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Abstract

In this thesis a detailed discussion of higher-order QCD corrections up to next-to-next-to

leading order (NNLO) for the Higgs production in the Gluon-Fusion channel at the LHC is

presented. First the corrections are studied in dependence of the Higgs boson kinematics.

It is found that they vary significantly within different Higgs boson phase-space regions,

and only taking into account this dependency results in a reliable prediction for specific

kinematic observables. The technique of differential re-weighting is discussed in order to

incorporate the higher-order corrections into parton-shower MC event generators.

The QCD corrections are then discussed for the two specific Higgs decay modes, H → γγ

and H → WW → `ν`ν, after the application of typical experimental selection cuts, using

fully differential, fixed-order calculation methods. In latter case this is the first time a fully

differential calculation has been performed at this order of perturbative QCD. It is found

that in the case of H → γγ the corrections after applying the cuts behave very ’inclusive-

like’. In the case of the decay H → WW → `ν`ν the corrections after the application

of the selection cuts differ significantly from the inclusive case. The predictions at fixed

NNLO for the cross-section after these cuts are tested against calculations including re-

summation of large logarithmic terms arising from multiple soft and collinear radiation.

The results are found to agree within a remarkable precision, and thus it is concluded,

that the predicted cross-section is very reliable.

Finally, the NNLO predictions for the cross-section are incorporated into a detector

simulation for the CMS experiment. From this the expected experimental event rate

is computed and the needed luminosities for an exclusion or a discovery of the Higgs

boson with mass mH=165 GeV are estimated, including theoretical as well as experimental

systematic uncertainties. It is found that the CMS experiment can discover/exclude with

high probability a Higgs boson of this mass after collecting data corresponding to an

integrated luminosity of less than L = 1 fb−1, which is in agreement with earlier studies.
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Zusammenfassung

In der vorliegenden Dissertation werden die QCD Korrekturen bis zur zweiten Ordnung

(englisch: next-to-next-to-leading order, NNLO) für die Higgs Produktion im Gluon-

Fusions Prozess am LHC diskutiert. Zuerst werden diese Korrekturen in Abhängigkeit

der Higgs Boson Kinematik studiert, und es stellt sich heraus, dass sie für verschiede-

nen Regionen des Higgs-Phasenraums variieren. Nur wenn diese Phasenraumabhängigkeit

mitberücksichtigt wird, können zuverlässige Vorhersagen für bestimmte kinematische Ob-

servablen getroffen werden. Weiters wird die Technik des differentiellen Umgewichtens

erläutert, die es erlaubt, solche Korrekturen höherer Ordnung in sog. Partonschauer Monte

Carlo Generatoren zu integrieren.

Die Korrekturen werden dann in den zwei spezifischen Zerfallskanälen H → γγ und

H → WW → `ν`ν studiert, nachdem typische experimentelle Schnitte angebracht wurden;

dies mit Hilfe von komplett differentiellen Berechnungsmethoden. In Fall von H → WW →
`ν`ν ist dies die erste Berechnung dieser Art bis zur NNLO. Es zeigt sich, dass sich die

Korrekturen im Fall von H → γγ ähnlich verhalten wie für die inklusiven Wirkungsquer-

schnitte. Für den Zerfall in Leptonen über ein Paar von W Bosonen ist dies nicht der Fall.

Die Voraussagen der Störungsrechnung bis zur NNLO für den Wirkungsquerschnitt nach

dem Anbringen der experimentellen Schnitte werden daher mit Rechnungen verglichen, die

dominante logarithmische Terme aufgrund mehrfacher weicher und ko-linearer Strahlung

mitberücksichtigen. Es wird gezeigt, dass diese Resultate mit der Störungsrechung bis

zur NNLO übereinstimmen. Daher kann gefolgert werden, dass die Vorhersage der NNLO

Störungsrechnung für den Wirkungsquerschnitt sehr zuverlässig ist.

Schliesslich werden die NNLO Vorhersagen für den Wirkungsquerschnitt mit einer De-

tektorsimulation für das CMS Experiment am LHC verbunden. Aus der daraus folgenden

Vorhersage für die Anzahl erwarteter Higgs Ereignisse wird die Luminosität berechnet,

welche benötigt wird, damit das CMS Experiment die Existenz eines Higgs Bosons mit

Masse mH = 165GeV entweder beweisen oder ausschliessen kann. Es stellt sich heraus,

dass dies mit hoher Wahrscheinlichkeit nach einer integrierten Luminosität von weniger

als 1 fb−1 möglich ist, in guter Übereinstimmung mit vorangegangenen Studien.
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Introduction

“[...] I’ve figured out numbers and what they’re for [...]”
(Pearl Jam, Light Years)

Breaking down the sheer infinite complexity of the universe into a handful of fundamental

relations and characteristics is absolutely essential if one wishes to understand the phe-

nomena within the matter and the space that enclose us. While the trial of formulating

these relations must be as old as the spoken word, it needed the formalism of natural

science in general and mathematics in particular to reward these trials with success, suc-

cess in a twofold manner. First, only the mathematical formulation of phenomena allows

a quantification and thus a verification against measured observations, second, it can in

general be understood and tested by anyone.

Together with the deployment of the scientific tools, the idea that matter is built up

from a limited set of fundamental components was raised. The idea that the profound

constituents are the elements water, fire, earth and air was stated by the Greek philosopher

Empedocles five centuries B.C.. Shortly thereafter Leucippus and Democritus established

the principle that all matter is formed by extremely small, fundamental and indestructible

particles, that they called atoms. The idea of the atoms was picked up by scientists in

the 19th century, but only in the year 1909, with the experiment of Ernest Rutherford,

it became clear that the atoms are not fundamental, but built up from a nucleus and

surrounding electrons. With the discovery of the neutron in 1932 it was established that

the nucleus itself is composed of smaller particles.

In the 50’s and 60’s of the 20th century a variety of collider experiments showed that

there are many more particles with similar character as the protons and neutrons. It

was suspected that they themselves are not fundamental, but formed by even smaller

particles, the quarks. The quark model, which found a convincing confirmation in the

discovery point-like constituents of the protons in 1969, allowed to classify all the known

hadrons as compound objects of two or three quarks.

In parallel to the search for the basic components of matter, the question of how these

components interact was posed. The work of James Clerk Maxwell was pioneering in this
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respect. He discovered that electricity and magnetism are two phenomena of the same

fundamental mechanism, the so called electro-magnetism. He formulated this observation

in a set of equations, known as the Maxwell equations. These equations, together with the

discovery of the quantum nature of physics and special relativity, formed later the very

successful theory of Quantum Electrodynamics (QED).

Inspired by the success of the field theoretical formulation of the electro-magnetic force,

the attempt was undertaken to describe the other forces, the weak force responsible for the

decay of nuclei and the strong force, responsible for the formation of hadrons, which were

discovered in the nuclear physics experiments of the 20th century, in a similar way. It was

found that the strong interaction can be formulated as a relativistic field-theory of color

charged quarks and gluons, known as Quantum Chromodynamics (QCD). The weak force

could be combined with QED into the so called Electro-Weak Interaction, also known as

Glashow-Weinberg-Salam (GWS) model. The GWS theory together with QCD form the

nowadays most successful theory for the interaction of fundamental particles, referred to

as the Standard Model of Particle Physics.

In general in such theories, also known as Gauge Theories, the particles responsible for

the action of the force (the Gauge- or Vector- Bosons) have to be massless. Experiments

showed however that the particles responsible for the weak interaction are massive. Fortu-

nately a mechanism, the so called Higgs mechanism, is at hand to remedy this shortcoming.

This mechanism, established and published in 1964 by Peter Higgs, as well as by Robert

Brout and Francois Englert, allows the Gauge-Bosons to acquire a mass by the so-called

Electro-Weak Symmetry-breaking. The price for this is the introduction of an additional

particle, the Higgs Boson.

A variety of tests and precision measurements over the last decades gave very strong

confidence in the Standard Model. The only missing piece is the Higgs particle, respon-

sible for the masses of the fermions and the weak gauge bosons. The phenomenological

understanding of the perturbative predictions for the Higgs particle beyond the lowest

order and their consequences for an experimental observation are the core content of this

thesis.

The thesis is divided into three parts. Part one is dedicated to the theoretical aspects of

the Higgs phenomenology at hadron colliders. After a brief introduction of the Standard

Model of Particle Physics in chapter 1 we turn in chapter 2 to the specific Higgs production

processes and decay modes, where emphasis is put on the effects of higher order QCD

radiation on the important Higgs observables. In chapters 3 and 4 we then discuss these

effects for the two specific modes when the Higgs decays into two photons and into two

W bosons.

2



The main focus of part two is the experimental aspect of the Higgs search with the Com-

pact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC). We explain

the experimental apparatus in chapter 5 and the procedure of reconstructing the important

quantities from the detector response in chapter 6. We conclude part two with a detailed

study of the possible discovery/exclusion limit for a Higgs with mass mH=165 GeV with

the CMS experiment, including detector effects and systematic uncertainties in chapter 7.

Finally in part three (appendix) we describe in more detail some of the calculations

and methods used in the first two parts. After the bibliography a list of commonly used

abbreviations can be found. In the presented thesis we use natural units throughout,

i.e. c = ~ = 1.

3





Part I

Phenomenology of the Higgs
Boson at the LHC
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Chapter 1

The Standard Model of Particle
Physics

A large number of experiments give strong confidence in the picture that the particle

content making up the matter in the universe consists of a set of fermions interacting via

the exchange of vector bosons. Within this framework of the so called Standard Model

of Particle Physics (SM) the fermions are divided into the group of leptons (the massive,

electrically charged electron e, muon µ and tau τ , the almost massless, electrically neutral

neutrinos νe, νµ and ντ , as well as their anti-particles) and the group of quarks (up

u, down d, strange s, charm c, bottom b and top t), which form bound states called

hadrons (e.g. protons p and neutrons n). We summarize the fermionic content of the

Standard Model in Table 1.1. The fermions interact via three 1 forces: The electro-

magnetic interaction (Quantum Electrodynamics, QED), corresponding to the classical

Electrodynamics first described in detail by Maxwell, the Weak interaction, responsible for

the nucleon decays, and the Strong interaction, responsible for the formation of hadrons

and atomic nuclei.

All these interactions have been successfully described within the framework of rela-

tivistic Quantum Field Theories. In what follows these theories will be briefly described

focusing on the calculation-tools and consequences introduced by them needed in later

stages of this thesis. More detailed discussions on Quantum Field Theories in general and

the Standard Model in particular can e.g. be found in [1, 2].

We will start with the description of local symmetries, which imposed on the general

Lagrangian for a free fermion field introduce additional mass-less vector fields, the Gauge-

Bosons. From this the most general Lagrangian in the abelian case of the electro-magnetic

1 It is not clear that these three forces are the only interaction mechanisms. One especially, but not
exclusively, might be interested in the action of the gravitation. Nevertheless it has been shown that these
three forces are sufficient to describe the elementary processes in particle physics to a very high precision.
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1. THE STANDARD MODEL OF PARTICLE PHYSICS

1st family 2nd family 3rd family

leptons

(

νe

e

)

< 3 eV
0.511 MeV

(

νµ

µ

)

< 0.19 MeV
106 MeV

(

ντ

τ

)

< 18.2 MeV
1.777 GeV

quarks

(

u
d

)

∼ 7 MeV
∼ 3 MeV

(

c
s

)

∼ 1.2 GeV
∼ 115 MeV

(

t
b

)

∼ 175 GeV
∼ 4.25 GeV

Table 1.1: Fermionic content of the Standard Model of Particle Physics with mass values
divided into the three families, taken from [3].

interaction (QED) of fermions will be derived. The insights gained will then be deployed to

construct the theory that describes the combines Electroweak Interaction as arising from

a spontaneously broken SU(2) × U(1) symmetry. The Feynman rules for the involved

particles (fermions and gauge-boson), as well as for the additionally introduced Higgs

boson will be discussed briefly.

In the next stage the field theory that describes the strong interaction (Quantum Chro-

modynamics, QCD) will be introduced using again the language of local symmetries. It will

be shown that QCD is a so called asymptotically free theory, allowing to compute observ-

able quantities for scattering processes using perturbative approaches if the momentum

transfer Q in the process is large. Finally the important aspects of the non-perturbative

regime of QCD relevant for collider experiments will be discussed, as implemented in full

phenomenological simulations of processes appearing in hadron-hadron collisions.

The ingredients building up the solid framework of the SM of Particle Physics have

been developed independently and over several years by many different people. We will

not discuss nor follow any historical time-line; a very detailed and informative overview

on the historical development of the SM of Particle Physics can e.g. be found in [4].

1.1 Symmetry and Interaction: Gauge Field Theory

In this section the most general Lagrangian L for interacting fields is derived by starting

with the postulate, that this Lagrangian L is invariant (symmetric) under a certain set of

transformations, i.e.

L → L′ = L. (1.1)

This will first be done for the symmetry-group U(1), where the generators of the symmetry-

group commute (the symmetry-group is abelian), then for a more general, non-abelian

symmetry-group.
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1.1. SYMMETRY AND INTERACTION: GAUGE FIELD THEORY

1.1.1 Abelian Example: QED

First, assume that the Lagrangian for the free, complex-valued Dirac-field ψ(x) (fermion-

field) should be invariant under the transformations

ψ(x) → eiα(x) ψ(x), (1.2)

which corresponds to a U(1) transformation. The phase-rotation α here is an arbitrary

function of x, the symmetry is therefore called local. If α is constant, the symmetry is

called global. The construction of terms without derivatives is easy, i.e. the fermion mass

term

Lmass = mψψ (1.3)

is obviously invariant under the transformation in eq. 1.2.

The construction of terms including derivatives (e.g. kinetic terms) is more complicated.

The derivative of ψ in direction η is defined as 2

ηµ∂µψ = lim
ε→0

ψ(x+ εη) − ψ(x)

ε
, (1.4)

describing a comparison of the field ψ at two infinitely separated points. But as seen

in eq. 1.2 the field does not necessarily transform in the same way at these two points.

In order to be able to define a meaningful derivative, the comparator U(y, x) has to be

introduced, transforming as

U(y, x) → U ′(y, x) = eiα(y)U(y, x)e−iα(x) (1.5)

The comparator can then be used to define the covariant derivative in direction η as

ηµDµψ(x) = lim
ε→0

ψ(x+ εη) − U(x+ εη, x)ψ(x)

ε
. (1.6)

In this way the comparator makes sure that the fields ψ and Uψ transform in the same

way, and thus the field ψ and its covariant derivative Dµψ transform also in the same way,

namely as defined in eq. 1.2.

In order to be useful an expression for the comparator U has to be found. This can be

achieved by Taylor-expanding U in the separation of the two points x and y as

U(x+ εη, x) = 1 − igεηµAµ(x) + O(ε2), (1.7)

where the constant g has been arbitrarily extracted from the term of order ε. The field Aµ

appearing in the coefficient of the expansion is called the connection. All terms of order

O(ε2) vanish in the limit ε→ 0 in the covariant derivative, which is then

Dµψ(x) = ∂µψ(x) + igAµ(x)ψ(x). (1.8)

2 Summation over repeated indices is implied everywhere.
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1. THE STANDARD MODEL OF PARTICLE PHYSICS

The transformation law for the connection field is

Aµ → A′
µ = Aµ − 1

g
∂µα(x), (1.9)

and the kinetic term for the Dirac-field can be written as

Lkin = ψγµDµψ, (1.10)

which is, by construction, invariant under the transformations defined in eq. 1.2. The

simple demand that the Lagrangian should be invariant under local phase-rotations implies

that a new field, Aµ, has to be introduced.

To finalize the construction of the Lagrangian a kinetic term for the field Aµ has to

be constructed, i.e. a term that only depends on Aµ and derivatives of it, but not on ψ.

To do this we remark that, since the covariant derivative of the field ψ transforms like ψ

itself, the covariant derivative of the covariant derivative, and thus the commutator of the

covariant derivatives, will also transform in this way. The commutator of the covariant

derivatives is

[Dµ, Dν ]ψ = DµDνψ(x) −DνDµψ

= [∂µ, ∂ν ]ψ + ig([∂µ, Aν ] − [∂ν , Aµ])ψ − g2[Aµ, Aν ]

= ig(∂µAν − ∂νAµ)ψ ≡ igFµνψ,

(1.11)

where it has been used explicitly that the derivatives ∂µ, as well as the components of the

field Aµ commute. The Field-Tensor Fµν is defined as

Fµν = ∂µAν − ∂νAµ. (1.12)

It can be concluded that all terms dependent on Fµν and its derivatives are locally sym-

metric. All other terms, namely a mass term for the connection-field AµA
µ, would break

the symmetry under the local transformation from eq. 1.2.

If in addition invariance under the discrete transformations P (parity) and T (time

inversion) is imposed, the most general Lagrangian is

L = ψ(iD/ )ψ − 1

4
(Fµν)2 −mψψ, (1.13)

where the notation D/ = Dµγ
µ has been used, with γµ the Dirac-matrices 3. Of course

eq. 1.13 is the famous QED Lagrangian, describing the interaction of electrically charged

fermions via the gauge-field (photon-field) and g = e is just the electric charge of the

electron. It is worth stressing that the local gauge-symmetry forbids mass terms for the

gauge-field, i.e. in order to preserve the symmetry the photons have to be massless.

3 We use the so-called chiral representation for the Dirac-matrices. The exact definition as well as useful
identities for the Dirac-algebra can be found in Appendix A.
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1.1. SYMMETRY AND INTERACTION: GAUGE FIELD THEORY

1.1.2 Non-Abelian Local Symmetries

It has been demonstrated above how imposing a local U(1) symmetry constraint on the

Lagrangian of the free fermion fields naturally demands the inclusion of a gauge-field. We

now want to expand the discussion to any continuous group of transformations, represented

by a set of n× n unitary matrices V . The fields ψ then transform under this group as

ψ(x) = V (x)ψ(x). (1.14)

The transformation can be expanded in the generators ta of the group 4 as

V (x) = 1 + iαa(x)ta + O(α2), (1.15)

where the x-dependence of the phases α render the symmetry local again. The generators

ta are represented by n × n hermitian matrices with n the dimension of the symmetry

group.

The so called structure-constants of the symmetry group, f abc, are defined by the com-

mutation relation of the generators,

[ta, tb] = ifabctc. (1.16)

It can be shown that there exists always a representation of the generators that renders

the structure-constants totally anti-symmetric.

In analogy to the derivation for the QED Lagrangian, the derivative in the Lagrangian

has to be replaced by the covariant derivative

Dµ = ∂µ − igAa
µt

a, (1.17)

with a new field Aa
µ for each of the generators ta of the group. Each of these fields defines

then a field-tensor, namely

igF a
µν t

a = [Dµ, Dν ] = ig(∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν)t

a, (1.18)

thus

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.19)

where the fact that the generators of the symmetry-group do not necessarily commute has

been used explicitly.

