
A
TL

-D
A

Q
-P

R
O

C
-2

01
1-

00
4

14
Ja

nu
ar

y
20

11

The TDAQ Analytics Dashboard: a real-time web

application for the ATLAS TDAQ control

infrastructure

Giovanna Lehmann Miotto†, Luca Magnoni†, John Erik Sloper†
†European Laboratory for Particle Physics (CERN), Geneva, Switzerland

E-mail: {giovanna.lehmann, luca.magnoni, jhon.erik.sloper}@cern.ch

Abstract.
The ATLAS Trigger and Data Acquisition (TDAQ) infrastructure is responsible for filtering

and transferring ATLAS experimental data from detectors to mass storage systems. It relies
on a large, distributed computing system composed by thousands of software applications
running concurrently. In such a complex environment, information sharing is fundamental
for controlling applications behavior, error reporting and operational monitoring. During data
taking, the streams of messages sent by applications and data published via information services
are constantly monitored by experts to verify the correctness of running operations and to
understand problematic situations. To simplify and improve system analysis and errors detection
tasks, we developed the TDAQ Analytics Dashboard, a web application that aims to collect,
correlate and visualize effectively this real time flow of information. The TDAQ Analytics
Dashboard is composed by two main entities, that reflect the twofold scope of the application.
The first is the engine, a Java service that performs aggregation, processing and filtering of real
time data stream and computes statistical correlation on sliding windows of time. The results
are made available to clients via a simple web interface supporting SQL-like query syntax. The
second is the visualization, provided by an Ajax-based web application that runs on client’s
browser. The dashboard approach allows to present information in a clear and customizable
structure. Several types of interactive graphs are proposed as widget, that can be dynamically
added and removed from visualization panels. Each widget acts as a client for the engine,
querying the web interface to retrieve data with desired criteria. In this paper we present the
design, development and evolution of the TDAQ Analytics Dashboard. We also present the
statistical analysis computed by the application in this first period of high energy data taking
operations for the ATLAS experiment.

1. Introduction
The ATLAS Trigger and Data Acquisition (TDAQ) [1] computing infrastructure is made of
thousands of running applications interacting with each other. During data taking, the streams
of messages sent by applications and data published via information services are constantly
monitored by experts to verify correctness of running operations and to understand problematic
situations. The TDAQ Analytics Dashboard is a new tool meant to improve and simplify the
monitoring of the flow of messages for a better and more effective understanding of the overall
system status. In this paper we present the design and development of the analytics dashboard.
Section 2 introduces the importance of message analysis, section 3 explains dashboard main
concepts and section 4 presents in detail the architecture and the main components of the



Figure 1. The TDAQ Analytics Dashboard

dashboard project as well as the technologies and framework we used to implement it. Finally,
section 5 presents the conclusion and a look at the future.

2. Messages analysis in the TDAQ infrastructure
In the ATLAS TDAQ infrastructure message analysis is fundamental for controlling applications
behavior, error reporting and operational monitoring.

2.1. Message oriented communication
Software applications in the TDAQ system adopt a message oriented communication to report
error and information events to other components of the distributed infrastructure. The Error
Reporting Service (ERS) provides a common format to errors, a fixed range of severity levels
and a uniform way of reporting and transporting the errors. Message communication is based
on the Message Reporting System (MRS) [2], that provides the functionality to transport, filter
and route messages. Thanks to this well defined structure of information, messages are not used
only for logging purpose, but also to trigger reaction in other applications, such as the expert
system component [6].

2.2. The importance of message analysis
The flow of messages produced by applications during data taking operations is one of the main
source of information to monitor system behavior and to detect problems and errors. Experts
inspect the flow to discover which events has been reported by applications during a certain time
interval. The flow can be composed by hundreds of messages per minutes in case of problematic
conditions. The TDAQ Log Service [3] provide a permanent message archive in a Oracle database
server to allow backward analysis. It provides a Java-based graphical interface to browse among
messages with filtering capabilities and it is a perfect tool for depth analysis of problems. But
getting information inspecting the raw flow of messages is not an easy and immediate job, in
particular for non expert users. With this in mind, we developed the analytics dashboard to
complement and improve the task of message monitoring.



