting φ → K +K − versus a π+π− pair is
measured using D+ meson decays into φπ+ and K −π+π+ in a
sample of semileptonic B decays where B → D+ Xμ−ν [18]. The
simulation underestimates the φ efficiency relative to the π+π−
efficiency by (6 ± 9)%, so we take 9% as the systematic error.

Besides the sources of uncertainty discussed above, there is a
variation due to varying the parameters of the two resonant con-
tributions. We also include an uncertainty for a mass dependent
efficiency as a function of π+π− mass by changing the acceptance
function from flat to linear and found that the f0 yield changed
by 2.3%. The difference ��/� between CP-even and CP-odd Bs

eigenstates is taken as 0.088.
In order to give a model independent result we also quote the

fraction, R ′ , in the interval ±90 MeV around 980 MeV, correspond-
ing to approximately two full-widths, where there are 111 ± 14
events. Then

R ′ ≡ �(B0
s → J/ψπ+π−, |m(π+π−) − 980 MeV| < 90 MeV)

�(B0
s → J/ψφ,φ → K +K −)

= 0.162 ± 0.022 ± 0.016. (5)

This ratio is based on the fit to the B0
s mass distribution and does

not have any uncertainties related to the fit of the π+π− mass
distribution. Based on our fits to the π+π− mass distribution,
there are negligible contributions from any other signal compo-
nents than the f0(980) in this interval.

The original estimate from Stone and Zhang was R f0/φ = 0.20
[6]. More recent predictions have been summarized by Stone [19]
and have a rather wide range from 0.07 to 0.50.
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4. Conclusions

Based on the polarization and rate estimates described above,
the first observation of a new CP-odd eigenstate decay mode of the
B0

s meson into J/ψ f0(980) has been made. Using a fit including
two interfering resonances, the f0(980) and f0(1370), the ratio to
J/ψφ production is measured as

R f0/φ ≡ �(B0
s → J/ψ f0, f0 → π+π−)

�(B0
s → J/ψφ,φ → K +K −)

= 0.252+0.046+0.027
−0.032−0.033.

(6)

By selecting events within ±90 MeV of the f0(980) mass the ratio
becomes R ′ = 0.162 ± 0.022 ± 0.016.

The events around the f0(980) mass are large enough in rate
and have small enough backgrounds that they could be used to
measure βs without angular analysis. It may also be possible to
use other data in the π+π− mass region above the f0(980) for
this purpose if they turn out to be dominated by S-wave.
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