The general Lagrangian now looks very similar to the one in eq. 1.13,

L = ψ(iD/ )ψ − 1

4
F a

µνF
a µν −mψψ. (1.20)

4 In the U(1) case the only generator of the symmetry group is the identity
�
.

11



1. THE STANDARD MODEL OF PARTICLE PHYSICS

To see the fundamental difference between this and the abelian Lagrangian in eq. 1.13,

the expression for the field-tensors, eq. 1.18, has to be substituted in the Lagrangian of

eq. 1.20. While in the QED case the only interaction terms (terms with at least three

fields) are the ones between the fermion fields and the gauge-fields, in the non-abelian

case there are terms with three and even four gauge-fields. This indicates how the gauge-

fields (and thus their quanta, the gauge-bosons) interact with each other through three-

resp. four-gauge-field vertices.

1.2 The Glashow-Salam-Weinberg Model

In this section the theory that successfully describes the electro-weak interaction is intro-

duced. It will be shown that this is achieved with a gauge theory based on a spontaneously

broken SU(2) × U(1) symmetry. The breaking of the symmetry is mediated by an addi-

tional scalar field. As a consequence of the existence of an additional, scalar boson-field,

the so called Higgs field, is predicted.

1.2.1 Higgs Mechanism and Gauge-Boson Masses

In the previous section it has been shown how the local invariance of the Lagrangian under

the transformations of some symmetry group G leads to massless gauge-boson fields. Mass

terms for the gauge-fields are explicitly forbidden, so they have to be introduced by some

more complicated mechanism. We study this first on the example of the SU(2) symmetry

group.

Let φ be a scalar field that transforms like a spinor under SU(2) transformations, i.e.

φ(x) → eiα
i(x) σi

2 φ(x), (1.21)

with σi the Pauli matrices 5. The covariant derivative is then

Dµφ = (∂µ − ig

2
Ai

µσ
i)φ. (1.22)

Assume now that φ acquires a non-vanishing vacuum-expectation value, i.e. 〈φ〉 6= 0, as

〈φ〉 =
1√
2

(

0
v

)

, (1.23)

5 The Pauli-matrices are

σ
1 =

„

0 1
1 0

«

, σ
2 =

„

0 −i

i 0

«

and σ
3 =

„

1 0
0 −1

«

.
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1.2. THE GLASHOW-SALAM-WEINBERG MODEL

where the gauge-symmetry freedom has been used to restrict the non-vanishing part to

the lower entry. The important part of the kinetic term for the scalar field φ, which is the

square of the covariant derivative term, becomes then

|Dµφ|2 =
1

8
g2
(

0 v
)

σiσj

(

0
v

)

Ai
µA

j µ + ... (1.24)

We symmetrize in i and j,

|Dµφ|2 =
1

16
g2
(

0 v
)

{σi, σj}
(

0
v

)

Ai
µA

j µ + ... (1.25)

and use the anti-commutation relation for the Pauli-matrices {σ i, σj} = 2δij . The mass

terms for the gauge-bosons Ai is then

Li,mass =
1

2
m2

AA
i
µA

i µ =
g2v2

8
Ai

µA
i µ, (1.26)

thus all three gauge-bosons receive the mass

mA =
gv

2
. (1.27)

In order to end up with one massless gauge-boson (one gauge-boson, the photon, has to

be massless for a successful theory), in addition to the SU(2) symmetry a U(1) symmetry

has to be imposed. The scalar field is assigned the charge 1/2 under U(1), thus the field

transforms as

φ→ eiα
i σi

2 eiβ
1

2φ, (1.28)

where the x-dependence has been suppressed everywhere. The scalar field φ acquires

the same vacuum-expectation value as in eq. 1.23. Using the definition from eq. 1.8 the

covariant derivative of φ becomes

Dµφ = (∂µ − ig

2
Ai

µσ
i − ig′

2
Bµ)φ, (1.29)

where the third term comes from the transformation under the U(1) symmetry and the

constants g and g′ have been extracted in the term linear in ε in the expansion of the

comparator, i.e.

U(x+ εη, x) = 1 − iεηµ

2

(

gAi
µ(x)σi + g′Bµ(x)

)

+ O(ε2). (1.30)

The part of the kinetic term for the field φ, |Dµφ|2, giving rise to the mass terms for the

gauge-bosons, is

Lmass =
1

8

(

0 v
) (

gAi
µσ

i + g′Bµ

) (

gAj µσj + g′Bµ
)

(

0
v

)

=
v2

8

(

g2
(

(A1
µ)2 + (A2

µ)2
)

+
(

−gA3
µ + g′Bµ

)2
)

,

(1.31)
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1. THE STANDARD MODEL OF PARTICLE PHYSICS

where we have explicitly used the definition of the Pauli-matrices. Note that the two fields

A3 and B are entangled. To find the mass eigenstates the fields can be disentangled by

defining the new fields

W±
µ =

1√
2

(

A1
µ ∓ iA2

µ

)

,

Zµ =
1

√

g2 + g′2

(

gA3
µ − g′Bµ

)

and

Aµ =
1

√

g2 + g′2

(

g′A3
µ + gBµ

)

.

(1.32)

The Lagrangian from eq. 1.31 then become

Lmass =
v2

8

(

g2
(

(W+
µ )2 + (W−

µ )2
)

+ (g2 + g′
2
)Zµ

)

, (1.33)

and the new mass-eigenstate fields acquire the masses

mW± =
gv

2
, mZ =

v

2

√

g2 + g′2 and mA = 0. (1.34)

As desired the theory consists of three massive (W ±, Z) and one massless (A) field.

We now assume an additional fermion-field in an arbitrary representation ta of SU(2)

and charge Y under U(1) (hyper-charge). The covariant derivative of this field is

Dµ = ∂µ − igAa
µt

a − ig′BµY. (1.35)

Rewriting this in the mass-eigenstate fields defined in eq. 1.32 and eq. 1.34 leads to

Dµ =∂µ − ig√
2

(

W+
µ t

+ +W−
µ t

−)− i
√

g2 + g′2
Zµ

(

g2t3 − g′
2
Y
)

−

igg′
√

g2 + g′2
Aµ

(

t3 + Y
)

,

(1.36)

where the operators t±, defined as t± = t1 ± it2, are the familiar iso-spin creation and

annihilation operators.

As the field Aµ should be identified with the electromagnetic potential, its coupling

should be the electro-magnetic coupling e, i.e.

e =
gg′

√

g2 + g′2
, (1.37)

and its quantum number the electric charge Q,

Q = t3 + Y. (1.38)
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1.2. THE GLASHOW-SALAM-WEINBERG MODEL

To simplify further, the mixing of the fields A3 and B can be parametrized with the

so-called Weinberg-angle θw (or Weak-Mixing-Angle) as

(

Z
A

)

=

(

cos θw − sin θw

sin θw cos θw

)(

A3

B

)

, (1.39)

with

cos θw =
g

√

g2 + g′2
and sin θw =

g′
√

g2 + g′2
. (1.40)

The covariant derivative becomes then

Dµ = ∂µ − ig√
2

(

W+
µ t

+ +W−
µ t

−)− ig

cos θw
Zµ

(

t3 − sin2 θwY
)

− ieAµQ, (1.41)

and the couplings of the Z and A fields to the fermions are completely determined by

their electric charge Q and the third component of the weak iso-spin t3. In addition the

relations

g =
e

sin θw
,

mW =mZ cos θw

(1.42)

for the weak coupling constant g and the ratio of the masses of the gauge-bosons W and

Z can be found.

1.2.2 Couplings To Fermions

It has been shown in several experiments (see e.g. [5]) that the W-bosons only couple

to left-handed fermions. This leads to no complications in writing down the couplings

of these fermions to the gauge-bosons. Since the kinetic term for the fermion-field can

be decoupled into a left- and a right-handed field, the left- and right-handed fields can

be treated separately by choosing different representations for each of them. To make

sure that the right-handed fermions do not couple to the W-bosons, they can be assigned

to the singlet representation of SU(2), while the left-handed fields live in the doublet-

representation 6, i.e.

EL =

(

νe

e

)

L

and eR, (1.43)

as well as

UL =

(

u
d

)

L

and uR and dR. (1.44)

The extension to the other families is straight forward. The correct hyper-charges Y for

each of the fields can be found using the charge-relation in eq. 1.38. They are summarized

in Table 1.2. The kinetic energy terms in the Lagrangian for these fields, that define the

6 The mixing between quark-generations is not discussed, since it is not important for this thesis.
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1. THE STANDARD MODEL OF PARTICLE PHYSICS

Q t3 Y
(

νe

e

)

L

0
−1

+1/2
−1/2

−1/2

eR −1 0 −1
(

u
d

)

L

+2/3
−1/3

+1/2
−1/2

+1/6

uR +2/3 0 +2/3

dR −1/3 0 −1/3

Table 1.2: Charge, hyper-charge and third weak iso-spin component for the various
fermion-fields in the GSW theory.

couplings to the gauge-bosons completely, are then

Lkin = ELiD/EL + eRiD/ eR + ULiD/UL + uRiD/uR + dRiD/dR. (1.45)

As an example we derive the couplings for the up-quarks. The coupling terms for the up

quark to the gauge-bosons are

Lu,c =
g√
2

(

uLγ
µdLW

+
µ + dLγ

µuLW
−
µ

)

+

g

cos θw

(

uLγ
µ

(

1

2
− 2

3
sin2 θw

)

uL + uRγ
µ

(

−2

3
sin2 θw

)

uR

)

Zµ+

euγµ 2

3
uAµ.

(1.46)

Using the projection operators onto the right- and left-handed currents, defined as

jµR/L = uγµ

(

1 ± γ5

2

)

u, (1.47)

the full set of coupling terms is found to be

Lu,c =
g√
2

(

uγµ

(

1 − γ5

2

)

dW+
µ + dγµ

(

1 − γ5

2

)

uW−
µ

)

+

g

cos θw
uγµ

(

cA − cV γ
5

2

)

uZµ + euγµ 2

3
uAµ,

(1.48)

where the coefficients for the axial-current cA and the vector-current cV are defined as

cA =
1

2
− 4

3
sin2 θw and cV =

1

2
. (1.49)

These coefficients can be computed for all the fermion-fields in a similar way. They are

listed in Table 1.3. The resulting Feynman-rules for the couplings of fermions to the gauge-
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1.2. THE GLASHOW-SALAM-WEINBERG MODEL

cA cV

e −1
2 + 2 sin2 θw −1

2

νe +1
2 +1

2

u +1
2 − 4

3 sin2 θw +1
2

d −1
2 + 2

3 sin2 θw −1
2

Table 1.3: Coefficients for the axial- and the vector-currents for the various fermion-fields
in the GSW theory.

A

p

W±

p

Z

p

µ

µ

µ ν

ν

ν

f̄

f
Aµ

f̄ ′

f
W±

µ

f̄

f
Zµ

=̂ − ieQγµ

=̂ −ig

2
√

2
γµ

(

1 − γ5
)

=̂ −ig
2 cos θw

γµ

(

cA − cV γ5
)

=̂ −igµν

p2+iε

=̂ −i
p2−m2

W



gµν − pµpν

p2−ξm2
W

(1 − ξ)




=̂ −i
p2−m2

Z



gµν − pµpν

p2−ξm2
Z
(1 − ξ)





Figure 1.1: Feynman-rules for the couplings of fermions to the gauge-bosons in the GSW
theory.

bosons are shown in the left part of Fig. 1.1. In the right part of Fig. 1.1 the propagator

terms for the gauge-bosons are shown. They can e.g. be computed using path integral

methods [1]. The parameter ξ is the so called gauge-fixing parameter. This parameter can

in principle be chosen freely, the final ’physical’ result of any calculation is independent of

the specific choice.

1.2.3 Fermion Mass Terms and the Higgs Boson

A simple fermion mass term such as −mψψ cannot be used any more, since the left- and

right-handed fields live in different representations of the gauge-group. In order to obtain

the needed mass term, the fields EL, eR and φ can be contracted. Expanding φ again
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1. THE STANDARD MODEL OF PARTICLE PHYSICS

around its vacuum expectation value v, the fermion mass terms turn out to be

Le,mass = − λeELφeR + ... =

− 1√
2
λeveLeR + ...,

(1.50)

resulting in the mass for the electron of me = 1√
2
λev. In a similar way mass terms for

all the massive fermion-fields can be found. Note that by construction the neutrino-field

stays massless (i.e. there is no coupling term to right-handed neutrinos). In addition the

parameter λe is not constrained, leading to the possibility of acquiring different masses for

each fermion type.

The scalar field φ can be parametrized as 7

φ(x) =
1√
2

(

0
v + h(x)

)

, (1.51)

with the scalar, real-valued field h denoting the fluctuations of φ around the vacuum

expectation value v, i.e. 〈h〉 = 0.

We have to define an explicit Lagrangian, that leaves the field φ with a vacuum value

6= 0:

Lφ = |Dµφ|2 + µ2φ†φ− λ(φ†φ)2, with µ2 < 0. (1.52)

The potential V (φ) = µ2φ†φ− λ(φ†φ)2 has a minimum at

v =

(

µ2

λ

)1/2

6= 0, (1.53)

and the terms involving the field h are

Lh = − µ2h2 − λvh3 − 1

4
λh4 =

− 1

2
m2

hh
2 −

√

λ

2
mhh

3 − 1

4
λh4.

(1.54)

The quantum of the scalar field h is a scalar (boson), the Higgs boson, with mass

mh =
√

2λv.

Putting the expression from eq. 1.51 into the mass terms for the fermions one finds the

couplings of the Higgs to the fermions,

Lhf = −mfff

(

1 +
h

v

)

, (1.55)

7 We use the unitarity gauge to render the field φ real in every point x.
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f̄

f W+

µ

HH

W−

ν

Zµ

H

Zν

=̂ − i
mf

v
=̂ 2i

m2
W
v

gµν =̂ 2i
m2

Z
v

gµν

Figure 1.2: Feynman-rules for the couplings of fermions and gauge-bosons to the Higgs
boson.

and finally in the covariant derivative term of φ one finds the coupling terms of the gauge-

bosons to the Higgs field,

LhG =

(

m2
WW µ+W−

µ +
1

2
m2

ZZ
µZµ

)(

1 +
h

v

)2

. (1.56)

The Feynman rules for the coupling of the fermions and the gauge-bosons to the Higgs

are shown in Fig. 1.2.

1.3 Quantum Chromo Dynamics (QCD)

Having discussed the weak and electro-magnetic interactions, we now turn to the strong

interaction, responsible for the formation of hadrons. The success of the interpretation

of the force-carriers as the quanta of the gauge-fields that had to be introduced in order

to preserve the local gauge-invariance of the Lagrangian under a certain symmetry-group

continuous for this interaction. The symmetry-group describing a theory that is consistent

with experimental observations is the color-SU(3) group and the corresponding quantum

number is the color (conventionally labeled as red, green and blue). The (anti-)quarks q (q)

can be assigned to the fundamental representation of SU(3), thus the three combinations

qiqi, εijkqiqjqk and εijkq
iqjqk (1.57)

are singlets under color-SU(3) transformations and form stable particles. They can be

identified as Mesons (qiqi) and Baryons (εijkqiqjqk, εijkq
iqjqk).

1.3.1 Group Structure of SU(3)

The general SU(3) transformation for the quark fields is

qi →
(

1 + iαata + O(α2)
)

qi, (1.58)

with ta the generators of the symmetry group that obey the commutation relation

[ta, tb] = ifabctc. (1.59)

19



1. THE STANDARD MODEL OF PARTICLE PHYSICS

The coefficients f are again the (anti-symmetric) structure-constants of the symmetry-

group.

The generators in the fundamental representation are d × d hermitian matrices, with

d = 3 the dimension of the fundamental representation. The normalization of the matrices

ta in the fundamental representation is

tr[tatb] = Cδab, with C =
1

2
. (1.60)

The matrices in the adjoint representation (denoted by G) are

(tbG)ac = ifabc (1.61)

and the dimension of the adjoint representation for the group SU(N = 3) is given by

d(G) = N 2 − 1 = 8. (1.62)

We find the useful quadratic Casimir operator C2 for the fundamental representation,

defined as

tata = C2, (1.63)

using the relation

dC2 = d(G)C ⇒ C2 =
N2 − 1

2N
=

4

3
. (1.64)

Finally we find the quadratic Casimir operator C2(G) and the normalization C(G) of

the matrices in the adjoint representation as

C2(G) = C(G) = N = 3. (1.65)

1.3.2 QCD Lagrangian and Feynman Rules

We recall the general Lagrangian for non-abelian gauge theories from eq. 1.20 and define

the QCD Lagrangian as

LQCD = ψ(iD/ )ψ − 1

4
(F a

µν)2 −mψψ + Lgauge−fixing + Lghost (1.66)

where we have added the so-called gauge-fixing term

Lgauge−fixing = − 1

2ξ
(∂µAa

µ)2 (1.67)

and the ghost-term

Lghost = ca(∂µDac
µ )cc (1.68)
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=̂ −i
k2+iε

(

gµν − (1 − ξ)kµkν

k2

)

a, µ

=̂ igγµta

b, ν

c, ρ

=̂ − ig2
×

[ fabef cde(gµρgνσ
− gµσgνρ)

+facef bde(gµνgρσ
− gµσgνρ)

+fadef bce(gµνgρσ
− gµρgνσ) ]

a, µ

d, σ

b, ν

c, ρ

=̂ gfabc
×

[ gµν(k − p)ρ

+gνρ(p − q)µ

+gρµ(q − k)ν ]k

p

q

a, µ

Figure 1.3: Feynman rules for QCD.

in order to be able to define a meaningful gauge-boson propagator. The ξ in the gauge-

fixing term is the gauge-fixing parameter and can be chosen arbitrarily. It turns out that

the so called Feynman-’t Hooft gauge (ξ = 1) is especially useful 8.

Using the definition of the covariant derivative from eq. 1.17 and the field-strength

from eq. 1.18 the Feynman rules for the couplings of the gauge-bosons to the quarks

and themselves can be found in the non-linear part of the Lagrangian in eq. 1.66. They

are shown (without the rules for the ghost-field c), together with the propagator for the

gauge-bosons (gluons), in Fig. 1.3.

1.3.3 The Running of the Coupling and Asymptotic Freedom

The calculation of amplitudes for perturbative field theories usually includes the calcu-

lation of loop-diagrams. Diagrams like these usually are divergent, when the undefined

loop-momentum becomes very large. The diagrams are thus called ultraviolet (UV) diver-

gent. To render these diagrams finite the so called renormalization technique can be used

which ’factorizes’ the divergences into the not-observable ’bare’ parameters of the theory,

such as the ’bare’ masses of particles and the ’bare’ coupling constant. Within this proce-

dure the divergent terms (which usually appear as 1/ε poles in dimensional regularization)

are removed by so called counter-terms at some specific scale, the renormalization scale

µR, and the theory is defined by the so called ’physical’ parameters for the masses and

the coupling. These quantities can be measured experimentally.

In general the choice of this scale is arbitrary. If any observable quantity is expanded to

all orders in the coupling constant, the µR-dependent terms have to cancel order by order.