Figure 2. The timeline selector chart

3. The TDAQ Analytics Dashboard
The TDAQ Analytics Dashboard (http://atlasdaq.cern.ch/dashboard) , in Fig.1, is a new
tool meant to help system analysis and errors detection in the TDAQ infrastructure. It can
be used by experts to track unexpected behaviour as well by operators to detect global system
status. The dashboard provides an aggregate and effective view on the flow of messages sent
in the system, summarizing meaningful information in easy-to-read analytics graphs. It allows
users to customize layouts and specify analysis criteria, for real time information as well as for
historical data. Being a web based application, the dashboard provides an easy and user friendly
interface without any software and platform constraint.

3.1. Interactive analytics charts
The dashboard presents summarized and effective views on the messages sent in the TDAQ
system. These views are organized in easy to read analytics graphs, in order to give an
immediate feedback on system status and behaviour, as shown in Fig:1. There are two main
graph categories:

• Analysis graphs: to present aggregated information about the message flow.
• Selector graphs: to allow users to select the time interval to visualize.

The main analytics graphs aggregate information on the number and the types of messages
sent in the system, with emphasis on detecting top offending applications and showing the overall
system conditions. Each graphs is interactive, that means users can click on a specific section to
visualize more information on demand. As well, each graph provides a configuration panel for
various options, filtering capabilities, etc. Selectors charts can be interactive timeline showing
the overall number of message sent in the system, as shown in in Fig. 2, or can provide views
on specific time frame with a special meaning for the TDAQ infrastructure, as the case of the
Run number selector.

3.2. Challenges
During the design and implementation of the dashboard we faced three main challenges, that
actually characterize the architecture of the tool:

• Producing analytics data: to collect and correlate messages sent in the system and
produce analytics summary in windows of time.

• Distributing analytics results: to make analytics results available to client-specific
requests.

• Visualizing data:to aggregate the analytics results in easy to read, interactive and
immediate views.

4. Architecture
The main architecture of the project is shown in Fig. 3. The dashboard is composed by three
main components addressing the main challenges: processing data, distributing results and
visualization.



Figure 3. The Dashboard Architecture

4.1. The Analytics Engine
On the left side of the Fig.3 is shown the analytics engine.It is responsible of collecting messages
from the TDAQ infrastructure and producing analytics correlations. It is able to gather the
flow of messages from a MRS stream or from the Oracle archive, then it performs correlations
in windows of time and save the results in a database.

4.1.1. Normalization and correlation of messages The engine is a standalone Java service able
to perform a 2-phase correlation analysis of the flow of messages and to produce aggregated
information in time windows. The normalization phase is mainly needed to extract some hidden
information from messages (such as the un-throttling of message spikes automatically compressed
in one single message). The correlation phase is a simple processing phase grouping events
by message properties (message type, sender application, message text, etc.) and aggregating
information in time interval (5 minutes). The results are archived in a MySQL database. Initially
archiving was based on CSV files, but we moved to MySQL to improve performance for our data
distribution approach.

4.2. Web application
The main requirements for the dashboard user interface is to provide an easy to use and easy to
access tool. Nowadays, modern web technologies allow for rich and interactive user interfaces,
and this convinced us to go for a rich internet application. The dashboard interface runs in the
client’s browser, allowing for an easy and standard access without requiring software installation
or platform constraints.

4.2.1. Dashboard For the user interface we chose a dashboard approach for its flexible layout,
easy to configure and customize. It is structured in panels, tabs like area, populated by widgets,
as shown in Fig:1. Widgets are the main information containers and can be moved, closed and
minimized by users. Users can also decide to add more widgets to panels, as well as create
custom panels with the desired layout. The main information contained by widget are the
analytics and selector graphs.



Figure 4. Data distribution

4.2.2. Google Web Toolkit The Google Web Toolkit (GWT) [5] is an open source framework
to build complex web based application. It translates Java code in high performance, deeply
optimized and browsers compatible Javascripts and HTML pages. It fits very well our use case
to build a complex and effective rich internet application. Indeed, we developed the dashboard
as a GWT project, modelling the dashboard structure and interactivity in Java, integrating
Ajax techniques for communication and relying on external projects, such as Google Charts [4],
to build the visualization layer.