As an example 9 let us consider a dimensionless observable quantity R, that depends on

8 Any observable quantity is independent of the choice of the gauge ξ.
9 This example has been adapted from a lecture on QCD given by B. R. Webber at CERN in February

2008 [6].
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an energy scale Q. Dimensional analysis yields that the observable quantity R can only

depend on the ratio of the scales Q and µR, and of course on the coupling constant αs,

i.e.R(Q/µR, αs). The observable satisfies then the so called Callan-Symanzik equation,

(

µR
∂

∂µR
+ β(g)

∂

∂g

)

R = 0, (1.69)

with g the QCD coupling and µR the renormalization scale. We can expand the beta-

function β(g) in orders of the coupling,

β(g) = − g3

(4π)2
b0 + O(g5) = − g3

(4π)2

(

11

3
C2(G) − 4

3
nfC

)

+ O(g5). (1.70)

In SU(3) the coefficient of the first term b0 becomes

b0 = (11 − 2

3
nf ), (1.71)

where nf is the number of light quarks (i.e. light compared to the scale Q). We focus here

on this term, the coefficients for the terms up to the oder g9 are presently known.

Equation 1.69 implies that the scale dependence can be absorbed into a running coupling

constant αs(Q) defined as

αs(Q) =
g2

4π
(1.72)

where g is the renormalized coupling defined by the so called renormalization group equa-

tion (RGE)
d

d log(Q/M)
g = β(g), (1.73)

with the initial condition αs(µR) = αs. As the RGE only determines the evolution of the

coupling constant, its normalization has to be measured experimentally. This is done at a

specific reference scale, conveniently chosen to be the Z-boson mass mZ
10. The value of

αs reported by the Particle Data Group in 2006 is [3]

αs(mZ) = 0.1176 ± 0.0020. (1.74)

This uncertainty of about ∼ 2% will propagate into all QCD predictions of order αs.

The solution of the RGE gives

αs(Q) =
αs

1 + αsb0
2π log(Q/M)

. (1.75)

10 The coupling constant is also dependent on the definition of the renormalization scheme. The most
commonly used scheme is the modified minimal subtraction scheme MS. We will implicitly refer all results
to this scheme.
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We can define the dimensional scale parameter Λ as

1 =
g2b0
8π2

log(M/Λ) (1.76)

in order to remove the dependence of the running coupling constant on the reference value

αs. The running coupling becomes then

αs(Q) =
2π

b0

1

log(Q/Λ)
. (1.77)

Equation 1.77 is a remarkable result. First of all the qualitative result depends on the

sign of the β-function, i.e. on the sign of its first coefficient b0. If the β-function is negative

(b0 is positive), the coupling constant decreases as log−1(Q) when Q becomes large. This

effect is known as asymptotic freedom and appears in QCD as long as the number of light

flavours is nf < 17. The total number of known quark flavours is 6, and the number of

light flavours for typical hadron-collider processes is 5. We can therefore safely argue that,

if the typical process scale Q is large enough compared to Λ, the coupling constant is small

and perturbative expansions of observable quantities lead to accurate results.

On the other hand, if Q becomes small, i.e.Q → Λ, the coupling constant increases

and the perturbative description breaks down. The value of Λ has experimentally been

determined to ∼ 200MeV, corresponding to a distance 1/Λ of about the size of the smallest

hadrons. In other words, Λ (1/Λ) is the scale (distance) at which the strong interaction

actually becomes strong.

1.3.4 Hadronic Processes and Parton Density Functions

With the Feynman rules above all necessary ingredients are known for the computation of

any hard scattering parton-parton QCD process. Experimentally however it is not possible

to examine such processes. A typical experiment involves the interaction of hadrons 11, the

bound states of quarks and gluons. The interactions occurring within the hadrons cannot

be treated perturbatively, since the quark/gluon bound-states are established via low-

momentum-transfer interactions. However, in high energy hadron collisions the hadrons

can be treated as a loose cloud of approximately non-interacting particles (partons). The

parton momenta are collinear to the hadron momentum and each of the constituents carries

a fraction x of the hadron momentum (Parton Model [7]). The picture can be justified

by the fact that a constituent of the hadron can only acquire a significant transverse

momentum (with respect to the hadron momentum) through the exchange of a hard

gluon. But this is highly suppressed since the QCD coupling becomes small for such large

11 At the LHC these hadrons are protons.
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P1

P2

p1 = x1P1

p2 = x2P2

Figure 1.4: Schematic diagram for a hadron-hadron interaction at high energies. The
interacting partons ’factorize’ from the protons with momenta P1/2 and can be treated as
free quarks/gluons with momenta p1/2 = x1/2 P1/2.

momentum transfers. In other words, the inner-hadron interactions are soft and thus

’slow’ (i.e. taking place at longer time scales) compared to the hard scattering process and

can approximately be neglected.

Using this picture the following notation for hadron-hadron collisions can be introduced.

The incoming hadrons have momenta P1/2. Their momenta in the center-of-mass frame

are assumed to be large enough compared to the hadron masses, such that latter can

be neglected, P 2
1/2 = 0 (this is the case at the LHC with a hadron-hadron center-of-mass

energy of 14 TeV). The momenta of the interacting partons p1/2 are then, using the parton

picture,

p1/2 = x1/2P1/2, (1.78)

with x1/2 ∈ [0, 1] the fraction of the hadron momentum carried by the partons p1/2
12.

The hadron-hadron center-of-mass energy squared is defined as

s = (P1 + P2)
2. (1.79)

The parton-parton center-of-mass energy squared is then simply

ŝ = (p1 + p2)
2 = (x1P1 + x2P2)

2 = x1x2s. (1.80)

A hadron-hadron collision process is schematically shown in Fig. 1.4. At leading order

the hard scattering partons with momenta p1 and p2 interact without ’disturbance’ (white

circle) by the other partons (spectator quarks).

The only unresolved ingredient for the understanding of the parton momenta is the

variable x. The distribution of this variable depends on the soft inner-hadron interactions

12 Note, that since the hadrons are treated as massless, the partons are automatically massless as well,
i.e. p2

1/2 = 0.
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and cannot be derived using perturbative QCD. The so called Parton Distribution Function

ff (x) (PDF) can be defined, where ff(x)dx is the probability of finding a parton of type f

(an (anti-)quark-flavour or a gluon) in the hadron that carries a fraction within [x, x+dx]

of the hadron momentum. All the constituent partons together have to carry the total

hadron momentum, i.e.

∑

f

1
∫

0

xff (x)dx = 1. (1.81)

Other constraints are put on the PDFs by the quantum numbers of the hadrons. For

example, in the case of protons the total expected number of up-quarks (down-quarks) is

two (one), i.e.

1
∫

0

dx(fu(x) − fu(x)) = 2 and

1
∫

0

dx(fd(x) − fd(x)) = 1. (1.82)

More so called sum-rules exist for the electrical charge of the hadrons and other observ-

ables. These rules can be used to constrain the distributions using experimental deep-

inelastic scattering data.

We now have all the ingredients in hand to define the hadronic cross-section for a process

pp → X as

σ(pp → X) =
∑

ff ′

1
∫

0

dx1dx2ff (x1)ff ′(x2)σ̂(x1, x2, s), (1.83)

with σ̂ the partonic hard scattering cross-section and the sum running over all parton-

type-pairs ff ′ that contribute to the process.

1.3.5 Soft and Collinear Effects: Parton Evolution and Parton Shower

Above it has been assumed that the PDFs are independent of the scale of the hard scat-

tering process Q. In the parton model picture this means that the structure of the proton

looks the same, whatever the energy scale might be at which the proton is ’probed’ (e.g. in

deep inelastic scattering experiments (DIS)). However, this behavior, known as Bjorken

scaling, is only true at leading order. The approximative character of the Bjorken scaling

can be understood from the following picture. As the probing scale Q is increased, the

before as point-like observed parton is resolved into several, softly interacting particles.

As the number of constituent partons is increased, while the hadron momentum stays

constant, each of the constituents has to carry less of the total momentum. This leads to

an increase in the parton densities at low and a decrease of the densities at hight x values.

This scale dependence, known as the breaking of the Bjorken scaling, is experimentally

observed.
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This scale dependence arises obviously from the interactions within the hadrons during

the scattering process, and is thus a higher-order correction to the leading order parton

picture. The diagrams of these corrections contain singularities in the soft and collinear

limit of the additional radiation. The large corrections due to these singular regions in

the phase-space can be absorbed into the parton density functions using parton evolution,

which by this procedure become scale dependent. The evolution of the parton densities

with varying scale Q for the constituents of hadrons are described by the Altarelli-Parisi

equations [8] as

d

d logQ
fg(x,Q) =

αs(Q
2)

π

1
∫

x

dz

z



Pqg(z)
∑

f

(

ff (x/z,Q) + ff (x/z,Q)
)

+ Pgg(z)fg(x/z,Q)





d

d logQ
ff (x,Q) =

αs(Q
2)

π

1
∫

x

dz

z
[Pqq(z)ff (x/z,Q) + Pgqfg(x/z,Q)]

d

d logQ
ff (x,Q) =

αs(Q
2)

π

1
∫

x

dz

z

[

Pqq(z)ff (x/z,Q) + Pgqfg(x/z,Q)
]

,

(1.84)

with the splitting functions

Pqq(z) =
4

3

(

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

)

Pqg(z) =
4

3

(

1 + (1 − z)2

z

)

Pgq(z) =
1

2

(

z2 + (1 − z)2
)

Pgg(z) = 6

(

1 − z

z
+

z

(1 − z)+
+ z(z − 1) +

(

11

12
− nf

18

)

δ(1 − z)

)

,

(1.85)

where the plus-distribution is defined as

1
∫

0

dxf(x)g(x)+ =

1
∫

0

dx(f(x) − f(1))g(x). (1.86)

The spitting functions Pab(z) are directly related to the probability for the splitting of

a parton a with momentum p into a parton b with longitudinal momentum zp. By us-

ing the above evolution equations to define the parton densities at some scale Q all the

leading logarithmic terms introduced by soft and collinear radiation at higher orders are

re-summed. A detailed derivation of the evolution equations can e.g. be found in [9].

The factorization approach from eq. 1.83 becomes scale dependent as well and the so

called factorization scale, µF, has to be introduced. The hadronic cross-section becomes
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then

σ(pp → X) =
∑

ff ′

1
∫

0

dx1dx2ff (x1, µF)ff ′(x2, µF)σ̂(x1, x2, s, µF), (1.87)

where the partonic cross-section σ̂ can also become factorization scale dependent. For LO

cross-sections the partonic cross-section is typically independent of the factorization scale.

The above description is very important for computing inclusive observables such as

cross-sections. However, it does not describe the kinematics of the final state particles

properly. To do this a similar, alternative approach can be used, the Parton Shower

approach. We just briefly describe the idea and refer the reader to the literature (e.g. [9])

for more details. The starting point is the definition of the so-called Sudakov Form Factors

∆f (t) ≡ exp



−
∑

f ′

t
∫

t0

dt′

t′

∫

dz
αs

2π
P̂f ′f (z)



 , (1.88)

where P̂f ′f (z) are the un-regularized splitting functions 13 and the substitution t ≡ Q2 has

been applied. These form factors can be interpreted as the probability of a parton not to

split when evolving from scale t0 to scale t. Together with the Altarelli-Parisi Equations

they can be employed to define an iterative algorithm to radiate/split partons in a cascade

up to some cut-off scale. After this procedure (parton-shower) the final-state consists of

a multi-parton configuration and again, similarly as in the case of the PDFs, the leading

logarithmically enhanced contributions of the higher-order corrections are included up to

all orders.

The specific implementation of the algorithm can vary. We just mention those used in

this thesis from the programs HERWIG [10] and PYTHIA [11]. HERWIG and PYTHIA are

MC event generators that combine LO hard scattering amplitudes with such parton-shower

algorithms. HERWIG uses a so called angular-ordered algorithm, that includes leading

soft gluon enhancements to all orders. In the virtuality-ordered shower algorithm used in

PYTHIA this is achieved via a veto technique.

1.3.6 Long Distance Effects: Hadronization

The formation of hadrons is a non-perturbative process. The hadronization takes place at

low momentum transfer and long distances where the strong coupling is large. Therefore

there are only phenomenological models available to describe the hadronization effects.

13 In eq. 1.85 we used plus- and delta-distributions to regularize the splitting functions. This procedure is
needed to regularize the singularities arising when z → 0, 1. In the parton-shower approach the singularities
are regularized using an explicit cut-off, i.e. a minimal energy transfer in the splitting is required, otherwise
the radiation is unresolved and the parton did not split.
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(a) String-Model (b) Cluster-Model

Figure 1.5: Schematic picture for the formation of hadrons from partons, in a qq final state
configuration after parton-shower, (a) for the String-Model, (b) for the Cluster-Model.

The commonly used models are the String-Model, used in PYTHIA, and the Cluster-

Model, used in HERWIG.

The main idea of the String-Model is that, when an oppositely color-charged quark-

anti-quark pair moves apart, the color-field between them can be described as a narrow

’flux tube’ of uniform energy density (string tension). Gluons form so called kinks in these

flux-tubes. At the end of the perturbative parton-shower colorless strings form between

quark-anti-quark pairs (as shown in Fig. 1.5(a)). The motion of these strings is then

described classically, with the possibility of breaking a string into a qq pair, when the

field energy in the string allows for it. These quarks are combined into the final-state

hadrons, which, if not stable, proceed in decaying until a set of stable final-state hadrons

is obtained.

In the Cluster-Model the quarks after the parton-shower are combined as quark-anti-

quark pairs into clusters, where beforehand gluons at the end of the shower are forced

to split into qq pairs (illustrated in Fig. 1.5(b)). The clusters are then associated with

so called “super-resonances”, that subsequently decay into the known set of hadronic
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resonances.

A detailed description and comparison of these and other hadronization models can

e.g. be found in [9].

1.3.7 Underlying Event and Multi-Parton Interactions

In hadron-hadron collisions there are additional effects that do not affect the hard scat-

tering process. One of them is the Underlying Event, describing soft interactions between

the spectator partons, i.e. the partons from the protons that are not involved in the hard

scattering (cf. Fig. 1.4). Another effect is Multi-Parton interaction, where more than two

of the constituent quarks of the protons undergo a hard scattering. There are several

models available for these effects; we will explicitly use the JIMMY model [12] for the

HERWIG generator in upcoming sections of this thesis.

1.4 Cross-Section and Decay-Width

For later usage, but without derivation, the formulas for the computation of cross-sections

and decay widths from the S-matrix elements M are shown here. For a detailed derivation

we refer the reader to the literature, e.g. [1].

The cross-section for the scattering process A+B → X is

σ =
1

4EAEB |vA − vB |

∫





∏

f

d3pf

(2π)32Ef



× |M|2(2π)4δ(4)(pA + pB −
∑

pf ), (1.89)

where EA/B (vA/B) are the energies (velocities) of the incoming particles A and B, and

pf , f ∈ X, are the momenta of all final state particles. The whole formula is Lorentz-

invariant under boosts along the z−axis, i.e. the axis parallel to the collision axis of the

particles A and B.

The formula for the decay width of the process A→ X is

Γ =
1

2EA

∫





∏

f

d3pf

(2π)32Ef



× |M|2(2π)4δ(4)(pA −
∑

pf ). (1.90)

This formula is not Lorentz-invariant (due to the factor of 1/EA). In general the decay

width of a particle is computed in its rest-frame, where EA = mA.
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Quantity Value Standard Model

mt [GeV] 172.7 ± 0.29 ± 0.6 172.7 ± 2.8
mW [GeV] 80.450 ± 0.058 80.376 ± 0.017
mZ [GeV] 91.1876 ± 0.0021 91.1874 ± 0.0021
ΓZ [GeV] 2.4952 ± 0.0023 2.4968 ± 0.0011
Γ(had) [GeV] 1.7444 ± 0.002 1.7434 ± 0.0010
Γ(inv) [MeV] 499.0 ± 1.5 501.65 ± 0.11
Γ(`+`−) [MeV] 83.984 ± 0.086 83.996 ± 0.021
σhad [nb] 41.541 ± 0.037 41.467 ± 0.009

Table 1.4: Experimentally observed (Value) values for Standard Model parameters com-
pared to the SM best fit predictions (Standard Model). σhad is the hadronic cross-section
in electron-positron annihilation with a center-of-mass energy corresponding to the Z bo-
son mass. For details see [3], section Electroweak model and constraints on new physics.

1.5 Tests and Limitations of the Standard Model

The electro-weak theory described in section 1.2 together with QCD (section 1.3) form the

so-called Standard Model of Particle Physics (SM). The predictions of these quantum field

theories have been tested against a tremendous amount of experimental data and were

found be in excellent agreement. The predicted (Standard Model) and experimentally

observed values (Value) for a selection of Standard Model parameters is shown in Table 1.4.

The predictions for the masses of the W and Z bosons (mW, mZ) and the top-quark (mt)

as well as the total (ΓZ) and the partial (Γ(had), Γ(inv), Γ(`+`−)) widths of the Z boson

agree with the Standard Model predictions. The last line in the table shows the values

for the total hadronic cross-section in electron-positron annihilation with a center-of-mass

energy corresponding to the Z mass mZ. The numbers are taken from [3].

One of the most precisely known parameters is the Landé-factor g, related to the mag-

netic moment of the electron. Theoretical predictions and experimental measurements of

this factor agree to eight significant digits. Together with the results of other experiments

(e.g. measurements of the quantum Hall effect, neutron Compton wavelength etc.) it is

understood that Quantum Electrodynamics (QED) is the most precisely known and most

successful physical theory.

However, there are a few short-comings in the Standard model. One of them is the only

fundamental missing piece, the Higgs boson. So far no experiment was able to find this

particle, which is vital to the complete framework of the SM. It not only gives rise to

the masses of the W and Z bosons (known as electroweak symmetry-breaking), but also

serves as the origin of the masses for the fermions. From theoretical considerations and
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Figure 1.6: Figure taken from [16]. The plot shows the value ∆χ2 = χ2 − χ2
min as a

function of the Higgs mass that is used in the fit of all high-Q2 data available. The blue
band shows an estimation of the theoretical error due to missing higher order corrections.
The left (yellow) region labeled ’excluded’ shows the region excluded by direct searches

at 95% CL. The dashed curve is the result obtained using the evaluation of ∆α
(5)
had(m2

Z)
from [17]. The dotted curve includes also the low-Q2 results.

measured electro-weak parameters an upper limit on the Standard Model Higgs mass can

be set at mH ≤ 194GeV with 95% CL [3]. This prediction also includes the lower bound

from direct searches of mH ≥ 114.4GeV at 95% CL [13]. The constraints on the Higgs

boson mass arising from fitting all high-Q2 data of the LEP [14] experiments [15] is shown

in Fig. 1.6, taken from [16]. The upper band quoted there (mH ≤ 144GeV) is increased

to the value mentioned above when the direct search lower limit (denoted by the yellow

region) is included.

Another unresolved issue is the so called hierarchy problem. As discussed above, the-

oretical considerations and experimental observations favour a Higgs boson mass of the

order of ∼ 100GeV. In order to achieve this the divergences in the quantum-corrections to

the Higgs mass arising from radiative terms have to cancel very precisely. In other words,

something ’protects’ the Higgs mass from increasing. If there is no mechanism at hand to

provide this protection the theory has to be fine-tuned up to the highest mass scales in

order to keep the Higgs mass small.

The success of the unification of the weak and the electromagnetic interaction into a
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spontaneously broken U(1) × SU(2) gauge theory gives rise to the hope of a unification

of QCD and the GSW theory at some larger scale. This would mean that the SM as

described above is the low-energy effective theory of a unified gauge theory at some larger

scale (also known as Grand-Unified-Theory (GUT) scale).

Further open questions are e.g. the origin of neutrino masses and dark matter (which

has been proposed to explain e.g. the deviations of the rotational movement of galaxies

from theoretical predictions).

There is a variety of proposed models that try to solve one or several of the above men-

tioned problems. A very popular model is Super-Symmetry (SUSY) [18], where additional

particles, so called SUSY-partners for each of the SM particles are introduced (extension in

the dimension of the spin-space). Other approaches introduce extra space-like dimensions

(e.g Universal Extra Dimension (UED) [19]) or additional color-like symmetries (Techni-

color [20]).

Despite the success of the SM it has been agreed upon among a major part of the scien-

tific community that there has to be some new physics beyond the SM, and that this new

physics should show up around 1TeV. The fact that almost all proposed models predict

the existence of new particles, that should be observable at high-energy experiments such

as the LHC [21] gives hope that the upcoming collider experiments at the LHC shed light

into this new domain, where consequences of the new physics can be observed. This might

either lead to a confirmation, or to an exclusion of one or more of the proposed models.
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Chapter 2

SM Higgs Phenomenology at the
Large Hadron Collider

2.1 Higgs Production and Decay Modes

2.1.1 Production Processes and Cross-Sections

Using the theoretical framework described in chapter 1, the possible mechanisms that

contribute to the SM Higgs boson production at the LHC can be derived. As the colliding

particles are protons, the set of incoming particles is restricted to the set of constituents

of the protons, namely to quarks q, anti-quarks q and gluons g.

A possibility is the direct interaction of an incoming quark from one proton and an

incoming anti-quark from the other proton. This process however does not contribute

substantially to the Higgs production cross-section. The coupling of the Higgs boson to

fermions depends linearly on the fermion-mass
(

−imf

v

)

, indicating that only heavy quarks

(t, b) contribute to the production. However, the parton distribution functions for heavy

quarks in the proton are very small It can therefore be concluded that this production

channel is completely negligible for any practical purpose.

A first relevant production mechanism is the so called Higgs-Strahlung process, shown

in Fig. 2.1(a). The incoming quark/anti-quark pair produces a vector boson (either W or

Z), which radiates a Higgs boson.

A further important process is the Higgs production in association with top-quarks

(Associated Production), shown in Fig. 2.1(c). The incoming particles are gluons that

annihilate into a tt-pair.
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Figure 2.1: LO Feynman-diagrams for the Higgs production processes at hadron colliders.

The next process that contributes is the so-called Vector-Boson-Fusion process, shown

in Fig. 2.1(b). In this process both incoming quarks radiate a vector boson (W or Z),

which then fuse to a Higgs boson.

The last, and at the same time most important production mode is the Gluon-Fusion pro-

cess, shown in Fig. 2.1(d). In this production process the incoming particles are gluons.

Since the Higgs does not couple to the gluons directly (i.e. the gluons are massless gauge

bosons), the Higgs production has to be mediated via a quark loop. Again the largest con-

tribution to this process comes from diagrams including a heavy quark (b, t) in the loop.

From first principles it is not obvious that this is the dominating Higgs production process

at the LHC. One might even argue, that since the corresponding diagram includes a loop,

the process might be suppressed (loop-suppressed) with respect to the VBF process. But

the importance of the Gluon-Fusion process becomes clear when taking into account the

PDFs of the protons at the appropriate scale. The parton-parton luminosities Lff as a

function of the parton-parton invariant mass mff are shown in Fig. 2.2. They are defined

as

Lff (mff ) =
∑

f f ′

1
∫

0

dx1 dx2 ff (x1)ff ′(x2)δ(x1x2s−mff ), (2.1)

with ff (x) the parton density in the proton of parton type f with fractional momentum x
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Figure 2.2: Parton-parton luminosities for proton-proton collisions at the LHC energy
(ECM

pp = 14TeV) as a function of the parton-parton invariant mass with the MRST2001
LO PDF set. The two lines show the gluon-gluon (gg) and the quark-anti-quark (qq)
luminosities.

(cf. section 1.3.6). The PDFs are taken from the MRST2001 LO set [24] and the proton-

proton center-of-mass energy is
√
s = 14TeV. The two lines in Fig. 2.2 correspond to the

gluon-gluon (gg) and the quark-anti-quark (qq) luminosities, where in the qq case the sum

runs over the pairs uu, dd and ss.

The first observation is that the gg luminosity exceeds the qq luminosity by at least one

oder of magnitude over almost the whole range under investigation. Additionally, it has to

be pointed out that with the exception of the Gluon-Fusion process all final states contain

other (partly heavy) particles, so that the parton-parton invariant mass in general has to

be larger than the Higgs mass in order to make the production possible. These facts show

how the Gluon-Fusion process is preferred over the other Higgs production mechanisms.

The LO Higgs production cross-sections at LHC for the various production processes

as a function of the Higgs mass are shown in Fig. 2.3. The cross-sections for the Vector-

Boson-Fusion and the Associated Production have been computed using the dedicated

programs VV2H [22] and HQQ [23]. The calculations for the Higgs-Strahlung and the

Gluon-Fusion processes can be found in Appendix B.

The bands in Fig. 2.3 correspond to the variation of the factorization and renormalization

scales µR and µF. They are varied simultaneously in the range [µ/2, 2µ], with µ some

process dependent reference scale. For the Higgs-Strahlung processes it is either the mass
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Figure 2.3: SM Higgs production cross-sections for the various processes as a function of
the Higgs mass at the LHC. The bands indicate the uncertainty coming from the variation
of the factorization scale µF (normalization scale µR) in the range µ/2 ≤ µR/F ≤ 2µ,
where µ is some process dependent reference scale.

of the W-boson mW or the mass of the Z-boson mZ, for the other processes it is the

Higgs mass mH. The cross-section variations under the variation of the scales is much

smaller for the Vector-Boson-Fusion and the Higgs-Strahlung processes. Since the LO

diagrams of these processes (cf. Fig. 2.1) are independent of the strong coupling, there is

no µR dependence. The other two processes are of order α2
s.

2.1.2 Decay Modes and Branching Ratios

A Higgs produced in any of the production channels described above will almost immedi-

ately decay into other particles. The direct decay products are again restricted to the set

of particles that couple to the Higgs boson, i.e. fermions (quarks and leptons) and massive

vector bosons (W and Z). The branching ratio of the Higgs decay-mode X is defined as

BR(X) =
Γ(H → X)
∑

Y
Γ(H → Y )

=
Γ(H → X)

Γtot(H)
, (2.2)

where Γ(H → X) is the partial width of the decay-mode H → X, and Γtot(H) is the total

width of the Higgs boson, i.e. the sum over the partial widths of all possible decay-modes

36



2.1. HIGGS PRODUCTION AND DECAY MODES

Figure 2.4: SM Higgs branching ratios for the various decay-modes as a function of the
Higgs mass.

Y . Recalling the general formula for the partial width from section 1.4,

Γ(A→ X) =
1

2mA

∫





∏

pf∈X

d3pf

2Ef (2π)3



 |M(A→ X)|2 (2π)4δ(4)(pA −
∑

pf ), (2.3)

it becomes clear that the magnitude of the partial width, and thus the branching ratio, is

dictated by the couplings appearing in the matrix element M and the kinematic restric-

tions in δ(4)(pA −
∑

pf ). The first of these arguments leads to the preferred decay of the

Higgs boson into heavy fermions or vector bosons, the second argument forbids e.g. the

decay of the Higgs into two top-quarks when it is lighter than about twice the top mass

mt.

Qualitatively the fermionic decay-modes are dominated by the decay into bb for Higgs

masses below and by tt for Higgs masses above the top-pair threshold. As soon as the

Higgs mass reaches the vector boson-pair threshold (mH ∼ 2 ×mW), these decay modes

become dominant. There are two other decay modes; the decays into two gluons and into

two photons. As discussed before, these gauge-bosons do not couple to the Higgs, thus

these modes can only be mediated via a fermion- or a massive-vector-boson-loop.

The branching ratios for the different Higgs decay modes as a function of the Higgs mass

are shown in Fig. 2.4. The numbers have been computed using the program HDECAY [25].
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2.1.3 Towards Discovering the Higgs

We want to step back a moment and review the consequences implied by the previous

observations for a possible discovery of the Higgs at a hadron-collider experiment. Over

the whole mass range under investigation the cross-section of the Gluon-Fusion process

is about one order of magnitude larger than the ones for the other production channels.

In fact, provided that the search-strategy is inclusive enough, i.e. we do not apply any

selection cuts that favour explicitly one of the production processes, they can be neglected

completely.

More discussion is needed for the choice of the decay-mode, in which the Higgs boson

is most likely observable. Naively the mode might be chosen that provides the largest

branching ratio for each Higgs mass hypothesis. But this is not always the best choice,

taking into account that in an actual experimental analysis the Higgs boson events need

to be separated from the background events. For this goal it is desirable to choose the

decay-mode with a signal as clean as possible. ’Clean’ means that the final state particles

detected in the experiment should be reliably identifiable, and their kinematic observables

(e.g. charge, momentum, energy) can be measured precisely. How well a certain particle

can be measured obviously depends to a large extent on the specific detector used in the

experiment 1. Nevertheless, a few general rules hold for all hadron-collider experiments

running or under construction:

• Quarks and gluons undergo a shower-like radiation chain, hadronize and form jets. It

is very difficult, if not even impossible, to determine the initial quark flavour of a jet.

Even separating quark-jets from gluon-jets is very challenging and leads to a large

fraction of misidentified jets. In addition, measuring kinematic observables of jets is

not very precise and usually leads to bad momentum- and energy-resolutions [26].

• Charged leptons (electrons, muons) and photons can be identified reliably and have

an energy/momentum-resolution at the order of a few percent or better.

• Neutrinos leave the experiment undetected.

Having these criteria in mind, it can be justified which of the various decay-modes are

most promising for the different Higgs mass hypotheses.

• High mass region (mH >∼ 200 GeV)

In this region the branching ratio into a pair of massive vector bosons is almost

unity. The branching ratio into a pair of W -bosons is about a factor of 2 larger than

1 It will be discussed in chapter 6 how this is done in the CMS experiment.
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the one into a pair of Z bosons. In the case of the decay of the vector bosons into

leptons (which provides the cleanest signal), the neutrinos coming from the W -decay

will stay undetected, whereas the Z-channel allows for the full reconstruction of the

Higgs momentum, and thus for the reconstruction of the invariant Higgs mass peak

over the continuum background.

• Intermediate region (mH ∼ 170 GeV)

The branching ratio of the Higgs decaying into a pair of W -bosons is almost unity.

The impossibility of reconstructing the Higgs momentum completely due to the

undetected neutrinos can be overcome by applying selection cuts, taking into account

the spin-correlations of the system [27].

• Low mass region (mH <∼ 140 GeV)

The decay-modes are dominated by bb. Nonetheless the discovery of the Higgs

in this mode is very difficult, due to the overwhelming QCD background. The

most promising mode is the di-photon-mode. Although the branching ratio is small

(∼ 10−3), the Higgs momentum can be fully determined, and thus the invariant

Higgs mass peak can be reconstructed over the continuum γγ-background.

2.2 Improving the Predictions: Higher Order QCD Effects

As shown above, the dominant Higgs production mechanism at the LHC is the Gluon-

Fusion process. This implies that a high-precision calculation for the Higgs production

cross-section for the Gluon-Fusion process is fundamental. When looking at Fig. 2.3 we

find that the LO calculation is not sufficient. The scale-variation uncertainty amounts to

∼ 30% over the entire mass-range. In addition, the final-state particle configuration of the

LO process consists of only the Higgs boson; there is no additional hadronic activity and

the Higgs boson transverse momentum pH
T is always zero; a clearly unrealistic prediction.

In order to overcome these shortcomings higher order QCD effects have to be taken into

account.

There are two approaches for including higher order QCD effects. The first one is

the inclusion of Feynman-diagrams of higher orders in αs, thus including more terms of

the perturbative expansion of the cross-section (fixed-order calculation). The second is

the inclusion of the leading logarithmic terms in the αs-expansion up to all orders (re-

summation). Both approaches, as well as the combination of them will be discussed in the

upcoming sections.

39



2. SM HIGGS PHENOMENOLOGY AT THE LARGE HADRON COLLIDER

(a) NLO diagrams

(b) NNLO diagrams

Figure 2.5: (N)NLO Feynman-diagrams for the process gg→H.

2.2.1 Fixed-Order Calculation

In this section the production cross-section and kinematic observables of the Higgs boson in

the Gluon-Fusion channel up to NNLO is discussed. Some Feynman-diagrams contributing

to the process up to this order are shown Fig. 2.5. All virtual and real emission amplitudes

have to be computed and suitably combined. The first inclusive and semi-inclusive NNLO

calculations have been performed in [29]. However, in order to apply arbitrary cuts on

the final-state particle phase space, a fully differential calculation is needed. The main

difficulty of such an exclusive calculation is the structure of the singularities in the double-

real-radiation amplitudes. While at NLO (single-real-radiation) subtraction methods [30]

are well known and solve the complications arising from such singularities, a similar method

could not be adapted to the double-real-radiation contribution for a long time 2. An

alternative solution has been developed in [32, 33]. In contrast to the subtraction method

the extraction of singular regions in the phase-space is completely automated and the

cancellation of the singularities is performed numerically. The authors of [32] apply this

method (Sector-Decomposition 3) to the Gluon-Fusion process in the Monte-Carlo program

FEHiP [34].

The program FEHiP incorporates two approximations. The first is the heavy-top-quark

approximation, which is valid as long as the Higgs is lighter than about twice the top

2 Recently the counter-terms needed for the subtraction of the singularities in the double-real-radiation
amplitudes were computed in [31].

3 The Sector-Decomposition method is discussed in more detail in Appendix C.
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(a) inclusive production cross-section (b) relative scale variation uncertainty

Figure 2.6: SM Higgs production cross-sections and relative scale variation at different
orders of αs for the Gluon-Fusion channel as function of the Higgs mass.

mass (mH <∼ 2×mt). In this approximation the top-quark loop is contracted to a point-

like vertex [35]. The second approximation consists in neglecting other quarks (i.e. the

b-quark) in the loop contributing to the process. In what follows this program will be

used for the computation of the fixed-order results of the pp → H + X process through

Gluon-Fusion.

We estimate the error introduced through these two approximations for the production

of a Higgs with mass mH = 165GeV using the program HiGLU [36], which computes the

cross-section at NLO using the exact top mass dependence and the bottom-loop. The

cross-section with the full top and bottom mass dependence is

σHiGLU = (24.56 ± 0.01) pb. (2.4)

The NLO cross-section from FEHiP is

σFEHiP = (25.85 ± 0.01) pb, (2.5)

leading to a relative error of

∆b/t ' 5%. (2.6)

2.2.1.1 Inclusive Cross-Section

First the effects of the higher-order corrections to the inclusive pp → H +X cross-section

at the LHC are investigated. The cross-sections for the Higgs mass range from 100 to
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Figure 2.7: Inclusive K-factors at different orders of αs for the Gluon-Fusion channel as
a function of the Higgs mass and the scale choice µ.

350 GeV are shown in Fig. 2.6(a) 4. The bands correspond to the simultaneous variation

of the renormalization- and factorization-scale (µR, µF) in the range [mH

2 , 2mH]. The

statistical uncertainties from the numerical integration are negligible compared to the

scale uncertainty, and therefore not shown.

The inclusive cross-section decreases with increasing Higgs mass (cf. Fig. 2.6(a)). While

the LO- and the NLO-bands are separated, the NLO- and NNLO-bands overlap over the

entire mass range, indicating a convergence of the series expanded in αs. In addition the

scale uncertainty decreases when going from NLO to NNLO, while the LO and NLO scale

uncertainties are of the same order. This can be seen more clearly in Fig. 2.6(b), where

the relative scale variation δµ, defined as

δµ(mH) :=
σinc(mH, µ = mH/2) − σinc(mH, µ = 2mH)

σinc(mH, µ = mH/2)
, (2.7)

is shown. While the uncertainties in the LO (NLO) case range between 28 % and 37 %

(25 % and 28 %), the uncertainty at NNLO is constant at ∼ 16%; an improvment by a

factor ≥ 1.8 (≥ 1.6) compared to the LO (NLO) numbers.

The importance of the NNLO corrections can also be seen be the increase in the inclusive

cross-section caused by them. To quantify the effects the inclusive K-factor can be defined

as

K
(N)NLO
inc (mH, µ) =

σ
(N)NLO
inc (mH, µ)

σLO
inc (mH, µ)

, (2.8)

where µ := µR = µF. The corresponding distributions are shown in Fig. 2.7. The NLO K-

factors range between 1.7 and 2.0, while the NNLO K-factors range between 2.0 and 2.7,

4 The cross-sections are only shown up to a Higgs mass value of 350 GeV. For larger Higgs masses the
heavy-top-quark approximation does not hold anymore.
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(a) cumulative cross-section in yH,max (b) cumulative K-factor in yH,max

Figure 2.8: Cumulative cross-section (a) and K-factors (b) as a function of yH,max for a
Higgs mass of mH=165 GeVfor different orders in the perturbative calculation. The bands
correspond to a scale variation in the range [mH/2, 2mH]. The dashed lines in (b) display
the inclusive K-factors.

depending on the Higgs mass mH and the scale choice. It is worth noting that the increase

in the variation of the K-factors with varying scale when going from NLO to NNLO

does not originate from a larger scale uncertainty of the NNLO cross-section compared

to NLO (in fact, the opposite is true). It comes from the definition of the K-factors in

eq. 2.8, namely from the variation of the LO cross-section in the denominator. Even if the

numerator would show no variation at all, the K-factors would still vary significantly.

In summary, while the absolute corrections are rather big, the scale variation uncertainty

is reduced indicating the convergence of the perturbative expansion. It is interesting to

see how further corrections affect this process. The leading logarithmic contributions at

N3LO have been calculated in [37]. The effect turns out to be ∼ 5% for the LHC and it

can be safely assumed that corrections to the inclusive cross-section beyond NNLO can

be neglected.

2.2.1.2 Higgs Transverse Momentum and Rapidity

Having seen the importance of the higher-order effects on the inclusive cross-sections, the

effects on the kinematic variables of the Higgs boson can be studied. The Higgs kinematics

is completely determined by its mass mH, its transverse momentum pH
T and its rapidity
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yH, defined as

yH =
1

2
ln

(

EH + pH
z

EH − pH
z

)

, (2.9)

where EH is the Higgs energy and pH
z the z-component of the spatial Higgs momentum.

We will focus here on the Higgs mass hypothesis mH = 165 GeV.

To quantify the higher-order effects on the kinematic variables, the cumulative cross-

sections σcum in yH and pH
T are defined as

σcum(yH,max) =

yH,max
∫

−yH,max

∂σ

∂yH
dyH, (2.10)

and

σcum(pH,max
T ) =

pH,max

T
∫

0

∂σ

∂pH
T

dpH
T, (2.11)

i.e. the differential cross-sections are integrated up to some cut-off value, simulating an

experimental cut on the Higgs boson kinematics. Taking the cut-off to infinity results in the

inclusive cross-section σinc as computed in section 2.2.1.1. The corresponding cumulative

K-factors are defined as

K(N)NLO
cum (X,µ) =

σ
(N)NLO
cum (X,µ)

σLO
cum(X,µ)

, (2.12)

with X ∈ {pH,max
T , yH,max}.