4.2.3. Google Charts The Google Charts project [4] is composed by a javascript charts library
providing several graphs options and by a data distribution mechanism. We decided to follow
this approach for two main reasons: javascript based charts give us the interactivity we need to
provide information on demand. Charts are rendered on client’s browser, and users can easily
discover more information with few mouse clicks on the graphs itself. The second advantage is
that client-side rendering give us better customization options for user requirements. This is
related with the data distribution mechanism, we are presenting in the next sections.

4.3. Analytics data distribution
The need for a data distribution capability is bound with the visualization strategy we adopted.
To better fulfill users’s requirements and use cases, the dashboard user interfaces have a
direct connection with the analytics data, allowing to specify analysis criteria, with filtering,
aggregating and grouping capabilities.

4.3.1. Analytics result as data source: JSON data over HTTP Relying on Google Chart for
the visualization, we inherited also a smart and effective data distribution mechanism. Google
Charts is aiming at building a selection of visualization charts library able to gather data from
several different data sources (file, spreadsheet, databases, etc.), as shown in Fig. 4. A data
provider is seen as data source, and they defined a simple HTTP based web interface (the Google
Charts wire protocol) a data source have to implement to distribute data. How it works: 1)
The data source will expose a URL, to which user send an HTTP GET request; 2) The client
makes an HTTP GET request with parameters that describe what format to use for returned
dat and an optional SQL-like query string. 3) The data source receives the request, prepares the
data in the format requested (JSON, CSV and HTML are supported). The query string allows
to specify filtering, sorting, and other data manipulation; 4) The data source creates an HTTP
response that includes the serialized data and sends it back to the client.

Following this approach, we developed the simple web interface on top of the analytics
database, as shown in the central part of Fig. 3, publishing the analytics data as a Google
Charts compliant data source. In this way every chart in the dashboard is bound to a specific
query URL used to retrieve the data to show, as shown in Fig: 5. Every visualization element in



Figure 5. The Google Charts wire protocol in action

the dashboard retrieve the meaningful data in an asynchronous fashion, with an Ajax approach,
and users customization become as easy as changing parameters in the query URL. Thanks to
the standard format (JSON) returned by the Google Chart wire protocol, we are not bound to
any Google-specific visualization library and it will be easy to integrate external charts libraries
to add other visualization options.

5. Conclusion
The TDAQ analytics dashboard is currently used in production by ATLAS to monitor the flow
of messages and the overall TDAQ system status. Thanks to its simplicity of usage and to the
customization capabilities, the dashboard can be adopted by the various TDAQ communities,
helping in increasing the quality and decreasing the overall amount of messages sent in the
system. The dashboard approach works, new widgets can be easily created to fulfill users
requirements and to provide new features. Finally, the Google Charts approach of defining
a simple and common web interface on top of several data sources can be of inspiration for
the TDAQ framework, where many different information providers share fundamental data in
various way and format. A common interface on top of them can be the foundation for a
global monitoring tool able to gather and correlate data coming from several heterogeneous
data sources.

References
[1] ATLAS Collaboration. Atlas high-level trigger, data acquisition and controls technical design report.

http://cdsweb.cern.ch/record/616089/, Jun 2003.
[2] Ivan Fedorko. The Message Reporting System of the ATLAS DAQ System. ICATPP Conference on

Astroparticle, Particle, Space Physics Detectors and Medical Physics Applications, 2007.
[3] Raul Murillo Garcia and Giovanna Lehmann Miotto. A log service package for the ATLAS TDAQ/DCS

group. Nuclear Science, IEEE Transactions, 54(4):202–207, 2007.
[4] Google. Google Charts. http://code.google.com/apis/chart/, Sep 2010.
[5] Google. Google Web Toolkit. http://code.google.com/webtoolkit, Sep 2010.
[6] John Erik Sloper and et al. Dynamic Error Recovery in the ATLAS TDAQ System. Nuclear Science, IEEE

Transactions, 55(4):405–410, 2008.