The distributions for yH,max are shown in Fig. 2.8. The cross-section (Fig. 2.8(a)) in-

creases as the cut-off yH,max is increased, until the inclusive cross-section is reached. The

cumulative K-factors are shown in Fig. 2.8(b). With the exception of the low-yH,max region

( <∼ 2) at NLO, the K-factors are constant and equal to the inclusive K-factors (shown

as dashed lines in Fig. 2.8(b)). Apparently restricting the Higgs rapidity phase-space has

no effect on the impact of the higher-order QCD corrections. This insensitivity of the

K-factors to the restriction of the phase-space can not be regarded as a general rule. This

will become apparent in the next variable, pH,max
T .

The distribution for the cumulative cross-section as a function of pH,max
T is shown in

Fig. 2.9. While the restriction of the Higgs phase-space has no effect on the cross-section at

LO (i.e. at LO the Higgs transverse momentum pH
T is always 0), the cross-sections decrease

rapidly at NLO/NNLO with decreasing cut-off pH,max
T . They even become negative for cut-

offs of about 5 GeV (8 GeV) in the NLO (NNLO) case. This (unphysical) behavior for

small pH,max
T -values can be understood in the context of the fixed-order calculation. As

the Higgs transverse momentum pH
T is restricted to small values, logarithmic terms of the
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Figure 2.9: Cumulative cross-section as a function of pH,max
T for a Higgs mass of

mH=165 GeV at different orders of the perturbative calculation. The bands correspond
to a scale variation in the range [mH/2, 2mH].

type ln
(

pH
T/Q

)

, with Q some typical scale for the process, become large and negative.

In this regime re-summation of these logarithmic terms to all orders would be needed to

render the cumulative cross-section predictions physically reliable. In other words, the

effect shows how soft, multiple radiation becomes important in the low-pH
T phase-space

region. But these radiative effects are not fully covered in the fixed-order calculation,

where at most two partons are present in the final state.

In a previous section it has been discussed that the fixed-order inclusive cross-section can

be regarded as a very precise prediction for the Higgs production through Gluon-Fusion at

the LHC. Apparently, when restricting the Higgs phase-space to the low-pH
T region, this

predictive power may break down. The question, up to which cut-off pH,max
T the fixed-order

differential cross-section has to be integrated in order to render the resulting cumulative

cross-section reliable, has to be posed. This is especially important if experimental cuts

are imposed on the final state particles that restrict the Higgs phase-space to this region.

The question will be answered in the upcoming section.

2.2.2 Re-Summation

After having discussed the prediction of fixed-order calculations up to NNLO, an alter-

native strategy for including higher-order QCD effects should be discussed. Instead of

including the terms in the expansion of the cross-section at higher order in αs, one can

try to include only the leading logarithmic terms, but to all orders in αs.

This so called re-summation can e.g. be implemented in a parton-shower algorithm, as
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applied in the LO Monte-Carlo event generator HERWIG [10] 5. The inclusive cross-

section computed by HERWIG corresponds to a fixed-order LO cross-section. Additional

hadronic activity is added to the event by the showering of the initial state partons, i.e. by

either emitting gluons or/and by gluons splitting into qq-pairs according to probabilities

defined by the appropriate Sudakov Form Factors (cf. section 1.3.6). In order to com-

pare the HERWIG results to the fixed-order calculation for variable renormalization and

factorization scales, they are multiplied with the inclusive K-factor KHW, defined as

KHW(µ) =
σLO

inc (µ)

σHW
inc

, (2.13)

with σHW
inc the inclusive cross-section predicted by HERWIG.

After this scaling the inclusive cross-section computed by HERWIG is equivalent to the

fixed-order cross-section. The cumulative cross-sections obtained using the event generator

HERWIG are defined as

σHW
cum(yH,max, µ) = KHW(µ) ×

yH,max
∫

−yH,max

∂σHW

∂yH
dyH, (2.14)

and

σHW
cum(pH,max

T , µ) = KHW(µ) ×
pH,max

T
∫

0

∂σHW

∂pH
T

dpH
T. (2.15)

These distributions, computed with HERWIG and compared to the LO cumulative cross-

sections from section 2.2.1.2, are shown in Fig. 2.10. As expected, the parton-shower has

no effect on the Higgs rapidity distribution, while the pH
T distribution changes substantially.

Through the showering of the initial state partons, the Higgs boson can pick up transverse

momentum, resulting in the shown cumulative pH
T spectrum.

The Higgs transverse momentum prediction from the LO calculation obviously is not

sufficient. As discussed before, at least one additional parton has to be present in the

final state for the Higgs to receive some transverse momentum pH
T > 0. In contrast to the

HERWIG-approach, where the transverse momentum of the Higgs is uniquely generated

through the multiple radiation of partons in the shower, at NLO one additional parton

from the hard scattering process may be present in the final state, recoiling against the

Higgs boson. Momentum conservation demands that this parton and the Higgs boson are

always back-to-back in the plane transverse to the collision-axis, i.e. pparton
T = pH

T. From

Fig. 2.9 it became clear that multiple, soft radiation effects are important in the low

5 Here we use an unofficial version of HERWIG, updated for full spin-correlation effects in the decay
products of the Higgs boson, kindly provided by Bryan Webber.
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(a) cumulative cross-section in yH,max (b) cumulative cross-section in p
H,max

T

Figure 2.10: Cumulative cross-sections as functions of yH,max and pH,max
T for a Higgs mass

of mH=165 GeV at LO. The bands correspond to a scale variation in the range [mH/2,
2mH].

pH
T region. This importance can be demonstrated in more detail by comparing the NLO

cumulative cross-section distribution with the distributions including these soft effects. In

the course of this comparison we make use of two additional tools. The first one is a

calculation of the Higgs boson transverse momentum spectrum pH
T presented in [38] and

implemented in the program HqT [39], where a matching technique is used to match the

fixed NLO results to a re-summed calculation including the leading and next-to-leading

logarithmic terms (NLL). The second tool is MC@NLO [40], which combines NLO hard

scattering amplitudes with the parton shower algorithm of HERWIG, i.e. it re-sums the

leading logarithmic terms up to all orders in αs and normalizes the inclusive cross-section

to NLO [41]

At this point the normalization strategy pursued in this comparison has to be discussed.

The tools used treat this issue differently. While, as discussed before, FEHiP uses the

heavy-top-approximation, but re-scales the final result by the ratio of the cross-sections

using the exact-top-mass dependence and the heavy-top-approximation at Born level,

HqT does not perform this re-scaling, i.e. HqT computes cross-sections either in the bare

heavy-top-approximation, or includes the full top mass dependence. In MC@NLO among

two different strategies can be chosen. The first one is the heavy-top-approximation, the

second one is using exact-top-mass dependence for the amplitudes at Born-level, and

infinite-top-mass for the NLO amplitudes.

In addition, HqT does not compute inclusive cross-sections, but binned Higgs transverse
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program HiGLU FEHiP MC@NLO

mt dep. exact mixed mixed

σNLO
inc [pb] 25.54 ± 0.01 25.85 ± 0.01 23.48 ± 0.01

∆rel [%] - + 1.2 − 8.1

Table 2.1: Inclusive NLO cross-sections for the Gluon-Fusion process computed using
different top-mass-dependencies. The cross-sections are computed for a Higgs mass of
mH=165 GeV and the scale choice µR = µF = mH/2 using MRST2004 NLO PDF sets. In
this comparison the bottom-loop is not included.

momentum spectra. Since inclusive (cumulative) cross-sections should be compared, nu-

merical integration tools have to be used to derive the cross-sections from the HqT-spectra.

The tool used is the so called trapezoidal rule.

First the question should be answered, which of the above approaches gives the most-

precise cross-section prediction compared to the full NLO exact-top-mass calculation. In

order to do this the various cross-section predictions can again be compared to the program

HiGLU [36]. The inclusive NLO cross-sections for the Gluon-Fusion process computed

using the different programs are listed in Table 2.1. The last line shows the relative

variation (∆rel) of each number with respect to the HiGLU prediction in percent, i.e.

∆rel =
σNLO

inc (X) − σNLO
inc (HiGLU)

σNLO
inc (HiGLU)

× 100%, (2.16)

with X ∈ {FEHiP,MC@NLO}. The FEHiP number deviates by +1.2% compared to

the exact-top-mass number, while the MC@NLO approach underestimates the inclusive

cross-section by 8.1%. In principal all the following results could be normalized to the

HiGLU prediction, but for consistency reasons 6 the FEHiP result is used as the de-

fault inclusive cross-section value; i.e. for all the following numbers and plots, whenever

a number is labeled MC@NLO or HqT, we refer to the cross-section that is inclusively

re-weighted to the FEHiP prediction.

Since HqT only computes Higgs transverse momentum spectra, and it has been con-

cluded before that re-summation does not affect the Higgs rapidity spectrum significantly,

the study can be restricted to the Higgs-pT cumulative cross-section. This distribution

is shown in Fig. 2.11(a). While the distributions based on re-summed results agree over

the whole spectrum (MC@NLO underestimates the cumulative cross-section slightly), the

fixed NLO distribution fails, as expected, in the low-pH
T region. Only by integrating the

fixed NLO distribution up to pH,max
T ∼ 50GeV the results become comparable, implying

6 For the NNLO numbers used in the upcoming parts of this thesis, there are no exact-top-mass

calculations available. Therefore the FEHiP prediction is used for the NLO numbers as well.
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(a) cumulative NLO cross-section in p
H,max

T
(b) cumulative NNLO cross-section in p

H,max

T

Figure 2.11: Cumulative cross-section as a function of pH,max
T for a Higgs mass of

mH=165 GeV. The fixed-order cross-sections ((N)NLO) are compared to the re-summed
spectra ((N)NLL) and the MC generator MC@NLO. The bands correspond to a scale
variation in the range [mH/2, 2mH].

that above this threshold effects of multiple soft radiation become very small. In a later

section it will become clear how this leads to unreliable cross-section predictions by the

fixed NLO calculation, when applying experimental cuts that restrict the Higgs phase

space to the low-pH
T region.

Next the computation of the cross-sections at NNLO is considered. Since there is no

parton-shower algorithm matched to NNLO hard scattering amplitudes, the distribution

computed with FEHiP can only be compared to the NNLO+NNLL results from HqT.

The corresponding pH,max
T cumulative cross-section distributions are shown in Fig. 2.11(b).

Again the fixed-order prediction ’breaks down’ in the very low pH,max
T region, but compared

to the NLO case, both distributions agree much better down to a pH,max
T value of ∼ 15GeV,

indicating that the multiple soft radiation effects beyond NNLO are negligible already after

integrating the fixed NNLO distribution up to about this threshold.

Next we investigate how well the two parton-shower event generators compare to the

NNLO+NNLL distribution. For this the MC@NLO and HERWIG spectra in Figs. 2.11(a)

and 2.10(b), respectively, are rescaled to the inclusive NNLO cross-section (R(MC@NLO),

R(HERWIG)). The distributions are shown in Fig. 2.12. All distributions agree, with

MC@NLO slightly under-, and HERWIG slightly overestimating the cumulative cross-

section. It can be concluded that the rescaled parton-shower MC predictions (especially

in the case of MC@NLO) reproduce the ’best’ prediction (NNLO+NNLL) reliably.
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(a) (b)

Figure 2.12: Cumulative cross-section as a function of pH,max
T for a Higgs mass of

mH=165 GeV. The re-summed spectra ((N)NLO+(N)NLL) are compared to the rescaled
HERWIG (a) and MC@NLO (b) predictions. The bands correspond to a scale variation
in the range [mH/2, 2mH].

2.3 Higher Order QCD Effects and Event Generators: The

Re-Weighting Technique

In order to perform a realistic simulation of the events at hadron-collider experiments,

it is desirable to generate Monte-Carlo events that can be passed through a detector

simulation. In principle such events can be generated using a parton-shower algorithm as

implemented in HERWIG or PYTHIA [11]. The short-coming of these generators is that

they incorporate LO hard scattering amplitudes 7 with showering algorithms; however,

above it has been observed that higher order QCD effects have a significant impact on the

Higgs production through Gluon-Fusion at the LHC. In this section it is discussed how the

results from fixed-order QCD calculations can be incorporated into such event generators.

The technique explained below has been developed in the context of this and a previous

thesis (by Giovanna Davatz). Results of this work have been published in [42].

7 An exception to this is MC@NLO, which matches NLO hard scattering amplitudes with the parton-
shower algorithm in HERWIG.
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2.3.1 The Re-Weighting Procedure

The cross-section for the process pp → {pi}, generated by the generator G is

σG(O) =

∫

dΠfG ({pi})O ({pi}) , (2.17)

where the events fG are integrated over the phase-space variables dΠ of all final state

particles i and O is a selection function 8 of the final state particle kinematics pi. The events

then correspond to phase-space points weighted with the appropriate process amplitudes.

The simplest observable is the inclusive cross-section σG
inc corresponding to O = 1, i.e.

σG
inc ≡ σG(1) =

∫

dΠfG ({pi}) . (2.18)

The relation between the events fG and the cross-section σG is therefore

fG =
dσG(1)

dΠ
. (2.19)

The events fG can be re-weighted with a function KG (K-factors),

fG → fR(G) = fGKG (2.20)

and the re-weighted cross-section defined as

σR(G)(O) =

∫

dΠfG ({pi})KG ({pi})O ({pi}) =

∫

dΠfR(G) ({pi})O ({pi}) . (2.21)

The function KG is determined by requiring the re-weighted cross-section σR(G) to repro-

duce a given reference cross-section σref for a given selection function O, i.e.

σR(G)(O) = σref(O). (2.22)

2.3.1.1 Inclusive Re-Weighting

The simplest case is inclusive re-weighting, where it is required that the re-weighted in-

clusive cross-section σ
R(G)
inc matches some inclusive higher-order (HO) cross-section. In the

above formalism this reads

σ
R(G)
inc ≡ σR(G)(1) = σHO

inc . (2.23)

Combining eq. (2.21) and eq. (2.23) and solving the resulting equation for KG, assuming

that the re-weighting-function KG is constant, leads to

KG =
σHO

inc

σG
inc

. (2.24)

This is the already familiar definition of the inclusive K-factor (cf. eq. (2.8)).

8 O either accepts or rejects events according to the kinematic configuration of the final state particles;
i.e.O ∈ {0, 1}.
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2.3.1.2 Differential Re-Weighting

In general the selection function O, and thus KG, can be arbitrary functions of a set of

kinematic variables of the final state particles pi. As an example, the operator δ(x −X)

can be chosen for O, with X some specific value for the kinematic variable x. Substituting

this into relation (2.21) leads to

σR(G)(O) =

∫

dΠdx
dσG

dΠdx
KG(x)δ(x −X) =

dσG

dx

∣

∣

∣

∣

x=X

KG(X), (2.25)

where relation (2.19) has been used for the definition of the events fG. The reference

cross-section can be rewritten in a similar way, i.e.

σref(O) =

∫

dx
dσref

dx
δ(x −X) =

dσref

dx

∣

∣

∣

∣

x=X

. (2.26)

Demanding the selection-function to be true for all possible values X, the relation for the

differential K-factors as a function of the variable X becomes

K(X) =

(

dσref

dx

∣

∣

∣

∣

x=X

)

×
(

dσG

dx

∣

∣

∣

∣

x=X

)−1

. (2.27)

In this way the generated (multi-)differential cross-section can be matched to any (multi-)

differential reference cross-section.

In practice it is not (always) possible to find both, generated and reference, differential

cross-sections. Therefore the cross-section cannot be re-weighted point-wise as described

in (2.27). The differential re-weighting procedure can be approximated by a bin-wise-

integrated re-weighting procedure, choosing

Oj =

{

1, if x ∈ [Xj , Xj+1]
0, otherwise,

(2.28)

with some specific binning X j of the variable x. In this way the K-factors turn out to be

bin-wise constant functions,

KG
j ≡ KG(x ∈ [Xj , Xj+1]) =

∆σref
j

∆σG
j

, (2.29)

with

∆σref
j :=

Xj+1
∫

Xj

dx
dσref

dx
and ∆σG

j :=

Xj+1
∫

Xj

dx
dσG

dx
. (2.30)
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HERWIG MC@NLO FEHiP

NLO NNLO

σinc [pb] 8.66 ± 0.07 23.48 ± 0.01 25.85 ± 0.01 28.90 ± 0.08

KNLO
inc 2.985 ± 0.024 1.101 ± 0.001 - -

KNNLO
inc 3.337 ± 0.029 1.231 ± 0.003 - -

Table 2.2: Cross-sections and inclusive K-factors for the various event generators for a
Higgs mass of mH = 165GeV.

2.3.2 Re-Weighting the Gluon-Fusion Process

The procedure described above can now be applied to the Gluon-Fusion process at the

LHC. The events generated with HERWIG and MC@NLO are re-weighted in two different

ways:

1. inclusive re-weighting,

2. differential re-weighting in pH
T.

The Higgs mass hypotheses used are mH=165 GeV (mH=120 GeV) for the inclusive (dif-

ferential) re-weighting. As reference cross-sections the FEHiP predictions with the scale

choice µF = µR = mH/2 are used. The cross-sections and the inclusive K-factors for

the two MC event generators are listed in Table 2.2. While the NLO K-factor for

MC@NLO exclusively originates from the different treatment of the top quark mass depen-

dence (cf. section 2.2.2), the large HERWIGK-factors represent the fact that HERWIG com-

putes cross-sections basically at LO.

2.3.2.1 Re-Weighting in p
H

T

In section 2.2.1.2 the effects of higher-order QCD corrections on the Higgs transverse

momentum spectrum have been shown. These effects can be incorporated into the MC

event generators by computing the bin-wise constant, pH
T dependent K-factors according

to formula (2.29). In this case the formulas (2.30) become

∆σG
j =

pH
T,j+1
∫

pH
T,j

dpH
T

dσG

dpH
T

≡ σG
cum(pH

T ,j+1) − σG
cum(pH

T ,j), (2.31)
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(a) (b)

Figure 2.13: (a) K-factor for re-weighting MC@NLO to the fixed NNLO pH
T spectrum as a

function of the width of the first bin ∆pH
T. (b) Differential K-factors for the re-weighting

of MC@NLO events to the fixed NNLO pH
T spectrum.

where the definition of the cumulative cross-section in pH
T from equation (2.11) has been

used. The pH
T-differential K-factors for re-weighting the events from generator G to the

reference spectrum obtained at some higher order (HO) are therefore

K
G/HO
j =

σHO
cum(pH

T ,j+1) − σHO
cum(pH

T ,j)

σG
cum(pH

T ,j+1) − σG
cum(pH

T ,j)
. (2.32)

The definition of an appropriate binning requires some discussion. On the one hand

it is desirable to keep the binning as narrow as possible to ensure that the differential

effects are captured, on the other hand it has been shown in Fig. 2.9 how the predictions

of fixed-order perturbation theory for the cumulative pH
T spectrum become unreliable in

the low pH,max
T region. We therefore have to perform some sort of matching, i.e. in the low

pH
T region the differential behavior of the MC generator should be used, while in the large

pH
T regime the MC generator events should be re-weighted to the fixed-order distribution.

The matching can be controlled by the choice of the size of the first bin, ∆pH
T. The upper

bound of this first bin should be set to a value, from which on the fixed-order perturbative

spectrum can be trusted. There is no criterion that provides a recipe for the ’right’ choice

for this bin size. To justify a reasonable choice it is useful to investigate how the K-factor

in this first bin changes, when increasing the bin size. This is shown in Fig. 2.13(a). For

very small bin sizes ∆pH
T the K-factor is negative, reflecting the missing contributions of

the multiple soft radiation terms in the fixed-order calculation. With increasing bin-size
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the K-factor increases as well, until it reaches its maximum at ∼ 25 GeV. From there

on the K-factor decreases and finally reaches the inclusive K-factor (represented by the

solid, horizontal line) in the limit ∆pH
T → ∞.

The lowest point in the spectrum where the K-factor of the first bin equals the inclusive

K-factor (∼ 20GeV) specifies the pH,max
T value for which the pH

T-cumulative cross-sections

of the fixed NNLO calculation and the inclusively re-weighted MC generators are equal

(cf. 2.12). Previously this point has been defined as the one from which on the perturbative

fixed-order result can be trusted.

From these observations is seems natural to define the size of the first bin in such a

way, that its K-factor is close to the inclusive K-factor. If a smaller first bin is chosen

(i.e. the K-factor in the first bin is smaller than the inclusive K-factor), a regime is entered

where the differential spectrum at fixed-order cannot be trusted. In the case of a larger

first bin (i.e. the K-factor in the first bin is larger than the inclusive K-factor) important

differential information might be lost.

A less delicate, but for practical purposes not less important point is the choice of

when to stop the differential re-weighting. In practice it is not reasonable to evolve the

differential K-factors to infinity, therefore a cut-off value for pH
T has to be defined, from

which on the same K-factor is assigned to all the events (we define this as the cut-off-bin).

This K-factor is then computed as the ratio of the differences between the inclusive and the

cumulative cross-sections up to this point. The cut-off value should be chosen such that

the cut-off is ’smooth’, i.e. slightly changing the cut-off affects the K-factors around this

cut-off only mildly. This can be achieved by choosing it in such a way, that the K-factor

for the cut-off-bin is close to the K-factor in the bin just before the cut-off bin.

In the example discussed here (mH = 120GeV), the first bin-size is chosen to be 25GeV

and the cut-off at pH
T = 200GeV. The range between these values is partitioned into bins

of 5GeV width. To compute the K-factors (eq. 2.32) the cumulative cross-sections for

the generators G and the fixed-order calculation (FEHiP) have to be computed. This

is not done at every bin-edge pH
T ,j, but only for a certain set of points. The cumulative

cross-sections can be parametrized as functions of pH
T.

The obtained, bin-wise constant K-factors for re-weighting MC@NLO events to the

NNLO pH
T spectrum for a Higgs mass of 120 GeV are shown in Fig. 2.13(b). The differential

K-factors range between 1.0 and 1.7. Starting at ∼ 1.3 the K-factors decrease with

increasing pH
T until they reach a minimum at ∼ 50GeV before increasing again. The

maximum is reached at ∼ 150GeV.
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2.3.2.2 Multi-Differential Re-Weighting

In addition to the Higgs transverse momentum pH
T other variables can be considered. The

Higgs rapidity yH might be of special interest here. The double differential re-weighting of

the Higgs boson process in the Gluon-Fusion channel has been discussed in detail in [42].

It has been shown that the additional inclusion of a Higgs rapidity dependence of the

K-factors has a small impact on measured cross-sections. Therefore this approach will

not be pursued in the progress of this thesis.

2.3.3 Limitations of the Re-Weighting Technique

The accuracy of the cross-section prediction using the re-weighting technique depends

strongly on the measured quantity, i.e. on the specific choice of O in formula 2.17. In order

to achieve perfect agreement between the re-weighted and the reference cross-sections, the

K-factors have to be computed point-wise differentially in all the variables that O depends

on. If for example the measured cross-section is the inclusive cross-section (O = 1),

inclusive K-factors are sufficient. If pH
T-spectra are measured, the K-factors become pH

T-

depended and so on.

In general the measured cross-section depends on a variety of cuts on several (correlated)

kinematic variables of the final state particles. It is not always feasible, and sometimes

impossible, to compute the K-factors differentially in all these variables. Nevertheless, a

simplified approach might be sufficient in describing theK-factors. For example, if the cuts

probe only the Higgs transverse momentum spectrum, it is sufficient to use pH
T-dependent

K-factors.

From this it becomes clear that the differential approach discussed above is sufficient

as long as only the Higgs kinematics is probed by the cuts, and the phase space of the

potential partons (hadronic activity) in the final state is not restricted. As soon as cuts

on these partons are imposed, the approximative character of the re-weighting might have

a non-negligible impact.

2.4 Conclusions of this Chapter

In this chapter it has been shown that the higher-order QCD corrections for the Higgs

production in the Gluon-Fusion channel are large, but also Higgs boson kinematics depen-

dent. The correct treatment of the corrections is very dependent on the observable to be

measured. In general this observable (i.e. a cross-section after the application of certain
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experimental cuts that restrict the phase-space) depends on a variety of (correlated) kine-

matic variables of the final-state particles. The discussed re-weighting technique might

serve to incorporate the higher-order corrections into MC event generators in an effective

manner.

In addition it turned out that the fixed-order calculations are unreliable when the Higgs

boson phase-space is restricted to the low pH
T region, i.e. below 50GeV at NLO and below

20GeV at NNLO.

In the next two chapters we discuss the two specific decay modes H → γγ and H →
WW → `ν`ν, where typical sets of experimental cuts will be applied. It will be discussed

how the higher-order effects can be adequately incorporated into these processes.
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Chapter 3

Higgs in the ’light’ Mass Range:
The Di-Photon Channel

As a first example for the decay of the Higgs boson into detectable particles we consider the

decay into two photons, H→γγ. As discussed in section 2.1.3 this is the most promising

discovery channel in the low Higgs mass region (mH ∼ 120GeV). The experimental

signature of the final state is rather simple, consisting of a photon-pair with invariant

mass mγγ = mH.

The typical experimental selection cuts in this mode are [43, 44, 34]:

• The absolute value of the pseudo-rapidity |ηγ1,2 | of each of the two photons must be

smaller than 2.5. This corresponds to the coverage in polar angle of a detector such

as ATLAS or CMS.

• One of the two photons must have a transverse energy above 40GeV, while the other

photon is required to have a transverse energy above 25GeV.

• In order to exclude events with considerable hadronic activity around the final state

photons, as for example can be expected in background events with quark-photon

fragmentation, the photons must be isolated, i.e. the additional energy in a cone

∆R =
√

∆η2 + ∆ϕ2 < 0.4 around each photon must not exceed 15GeV.

After this selection the invariant mass of the photon-pair can be reconstructed and the

Higgs mass-peak over the continuum γγ-background extracted.

The cross-sections, σacc, after these selection cuts are computed using the various meth-

ods discussed in the previous chapter (fixed-order, re-summation, re-weighting) for several
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mH [GeV] ΓH [GeV] BR(H → γγ)

110 0.284 × 10−2 0.198 × 10−2

120 0.348 × 10−2 0.227 × 10−2

130 0.481 × 10−2 0.229 × 10−2

140 0.791 × 10−2 0.198 × 10−2

150 1.645 × 10−2 0.141 × 10−2

Table 3.1: Higgs width ΓH and branching ratio for the decay into two photons computed
using HDECAY [25] for five different Higgs mass hypotheses.

’light’ Higgs mass hypotheses and the uncertainties induced by varying the renormalization

and factorization scales are studied.

The continuum γγ-background is then generated using the full NLO program DIPHOX [45]

and discuss the qualitative impact of the higher-order QCD corrections on the significance

of a Higgs boson signal at the various mass hypotheses under consideration.

The results of this chapter have been published in [44]

3.1 Fixed-Order Cross-Sections

First the inclusive cross-sections and K-factors for five different Higgs mass hypotheses

between 110 and 150GeV are computed. The Higgs widths ΓH and branching ratios

BR(H → γγ) according to HDECAY [25] are listed in Table 3.1. The inclusive cross-

sections for the five Higgs masses are shown in Fig. 3.1(a).

We compute the cross-sections after the selection cuts described above (σacc) with the

fixed-order program FEHiP, which has the Higgs decay into photons included. The cross-

sections are shown in Fig. 3.1(b) and the corresponding cut-efficiencies, defined as

ε(N)NLO(mH, µ) :=
σ

(N)NLO
acc (mH, µ)

σ
(N)NLO
inc (mH, µ)

, (3.1)

in Fig. 3.2(a). The efficiencies with respect to the scale-variation are very stable in both,

the NLO and the NNLO case. Furthermore the efficiencies are significantly increasing

with increasing Higgs mass, which can be explained by the larger probability of a heavier

Higgs boson to decay into high-pT photons. Nevertheless, the difference in the efficiencies

at NLO and NNLO is not completely negligible, i.e. the event rejection rate is slightly

larger at NNLO than at NLO.

Although the effect is very small we want to investigate it a little further. The origin of

this difference might be the isolation criterion in the selection cuts. Since at NNLO there
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(a) inclusive cross-sections (b) accepted cross-sections

Figure 3.1: Inclusive and accepted cross-sections in the H → γγ channel for different Higgs
mass hypotheses.

(a) selection efficiency (b) ratio between NLO and NNLO

Figure 3.2: Selection efficiencies for and ratio between the NLO and the NNLO calculation
in the H → γγ channel for several Higgs mass hypotheses.

are up to two partons present in the final state, whereas at NLO there is only one parton,

the fraction of non-isolated photons at NNLO is larger than at NLO. This is illustrated by

computing the NLO and NNLO accepted cross-sections with removed isolation criterion

for a Higgs mass of mH = 120GeV. The cross-sections and efficiencies are

σNLO
acc (µ = mH/2) = (65.27 ± 0.06) fb ⇒ εNLO = 0.634 ± 0.001

σNNLO
acc (µ = mH/2) = (71.33 ± 0.59) fb ⇒ εNNLO = 0.622 ± 0.005,

(3.2)
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µF = µR mH/2 2mH

Generator HERWIG MC@NLO HERWIG MC@NLO

mH 110GeV

σNLO
inc [fb] 104.69 ± 0.03 78.16 ± 0.02

σNNLO
inc [fb] 116.76 ± 0.37 97.77 ± 0.20

KNLO
inc 2.880 1.066 2.150 1.060

KNNLO
inc 3.212 1.189 2.690 1.326

mH 120GeV

σNLO
inc [fb] 103.02 ± 0.03 76.71 ± 0.02

σNNLO
inc [fb] 114.71 ± 0.34 96.30 ± 0.20

KNLO
inc 2.896 1.067 2.157 1.068

KNNLO
inc 3.225 1.188 2.708 1.341

mH 130GeV

σNLO
inc [fb] 90.48 ± 0.03 67.22 ± 0.02

σNNLO
inc [fb] 100.85 ± 0.32 84.70 ± 0.17

KNLO
inc 2.905 1.079 2.158 1.071

KNNLO
inc 3.238 1.203 2.719 1.350

mH 140GeV

σNLO
inc [fb] 68.62 ± 0.02 50.88 ± 0.02

σNNLO
inc [fb] 76.54 ± 0.24 64.36 ± 0.12

KNLO
inc 2.909 1.083 2.157 1.077

KNNLO
inc 3.245 1.208 2.729 1.363

mH 150GeV

σNLO
inc [fb] 43.24 ± 0.01 32.00 ± 0.01

σNNLO
inc [fb] 48.24 ± 0.15 40.60 ± 0.08

KNLO
inc 2.914 1.089 2.157 1.083

KNNLO
inc 3.251 1.215 2.736 1.374

Table 3.2: Inclusive cross-sections from fixed-order calculations and K-factors for the
various event generators for the process pp→H→γγ. The numbers are listed for the two
scale choices µ = mH/2 and µ = 2mH.

leading to a relative difference in the efficiencies of

εNLO − εNNLO

εNLO
= (1.89 ± 0.78)%, (3.3)

compared to (2.85 ± 0.41)% for the numbers including the isolation criterion. From this

it can be concluded that about 1/3 of the difference in the efficiency can be explained by
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the distinctive partonic structure of the final states at NLO and NNLO. The rest has to

originate from the different kinematic properties of the Higgs boson.

It is not obvious how the differences in the Higgs kinematics affect the efficiencies. In

general we expect that a harder pH
T spectrum also produces harder photons, leading to an

increase in the efficiency. But the selection cuts, though they seem simple at first sight,

are complicated enough not to allow the direct derivation of the restrictions on the Higgs

boson phase-space. However, since the differences are very small, we will not pursue this

issue further.

3.2 Re-Weighted Cross-Sections

Having discussed the effects of QCD at some fixed higher order on the measurable cross-

section after selection cuts for the H→γγ channel, we turn to the MC generators (HERWIG,

MC@NLO), which produce events that eventually can be passed through some detector

simulation. In section 2.3 we discussed how QCD corrections can be incorporated into

these event generators using re-weighting techniques. The first approach considered is

inclusive re-weighting. In its course the events from the generators are re-weighted with

K-factors that are the ratio of the inclusive reference cross-sections σ (N)NLO and the ones

computed using the generator, σG. The K-factors for the different Higgs masses and scale

choices are listed in Table 3.2. The errors for the K-factors in the Table are suppressed;

they are all of the order of 1h. Then the selection cuts as described at the beginning of

this chapter are imposed on these events and the resulting accepted cross-sections σ
R(G)
acc

computed. The cross-sections, together with those obtained at fixed-order from the pre-

vious section, are listed in Table 3.3.

For all the Higgs masses and both scale choices the differences between the re-weighted

HERWIG and the re-weighted MC@NLO results are smaller than the statistical error. We

conclude that the presence of the additional parton from the hard scattering process in

MC@NLO with respect to HERWIG has no effect on the efficiency. We want to compare

the efficiencies of the re-weighted MC generators to the ones from the fixed-order calcu-

lations. The selection efficiencies for MC@NLO, NLO and NNLO are shown in Fig. 3.3.

Over the whole mass range the MC@NLO efficiency is larger than the NLO and the NNLO

efficiency. Again, we want to see what happens when we switch off the isolation criterion.

The numbers for NLO and MC@NLO are then

σNLO
acc (µ = mH/2) = (65.27 ± 0.06) fb ⇒ εNLO = 0.634 ± 0.001 and

σR(G)
acc (µ = mH/2) = (65.00 ± 0.21) fb ⇒ εR(G) = 0.631 ± 0.002,

(3.4)

with G = MC@NLO. Without the isolation the MC@NLO and NLO results agree per-

fectly. This is somehow surprising. Since in the parton-shower of MC@NLO many more
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µF = µR mH/2 2mH

Generator HERWIG MC@NLO HERWIG MC@NLO

mH 110GeV

σNLO
acc [fb] 62.55 ± 0.06 46.00 ± 0.04

σNNLO
acc [fb] 66.72 ± 0.43 56.73 ± 0.28

σ
R(G)/NLO
acc [fb] 62.29 ± 0.16 62.02 ± 0.24 46.50 ± 0.12 46.71 ± 0.17

σ
R(G)/NNLO
acc [fb] 69.47 ± 0.17 69.17 ± 0.35 58.18 ± 0.15 58.42 ± 0.24

mH 120GeV

σNLO
acc [fb] 64.68 ± 0.06 47.77 ± 0.04

σNNLO
acc [fb] 69.97 ± 0.42 59.18 ± 0.29

σ
R(G)/NLO
acc [fb] 64.58 ± 0.16 64.96 ± 0.24 48.10 ± 0.12 48.53 ± 0.17

σ
R(G)/NNLO
acc [fb] 71.92 ± 0.17 72.32 ± 0.34 60.39 ± 0.15 60.92 ± 0.25

mH 130GeV

σNLO
acc [fb] 59.13 ± 0.06 43.66 ± 0.04

σNNLO
acc [fb] 64.08 ± 0.37 54.08 ± 0.26

σ
R(G)/NLO
acc [fb] 59.43 ± 0.14 59.38 ± 0.21 44.15 ± 0.10 44.41 ± 0.14

σ
R(G)/NNLO
acc [fb] 66.24 ± 0.15 66.19 ± 0.32 55.63 ± 0.13 55.95 ± 0.21

mH 140GeV

σNLO
acc [fb] 46.18 ± 0.04 34.11 ± 0.04

σNNLO
acc [fb] 50.22 ± 0.29 42.78 ± 0.21

σ
R(G)/NLO
acc [fb] 46.51 ± 0.10 46.86 ± 0.16 34.48 ± 0.08 34.62 ± 0.11

σ
R(G)/NNLO
acc [fb] 51.88 ± 0.11 52.27 ± 0.24 43.63 ± 0.10 43.79 ± 0.16

mH 150GeV

σNLO
acc [fb] 29.82 ± 0.04 22.01 ± 0.04

σNNLO
acc [fb] 32.79 ± 0.19 27.56 ± 0.13

σ
R(G)/NLO
acc [fb] 30.14 ± 0.06 30.11 ± 0.10 22.31 ± 0.05 22.40 ± 0.07

σ
R(G)/NNLO
acc [fb] 33.63 ± 0.07 33.59 ± 0.15 28.30 ± 0.06 28.42 ± 0.10

Table 3.3: (Re-weighted) accepted cross-sections after standard selection cuts in the
pp→H→γγ channel for various event generators and the fixed-order calculation.

partons are created, one might expect that the influence of the isolation would rather

decrease the efficiency compared to the fixed-order result. This apparently is not the case.

Apparently the shower rather spreads the energy of the additional partons over a larger

region of space, leading to an increase in the efficiency.
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3.3. KINEMATIC DISTRIBUTIONS

Figure 3.3: Selection efficiencies for the fixed-order calculations (NLO, NNLO) and the
program MC@NLO.

In the next step the NNLO efficiencies are compared to the ones obtained with the MC

event generators. It has become clear that the efficiency is somewhat sensitive to the Higgs

kinematics. It can therefore be assumed that if the NNLO Higgs kinematics is reproduced

within the event generators, the efficiencies would agree to a better precision. We will do

this using the differential re-weighting technique in pH
T discussed in section 2.3.1.2. The

efficiency for the differentially re-weighted MC@NLO events is

σR(MC@NLO)
acc (µ = mH/2) = (72.39 ± 0.24) fb ⇒ εR(MC@NLO) = 0.631 ± 0.002. (3.5)

Apparently the result does not change at all within statistical errors. In (3.5) only the

statistical error is shown, but not the uncertainties introduced in the re-weighting proce-

dure (finite-size binning, fitting, etc.). However, these errors are expected to be at least

at the order of the efficiency differences between NNLO and MC@NLO.

3.3 Kinematic Distributions

In the last section is has been concluded that the higher oder QCD corrections are ac-

curately described by using inclusive re-weighting techniques. In this section we consider

more complicated variables than the cross-sections after cuts, namely the mean transverse

momentum

pm
T :=

pγ1

T + pγ2

T

2
, (3.6)

and the absolute value of the pseudo-rapidity difference of the two photons

y∗ :=
|ηγ1 − ηγ2 |

2
, (3.7)
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(a) (b)

(c) (d)

Figure 3.4: Comparison between fixed-order (N)NLO and (re-weighted) MC@NLO pre-
dictions for the mean transverse momentum pm

T and the pseudo-rapidity difference y∗ for
photons coming from the decay of a Higgs boson with mass mH=120 GeV. The bands
correspond to a variation of the renormalization and the factorization scales µR and µF in
the range [mH/2, 2mH].

where the pseudo-rapidity η is defined as

η = ln

(

cot

(

θ

2

))

(3.8)

with θ the polar angle of the particle with respect to the incoming particle direction (beam-

line). Note that for massless particles the pseudo-rapidity corresponds to the rapidity

defined in eq. 2.9. These variables are particularly interesting because they have been

considered to serve for a further discrimination of the signal against the background [43].
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3.4. PROMPT DI-PHOTON BACKGROUND AND SIGNAL SIGNIFICANCE

µF = µR mH/2 2mH

σacc [fb] S nsig σacc [fb] S nsig

mH 120GeV

NLO 64.68 1940 6.00 47.77 1433 4.44
NNLO 69.97 2099 6.50 59.18 1775 5.50

Table 3.4: Expected number of signal events and statistical significance for an integrated
luminosity of 30 fb−1.

The distributions for pm
T and y∗ after the application of the selection cuts computed at

fixed NLO and with MC@NLO are shown in the first two plots of Fig. 3.4. The second two

plots show comparisons between NNLO and MC@NLO, inclusively re-weighted to NNLO.

The deviations around pm
T ∼ 60GeV arise from large perturbative corrections, since the

pm
T -spectrum is zero above this value at LO. The same is true for the y∗-distribution around

y∗ ∼ 1. Around these kinematic boundaries re-summation of large logarithms would be

necessary. Besides these effects the distributions agree.

3.4 Prompt Di-Photon Background and Signal Significance

After studying the signal cross-sections in detail we conclude this section by estimating

the impact of the higher order QCD corrections on the signal significance, defined as

nsig :=
S

√

B + (∆B)2
, (3.9)

where S and B are the number of signal and background events expected for a certain

integrated luminosity, and ∆B is the absolute uncertainty on the number of expected

background events.

In a real experiment the background would be measured from data by extrapolating

the γγ-background from the side-bands into the signal-region. We define the signal region

as the ±2GeV window around the Higgs mass. The estimated number of background

events will therefore not suffer from theoretical uncertainties. In order to being able to

make a qualitative statement on the expected signal significance we estimate the γγ-

background cross-section using the NLO program DIPHOX [45] with one scale choice

(i.e. µR = µF = mγγ/2) and the default PDF set MRST2004 NLO. We assume a relative

uncertainty on this background of 1%. This uncertainty has been shown to be a good

estimate for the measurement of the γγ-background from the signal side-band region [26].

The Higgs mass is set tomH = 120GeV and an integrated luminosity of 30 fb−1 is assumed.
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The cross-section for the γγ-background in the (120 ± 2)GeV mass window obtained

with DIPHOX after the selection cuts is

σDIPHOX
acc = 0.9244 pb ⇒ B = 27732. (3.10)

The denominator in the significance (3.9) becomes then

√

B + (∆B)2 =
√

27732 + (0.01 × 27732)2 ' 323. (3.11)

The resulting signal-significances, using the accepted cross-sections at NLO and NNLO

from Table 3.3 are listed in Table 3.4. Since the number of signal events S, and thus

the signal significance are linearly dependent on the signal cross-section, it is no surprise,

that the significances behave in the same way as the cross-sections. While the significance

increases when going from NLO to NNLO, the relative scale uncertainty is reduced.

3.5 Conclusions of this Chapter

In this chapter we have used the fully differential program FEHiP to compute the expected

cross-section for the H→γγ process after imposing a set of typical experimental cuts. It

turned out that the selection efficiencies for fixed NLO and NNLO, as well as for the

parton shower MC event generator MC@NLO are very similar, leading to the conclusion

that inclusive re-weighting of the MC@NLO events to the NNLO prediction results in a

reliable prediction for the expected cross-section.

Remaining, small differential effects could not be covered by a differential re-weighting

in the Higgs transverse momentum pH
T. It is expected that even if full, point-wise differ-

ential re-weighting would resolve these differences, finite-bin-size effects may still leads to

some discrepancies. In addition, more complicated observables (pm
T , y∗) have been inves-

tigated. It has been shown that fixed-order calculations cannot reliably predict the entire

distributions of these variables, since re-summation of logarithmic terms is needed.
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Chapter 4

Higgs in the ’intermediate’ Mass
Range: The W-Pair Channel

In this section we study the cross-section for the Higgs decaying in the WW-mode. As

shown in Fig. 2.4 the branching-ratio of the SM Higgs boson into a pair of W-bosons

is almost unity for Higgs masses around the W-pair threshold mH ∼ 160GeV; using this

channel for the observation of the Higgs in this specific mass-region is therefore favourable.

The W-bosons decaying into leptons produce neutrinos which cannot be detected in a real

experiment, thus no Higgs invariant mass peak can be reconstructed. The separation of

the signal events over the large background has therefore for a long time been considered

as very difficult.

In 1996, Dittmar and Dreiner [27] studied the effects of spin correlations and the mass

of the resonant and non-resonant WW system. For signal events they observed that the

opening angle φ`` between the leptons in the plane transverse to the beam axis tends to

be smaller than the corresponding angle for the background processes; in addition, the

transverse momentum spectrum of the charged leptons is sensitive to the Higgs-boson

mass. In order to reduce the large top-pair background, which is characterized by strong

jet activity, they proposed to reject events with jets of large transverse momentum. Using

these cuts it has been shown [48] that the background can be sufficiently suppressed against

the signal in order to use this decay-mode as a discovery channel for a SM Higgs in this

mass range.

The results of this chapter have been published in [46] and [47].
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Figure 4.1: Feynman diagrams for the signal and the main background processes for the
H→WW process.

4.1 Final State Signature and Background Processes

The LO diagrams for the signal and the main background processes are shown in Fig. 4.1.

All processes produce four leptons via a W-boson pair. The two neutrinos leave the

experiment undetected, the only observable final-state particles are the charged leptons,

either electrons or muons 1, and potential hadronic activity, either originating from initial

state radiation or the t-decays in the tt process. There is no constraint on the lepton-

flavour combination for the two charged leptons, but charge-conservation demands that

the leptons carry opposite electric charge.

Qualitatively one can assume that any process leading to a pair of oppositely charged

leptons accompanied by missing transverse energy, especially any process producing a

pair of W-bosons, will contribute to the background. Those shown in Fig. 4.1 are the

dominating ones. Technically the square of diagram 4.1(d) is of order α2
s; of the same

order as the NNLO corrections to the process in diagram 4.1(c). The contribution of

the gluon-induced WW background is therefore suppressed compared to those induced by

quarks. However, the different spin-structure of the initial states leads to a relative increase

1 We neglect the contribution of the W bosons decaying into τ -leptons.

70



4.1. FINAL STATE SIGNATURE AND BACKGROUND PROCESSES
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Figure 4.2: Diagram contributing to the NNLO corrections for the quark induced
WW background.

process σNLO
inc [pb]

qq → WW → e+νe−ν 1.4
gg → WW → e+νe−ν 0.05

tt → WW bb → e+νe−ν bb 11.9

background 13.4
signal 0.3

Table 4.1: Inclusive cross-sections for the most important background-processes for the
SM Higgs search in the WW-decay mode compared to the signal cross-section.

of the gluon induced process after the application of experimental selection cuts [27]. In

order to be fully consistent at this order of perturbation theory, it would be desirable to

include the NNLO diagrams for the quark induced process. Especially the diagram shown

in Fig. 4.2, combined with diagram 4.1(c), contributes to the cross-section at the same

order of αs and has, similarly to diagram 4.1(d), a gluon-like spin structure in the initial

state. Unfortunately, such a calculation is not available at the moment.

In Table 4.1 the magnitudes of the signal and the background cross-sections at NLO

are compared for one lepton-flavour combination. The sum of the background cross-

sections exceeds the signal cross-section by a factor of ∼ 40, indicating again that only

very restrictive cuts will help to increase the signal over background ratio significantly.

The cross-sections for the tt and the quark induced WW background have been computed

using MC@NLO. The gluon induced WW cross-section has been computed using the

dedicated program GG2WW, version 2.4.0 [49].

The selection cuts applied on the final-state particles are summarized here:

1. the charged leptons should have a transverse momentum of p`
T > 25GeV and a

pseudo-rapidity |η| smaller than 2;

2. these leptons must be isolated from hadrons; the hadronic energy within a cone

of R = 0.4 around each lepton must not exceed 10% of the corresponding lepton

71



4. HIGGS IN THE ’INTERMEDIATE’ MASS RANGE: THE W-PAIR CHANNEL

transverse momentum;

3. the di-lepton mass should fall into the range 12GeV < m`` < 40GeV, where the

lower cut reduces potential backgrounds from b-resonances;

4. the missing energy in the event, Emiss
T , has to exceed 50GeV;

5. the opening angle φ`` between the two leptons in the transverse plane should be

smaller than 45◦;

6. there should be no jet with a transverse momentum pjet
T larger than 25GeV in the

central detector region |ηjet| < 2.5 and

7. the harder 2 lepton is required to have 30GeV < p`,max
T < 55GeV.

We will refer to these cuts as the partonic signal cuts throughout this thesis. The cuts do

not correspond exactly to, but are strongly motivated by those initially proposed in [27].

In addition, these cuts are an adaptation to parton-level of the experimental cuts applied

in earlier Higgs discovery studies performed using full detector simulation [48].

Two of the kinematic variables used in the cuts listed above have to be specified in some

more detail. The first remark concerns the calculation of the missing transverse energy.

We compute Emiss
T directly from the four-momenta of the final state neutrinos. This can

obviously not be done in a real experiment. The second remark concerns the definition of

the jets used in cut number 6. If not explicitly stated otherwise, we use a kT-algorithm [50]

in the E-scheme with cone parameter R = 0.4.

4.2 Fixed Order Results

In order to compute the fixed-order cross-sections up to NNLO for the process pp → H →
WW → `ν`ν in the Gluon-Fusion channel, the corresponding decay matrix-element had to

be included into the program FEHiP. In addition, the numerical integration strategy had

to be adapted to ensure adaptive convergence of the integration. We present the details

of these procedures in Appendix D. Note that this is the first fully differential calculation

at NNLO for a process with such a complicated final-state structure.

In Table 4.2 we show the inclusive cross-sections computed with our improved pro-

gram for a Higgs mass hypothesis of mH = 165GeV. We use the parton distribution set

MRST2001LO for the calculation of the LO cross-section and the MRST2004(N)NLO sets

for the higher orders. The renormalization and factorization scales µR and µF are varied

2 By the ’harder’ lepton we refer to the one with larger transverse momentum pT.
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σinc [fb] LO NLO NNLO

µ = mH/2 152.63 ± 0.06 270.61 ± 0.25 301.23 ± 1.19
µ = 2mH 103.89 ± 0.04 199.76 ± 0.17 255.06 ± 0.81

Table 4.2: Inclusive cross-sections for the process pp → H → WW → `ν`ν at different
orders of perturbative QCD and two scale choices µ = µR = µF.

simultaneously in the range [mH/2, 2mH] and according to HDECAY [25] the width of

the Higgs boson with mass mH = 165GeV is ΓH = 0.25GeV. Finally, the W-boson mass

is set to mW = 80.41GeV and its width to ΓW = 2.06GeV. These are the default values

for all upcoming studies.

The K-factors for the inclusive cross-section,

K(N)NLO(µ) =
σ(N)NLO(µ)

σLO(µ)
,

range from 1.77 to 1.92 at NLO and from 1.97 to 2.45 at NNLO, depending on the scale

choice. The numbers reflect the same behavior as the cross-sections without the Higgs

decay into a pair of W-bosons. This is not surprising since the decay in the inclusive case

corresponds to nothing but a multiplication of the Higgs production cross-section with the

branching ratio for the full decay.

4.2.1 Differential Distributions

In chapter 2 it has been observed that the higher-order calculations affect the inclusive

cross-section as well as differential distributions. In chapter 3 it was found that the correc-

tions after the application of experimental cuts can appear to be very ’inclusive-like’ if the

cuts select phase-space regions democratically, i.e. the K-factors after the selection cuts

are very similar to the inclusive K-factors. This behavior can not be regarded as a gen-

eral property of higher order corrections. The amplitude of the higher-order process, and

thus the higher-order corrections, depend strongly on the phase-space region selected. For

example, if the cuts favour the low pH
T region, we expect that the K-factors after the ap-

plication of these cuts differ significantly from the inclusive K-factors (cf. section 2.2.1.2).

In order to understand the higher-order corrections after the application of the selection

cuts we study all the kinematic observables constrained by the cuts separately. We do this

by computing the cumulative cross-sections (cf. section 2.2.1.2) as

σcum(Xcut, µ) =

Xcut (∞)
∫

0 (Xcut)

∂σ(µ)

∂X
dX, (4.1)
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(a) (b)

Figure 4.3: (a) The cross-section for H → WW → `ν`ν, vetoing events with jets in the
central region |ηjet| < 2.5 and pjet

T > pveto
T . (b) The K-factor as a function of pveto

T . The
dashed horizontal lines correspond to the NLO and NNLO K-factors for the inclusive
cross-section. The vertical solid line denotes the value of pveto

T in the partonic signal cuts
of section 4.1.

where X denotes some final-state kinematic variable and X cut is an upper limit on the

variable that mimics a cut at this value. Alternatively, the cut value X cut may also denote

the lower boundary of the integration region in eq. 4.1 and the upper boundary is taken

to ∞ (denoted as the integration boundaries in brackets).

In Fig. 4.3 the effect of the veto on jets with transverse momentum pjet
T > pveto

T (see also

[51, 33]) is considered. Events are vetoed if they contain jets in the central detector region

|ηjet| < 2.5. We observe that the relative magnitude of the NLO and NNLO contributions

depends strongly on pveto
T . The NNLO cross-section increases more rapidly than at NLO

by relaxing the veto. Figure 4.3 demonstrates that the large NLO and NNLO corrections

must be attributed to contributions from jets with large, rather than small, transverse

momentum.

In order to reduce the pp → tt background, a small value for pveto
T is required. As

pveto
T is decreased, the scale uncertainty at NNLO decreases as well. Around a veto-value

of pveto
T = 20GeV the difference of the cross-section at µ = 2mH and µ = mH/2 changes

sign. In this kinematic region logarithmic contributions, log(pveto
T /mH) from soft radiation

beyond NNLO should also be examined [51]. We will do this in section 4.3 of this thesis.

However, the small scale uncertainty at NNLO and the small magnitude of the corrections

suggest that such logarithms have a mild effect.

In Fig. 4.4 the cross-section is shown after the requirement that the transverse momen-
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(a) (b)

Figure 4.4: (a) The cross-section for events where the hardest visible lepton has transverse

momentum 30GeV < p`,max
T < p`,max

T,cut . (b) The K-factor as a function of p`,max
T,cut (no other

cut is applied). The dashed horizontal lines correspond to the NLO and NNLO K-factors

for the inclusive cross-section. The vertical solid line denotes the value of p`,max
T,cut in the

partonic signal cuts of section 4.1.

tum of the hardest visible lepton is restricted to the interval 30GeV < p`,max
T < p`,max

T,cut .

The value chosen for the upper boundary of the allowed region in the selection cuts is

p`,max
T,cut = 55GeV. At LO, only ∼ 1% of the hardest visible leptons have a transverse mo-

mentum of p`,max
T > 55GeV. However, at NLO (NNLO) about ∼ 13 (19)% of the events

lie above this cut. Thus the choice p`,max
T,cut = 55GeV removes regions of phase-space that

are only populated at NLO and NNLO. We observe that the NLO and NNLO K-factors

are smaller below this cut. In addition, the scale uncertainty drops below 12% at NNLO,

while the corresponding scale uncertainty for the inclusive cross-section is 17%.

A powerful discriminating variable between the signal and the pp → WW background

is the opening angle φ`` between the two charged leptons in the plane transverse to the

beam axis. In Fig. 4.5 the cumulative cross-section for events with φ`` < φcut
`` is shown.

The NLO and especially the NNLO corrections are significantly larger for small angular

cuts φcut
`` . For φcut

`` = 40◦ the NNLO K-factor is ∼ 2.27 (2.70) for µ = mH/2 (2mH). The

corresponding K-factor for the inclusive cross-section is ∼ 1.97 (2.45). The NNLO scale

uncertainty for φcut
`` = 40◦ is 18.5%, while for the inclusive cross-section it is ∼ 17%. Thus

the envisaged cut at φcut
`` = 45◦ enhances contributions with large perturbative corrections.

The decay of the W bosons produces large missing transverse energy Emiss
T . In Fig. 4.6

the cumulative cross-section for Emiss
T > Emiss,cut

T is shown. At leading order there are

no contributions from Emiss
T > mW. This region of phase-space requires that the Higgs
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(a) (b)

Figure 4.5: (a) The cross-section for visible leptons with an angle on the transverse plane
φ`` < φcut

`` . (b) The K-factor as a function of φcut
`` (no other cut is applied). The dashed

horizontal lines correspond to the NLO and NNLOK-factors for the inclusive cross-section.
The vertical solid line denotes the value of φcut

`` in the partonic signal cuts of section 4.1.

(a) (b)

Figure 4.6: (a) The cross-section for events with missing transverse energy Emiss
T >

Emiss,cut
T , where Emiss

T is computed as the transverse momentum of the neutrino pair.

(b) The K-factor as a function of Emiss,cut
T (no other cut is applied). The dashed horizon-

tal lines correspond to the NLO and NNLO K-factors for the inclusive cross-section. The
vertical solid line denotes the value of Emiss,cut

T in the partonic signal cuts of section 4.1.
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(a) (b)

Figure 4.7: (a) The cross-section for events with charged lepton-pair invariant mass
12GeV < m`` < mcut

`` . (b) The K-factor as a function of mcut
`` (no other cut is ap-

plied). The dashed horizontal lines correspond to the NLO and NNLO K-factors for the
inclusive cross-section.

system is boosted by additional radiation at NLO and NNLO. The contribution from

Emiss
T > 80GeV for µ = mH/2 amounts to 0.7% at LO, ∼ 14% at NLO and ∼ 16% at

NNLO. The scale variation for this region of phase-space is 60% at NLO (essentially LO)

and 49% at NNLO (essentially NLO). By requiring very large missing transverse energy,

the significance of the above phase-space region is enhanced; the K-factors tend to increase

with respect to the inclusive cross-section.

In Fig. 4.7 the cumulative cross-section is shown as a function of the cut on the invariant

mass in the interval 12GeV < m`` < mcut
`` . The cross-section has a perturbative conver-

gence withK-factors and scale variation very similar to those for the inclusive cross-section

for all choices of mcut
`` .

We have now studied the kinematic behavior of the cross-section through NNLO for all

variables which are subject to significant experimental cuts in order to optimize the signal

to background ratio. It was found that the cuts discussed above can change individually

the K-factors and the behavior of the cross-section under scale-variation. It is not obvious

how the simultaneous application of all the cuts will affect the cross-section. This will be

studied in the next section.

4.2.2 Signal Cross-Section at the LHC

In Table 4.3 the cross-sections after applying all the partonic signal-cuts are listed. The
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σacc [fb] LO NLO NNLO

µ = mH/2 21.002 ± 0.021 22.47 ± 0.11 18.45 ± 0.54
µ = mH 17.413 ± 0.017 21.07 ± 0.11 18.75 ± 0.37
µ = 2mH 14.529 ± 0.014 19.50 ± 0.10 19.01 ± 0.27

Table 4.3: Cross-section after applying all the partonic signal cuts of section 4.1 at different
orders of perturbative QCD.

σacc [fb] µF = mH/4 µF = mH/2 µF = mH µF = 2mH

µR = mH/4 17.89 ± 0.27 18.27 ± 0.29 18.97 ± 0.29 19.01 ± 0.27
µR = mH/2 18.68 ± 0.90 18.33 ± 0.40 18.75 ± 0.37 19.87 ± 0.42
µR = mH 18.84 ± 0.60 18.45 ± 0.54 17.52 ± 0.93 18.10 ± 0.63
µR = 2mH 16.82 ± 0.94 18.40 ± 1.00 16.06 ± 0.94 15.45 ± 0.98

Table 4.4: NNLO cross-sections for the partonic signal cuts and independent variation of
the renormalization scale µR and the factorization scale µF.

NLO and NNLO K-factors are small in comparison to the corresponding K-factors for the

inclusive cross-section. The relative magnitude of the NLO and NNLO corrections with

respect to LO is similar to the observed K-factors in Fig. 4.3 for a jet-veto value around

∼ 20GeV. The scale variation is also small at NNLO (it compares to the statistical error

of our numerical integration); this is again similar to the pattern observed in Fig. 4.3 for

small values of the jet-veto cut. Remarkably, for the scale choice of µ = mH/2 the NNLO

cross-section is even smaller than the corresponding LO cross-section.

The cross-sections in Table 4.3 for the partonic signal cuts demonstrate a much better

perturbative behaviour than the inclusive cross-section. However, it cannot be concluded

yet that we have obtained a very precise prediction for the signal cross-section, since the

small K-factors and scale variations may be accidental. We have computed the average

transverse momentum of the Higgs boson to be 〈pH
T〉cuts ∼ 15GeV at NNLO for µF = µR =

mH/2. The corresponding average without selection cuts is 〈pH
T〉 ∼ 48GeV. Logarithms

of the type log(pH
T/mH) could therefore have a more significant impact after the cuts than

for the inclusive cross-section.

However, the results for the variation of the renormalization and factorization scales in

Table 4.3 do not indicate the existence of such large logarithmic corrections. To investigate

this aspect in more detail, the cross-sections with the partonic signal cuts applied for

independent variation of µR and µF in the interval [mH/4, 2mH] are computed and shown

in Table 4.4. The largest scale variation in this interval is ∼ 10%. The corresponding

scale variation for the inclusive cross-section in the smaller interval [mH/2, 2mH] is ∼ 16%

(cf. section 2.2.1.1). The NNLO result has a remarkable stability under the variation of
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the renormalization and factorization scales, indicating that the numerical coefficients of

the higher-order logarithmic terms should be small. We want to verify this assumption in

the next section.

4.3 Re-Summation Effects

In the previous section it has been shown that the higher-order QCD corrections affect the

distributions of kinematic observables restricted by the partonic signal cuts. While the

individual observables show different behavior, the cross-section after applying all the cuts

becomes very stable under the variation of the renormalization and factorization scales.

We noticed how the cuts restrict the Higgs phase-space to the low pH
T region and discussed

how multiple soft and collinear radiation might become important.

In section 2.2.1.2 it was found that the Higgs transverse momentum spectrum is sensitive

to these effects in the low-pH
T region. We also noticed that, if the spectrum is integrated

over a large enough region, these radiation effects become negligible and the fixed-order

calculation should be reliable. We found that at NLO this region is defined at pH,max
T ∼

50GeV, while at NNLO the result becomes comparable to the computation including re-

summation of leading logarithmic terms already by integrating up to a value of pH,max
T ∼

20GeV.

4.3.1 Differential Distributions

We want to extend the study of the soft radiation effects to the variables that undergo a

selection cut for the H → WW process. We list these variables again:

1. m``, the invariant mass of the charged lepton pair;

2. φ``, the angle between the two charged leptons in the plane transverse to the beam

axis;

3. p`,max
T , the transverse momentum of the harder lepton;

4. Emiss
T , the missing transverse energy and

5. pveto
T , the maximum transverse momentum for jets with |ηjet| < 2.5.

We compare the NNLO fixed-order cumulative cross-sections from section 4.2.1 with the

inclusively re-weighted distributions predicted by MC@NLO; neither hadronization nor

the underlying event have been considered. Again, the factorization and renormalization
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(a) invariant mass of the lepton pair (b) transverse angle between the leptons

(c) transverse momentum of the harder lepton (d) missing transverse energy

Figure 4.8: Comparison of the cumulative cross-sections for the leptonic kinematic vari-
ables that undergo a selection cut, for fixed-order (NNLO) and inclusively re-weighted
MC@NLO (R(MC@NLO)).

scales are varied simultaneously in the range [mH/2, 2mH]. The distributions are shown

in Fig. 4.8 and Fig. 4.9.

The agreement for the purely leptonic variables (1. − 4. in the list) is remarkable. The

only small difference can be seen in the Emiss
T distributions at a value of about 80GeV,

where, as explained before, the NNLO fixed-order results are nominally of NLO, since at

LO the maximum missing transverse energy is limited by the mass of the W boson. It is

therefore not surprising that the soft and collinear radiation effects lead to rather large

corrections in this phase-space region.
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Figure 4.9: Comparison of the cumulative cross-section for the jet-veto between fixed-order
(NNLO) and inclusively re-weighted MC@NLO (R(MC@NLO)).

For the jet-veto distribution (Fig. 4.9) such a perfect agreement can not be expected.

In fact the jet-veto cut is naturally the selection cut that is most sensitive to the hadronic

structure of the final state. However, especially in the region of the envisaged cut of

25GeV, the agreement is very good. Therefore this agreement confirms the picture ob-

served in section 2.2.1.2. We want to point out that a comparison of fixed-order NLO

with MC@NLO would not result in a good agreement. It has been discussed that a jet-

veto at 25GeV corresponds to a pH,max
T value of exactly 25GeV and that the cumulative

cross-section in pH
T at NLO does not agree with the re-summed spectrum (cf. Fig. 2.11(a)).

4.3.2 Signal Cross-Section

In Table 4.5 the cross-sections after applying all partonic signal cuts are listed. In addition

to the kT algorithm we have used the SISCone algorithm [52], implemented in the FastJet

package [53]. The jet radius in the azimuth-rapidity plane was set to R = 0.4 and the

merging parameter for the SISCone algorithm to f = 0.5 3. Formally the two algorithms

yield identical results for the fixed-order calculation up to NLO.

In the first part of the Table we show the results obtained using a fixed LO computation

and the LO+parton-shower event generator HERWIG. We find a much larger fixed order

result than when a parton shower is added. At fixed LO all events have a Higgs boson with

zero transverse momentum, and the jet-veto rejects none of the events (cf. section 2.2.1.2).

In contrast, HERWIG generates a large fraction (∼ 50%) of events with pjet
T > pveto

T .

3The merging parameter f defines, how much two separate proto-jets need to overlap in order to be
merged into one jet.
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σacc [fb] µ = mH/2 µ = 2 mH

jet algorithm SISCone kT SISCone kT

LO 21.00 ± 0.02 14.53 ± 0.01
HERWIG 11.16 ± 0.04 11.59 ± 0.04 7.60 ± 0.03 7.89 ± 0.03

NLO 22.40 ± 0.06 19.52 ± 0.05
MC@NLO 17.42 ± 0.08 18.42 ± 0.08 13.60 ± 0.06 14.39 ± 0.06
RNLO(HERWIG) 19.79 ± 0.07 20.56 ± 0.07 14.61 ± 0.05 15.17 ± 0.05

NNLO 18.18 ± 0.43 18.45 ± 0.54 18.76 ± 0.31 19.01 ± 0.27
RNNLO(MC@NLO) 19.33 ± 0.09 20.43 ± 0.09 17.24 ± 0.07 18.24 ± 0.07
RNNLO(HERWIG) 22.02 ± 0.08 22.88 ± 0.08 18.65 ± 0.07 19.38 ± 0.07

Table 4.5: Cross-sections after the partonic signal cuts are applied for different perturbative
approximations. The statistical integration errors are shown explicitly. The MC@NLO and
HERWIG cross-sections are evaluated with 1000000 generated events.

In the second part of Table 4.5 we show the results obtained using a fixed NLO com-

putation, the event generator MC@NLO and the inclusively to NLO re-weighted event

generator HERWIG (R(HERWIG)). The NLO result is quite different from the one ob-

tained with MC@NLO. However, this is no surprise since we already discussed that the

fixed NLO result is not expected to predict the cross-section reliably compared to the

re-summed calculation.

In the last part of Table 4.5 we show the results obtained using a fixed NNLO compu-

tation and the results from MC@NLO and HERWIG, rescaled to the NNLO total cross-

section. The NNLO result and the rescaled MC@NLO are consistent. We do not expect the

same scale variation behavior, cf. Fig. 4.9. In fact, the scale uncertainty of the re-weighted

MC@NLO result corresponds to the inclusive NNLO scale uncertainty, while for the fixed

NNLO calculation the scale variation leads to a reduced uncertainty (cf. section 4.2.2).

We remind the reader that for all the results of this section MC@NLO and HERWIG have

been used at parton level, i.e. neither hadronization nor underlying event effects are con-

sidered. We observe that the kT-algorithm gives larger cross-sections than the SISCone

algorithm for MC@NLO and HERWIG; as mentioned before, the results for the two al-

gorithms are very similar at fixed order through NNLO (within our numerical integration

precision). Additionally MC@NLO gives slightly smaller values for the cross-sections than

HERWIG. Again this has been observed in the Higgs transverse momentum spectra pre-

sented in section 2.2.2, where we have found that HERWIG slightly over-estimates the

cumulative cross-section in pH
T.
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4.4 Jet Algorithm, Hadronization & the Underlying Event

So far we have neglected any hadronization and underlying event (UE) effects. This

was necessary in order to compare the MC event generator results with the fixed-order

calculations (where the inclusion of hadronization and UE is not possible). To finalize

this part we want to understand how the cross-section after the selection cuts is affected

by the hadronization and the UE. This is achieved by using the MC event generator

MC@NLO and the assumption that these effects and the hard-scattering process factorize

in such a way, that the conclusions can be adopted to our most precise result, obtained at

fixed NNLO.

First we want to argue why this approach should be valid to a good approximation. The

hadronization procedure does not take place in the perturbative regime. Any hadroniza-

tion model is a phenomenological description of the formation of hadrons from quarks.

This should be roughly independent of the hard-scattering process, thus the only effect

we expect from the hadronization is a change of the sub-structure in the momentum-flow

of the final-state particles. If we assume a hermetic detector able to collect all the final-

state energy, the over-all momentum of all final-state particles should not change upon

the inclusion of hadronization effects.

The effect of the underlying event can be seen as an addition of hadronic activity in

the final state due to multi-parton- and beam-remnant-interaction. Again, these effects

should be independent of the hard-scattering process to a good approximation.

Both effects have no impact on the leptonic final state configuration, with the exception

of the isolation criterion, which turned out to have a minor impact. We therefore expect

that the impact on the cross-section after the selection cuts is dominated by their effect

on the jet-veto through the jet-structure. As appropriate variable to observe any effect we

thus choose the cumulative cross-section in pveto
T , after the application of all other partonic

signal cuts.

We are interested in the effects of changing the jet-algorithm parameter R. In Fig. 4.10

we plot the cumulative cross-section of MC@NLO as a function of the pveto
T value for the

kT and the SISCone algorithm with jet-radii R = 0.4 and R = 0.7. We find that for small

values of the jet-veto parameter the choice of the jet clustering method is more significant.

For a jet-veto at pveto
T = 25GeV the choice of jet-algorithm changes the cross-section by

∼ 6% with MC@NLO. A similarly large variation of ∼ 7% is observed when we vary the

jet-radius from R = 0.4 to R = 0.7. For a jet veto value larger than about pveto
T ' 40GeV

the sensitivity of the cross-section to the choice of the jet-algorithm or the jet-radius falls

below ∼ 2 − 3%.
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Figure 4.10: Comparison between the SISCone and kT algorithm for different values of
the allowed maximum jet transverse energy (jet-veto). All other partonic signal cuts are
applied.

Figure 4.11: Difference of the cross-section after partonic signal cuts including the un-
derlying event and hadronization models, with respect to the partonic cross-section. The
cross-section is shown as a function of the jet-veto value for the SISCone clustering algo-
rithm.

We now study the effect of hadronization as it is modeled in HERWIG and of the under-

lying event as implemented in JIMMY [12]. In Fig. 4.11 we present the relative difference of

the cross-section with respect to the partonic cross-section when the hadronization and/or

the underlying event are switched on. Here we use the SISCone algorithm with a merging

parameter f = 0.5 and two values for the jet-radius R = 0.4 (left) and R = 0.7 (right).

We apply all the partonic signal cuts with the exception of the jet-veto. Of interest are

values of the jet-veto between 25 and 40 GeV, which are envisaged for the Higgs boson

search.
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Figure 4.12: Difference of the cross-section after signal cuts including the underlying event
and hadronization models, with respect to the partonic cross-section. The cross-section is
shown as a function of the jet-veto value for the kT clustering algorithm.

Qualitatively we anticipate that the hadronization and the underlying event change the

partonic cross-section with opposite signs, as outlined in [54]. Hadronization reduces the

average pT of (gluonic) jets by roughly δpjet
T ∼ (1GeV)/R. The underlying event increases

the jet pjet
T by roughly δpjet

T ∼ R2 × (5GeV) at the LHC. The slope of the partonic cumu-

lative cross-section in pveto
T is large for small values of the jet-veto (cf. Fig. 4.9). The shifts

δpjet
T from hadronization and the underlying event can therefore induce significant changes

to the cross-section. A jet-veto after hadronization corresponds to a looser effective jet-

veto at the parton level. We therefore anticipate the cross-section to increase by switching

on the hadronization model. Similarly, we anticipate a decrease of the cross-section due

to the underlying event.

These trends can be verified in Fig. 4.11. A smaller jet-radius increases the impact of

hadronization and decreases the impact of the underlying event. The two effects are not

linearly additive. However, we find that a cancellation between the two effects, which

varies according to the jet-radius, takes place. For a jet veto pveto
T = 25GeV and R = 0.4,

the hadronization shift is about ∼ +7% and the underlying event shift is ∼ −4%. For a

larger R = 0.7, the two shifts are +5% and −10%, respectively.

In Fig. 4.12 the effects of hadronization and the underlying event are shown for the kT al-

gorithm. We find the same qualitative features as for the SISCone algorithm. However,

we note that the kT-algorithm shows an overall reduced sensitivity.

85



4. HIGGS IN THE ’INTERMEDIATE’ MASS RANGE: THE W-PAIR CHANNEL

4.5 Conclusions of this Chapter

In this chapter we have studied the QCD corrections up to NNLO for the H → WW → `ν`ν

cross-section at the LHC. We observed that these corrections have a significant impact on

the inclusive cross-section (the inclusive K-factor at NNLO is ∼ 2) while the scale uncer-

tainty is reduced compared to LO and NLO, indicating a convergence of the perturbative

series.

Furthermore all the kinematic observables that undergo experimental cuts in a typical

Higgs search in this channel have been studied in detail. It was observed that these

cuts affect the K-factors in very different ways, either increasing or decreasing the K-

factors. However, the cross-section after applying all envisaged cuts shows a remarkable

stability under the variation of the renormalization and the factorization scales and the

corresponding K-factors are of the order of one.

It was observed how specific cuts (i.e. the jet-veto) restrict the Higgs boson phase-space

to the low transverse momentum region, where the re-summation of large logarithms might

be needed in order to render the prediction reliable. To investigate this we compared

the fixed (N)NLO predictions for the transverse momentum spectrum of the Higgs to the

parton-shower MC event generators HERWIG and MC@NLO, as well as to the re-summed

spectrum at (N)NLO+(N)NLL. It was observed that while the fixed NLO prediction is

not reliable, unless the Higgs pT spectrum is integrated up to pH
T ∼ 50GeV, the fixed

NNLO calculation agrees with the re-summed spectra already after integrating up to

pH
T ∼ 20GeV.

In order to understand the effects of the multiple radiation on the cross-section after

applying the cuts, all the variables restricted by these cuts have been studied. The agree-

ment for all the variables in the range of the envisaged cuts is very good. From all these

observations it can be concluded that the fixed NNLO prediction for the cross-section after

applying all the cuts is a very precise prediction.

Finally, effects of hadronization and the underlying event have been studied using dif-

ferent jet algorithms. It turned out that the effects are of the order of 5− 10% and might

even cancel each other to a large amount under certain circumstances.

86



Part II

The Compact Muon Solenoid
(CMS) Experiment at the LHC

87





Chapter 5

Experimental Apparatus

Over the last decades collider experiments have given tremendous insight into particle

physics and the general structure of the matter making up the universe. While over

the years the technical obstacles to build larger and more powerful particle accelerators

have been overcome, dedicated experiments have been able to test the Standard Model

of Particle Physics to a very accurate level for many of its main predictions. Among

others we emphasize the discovery of the W and Z bosons in 1983 by the experiments

UA1 and UA2 [55] at the Super-Proton-Synchrotron (SPS) at CERN and the top-quark

discovery [56] in 1993 at the Tevatron-collider at Fermilab (USA).

The potential and the limitations for a collider experiment to measure physical quantities

or discover particles are dictated by the specific accelerator and detector designs. On the

accelerator side we distinguish between two main classes; the linear accelerators, where

particles are accelerated on a linear distance up to their final collision energy, and the

synchrotron accelerators, where particles are accelerated on a circle. On the detector side

we distinguish between two main classes of experiments, the fixed-target experiments,

where incoming particles are scattered on a fixed, typically solid, liquid or gaseous block

of target matter, and the collider experiments, where two incoming particle-beams are

colliding head-on.

The two main quantities characterizing such an apparatus are the center-of-mass energy

ECM of the colliding particles and the luminosity L, which is defined as

L = Φa ×Nb, (5.1)

where Φa is the incoming particle current and Nb is the number of target particles in a

fixed target experiment. In a collider experiment the luminosity is defined as

Lcol =
NaNbjv/U

A
, (5.2)
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with Na (Nb) the number of particles per bunch in beam a (beam b), j the number of

particle bunches per beam-type, U the circumference of the synchrotron, v the velocity

of the particles and A = 4πσxσy the beam area at the interaction point (σx, σy are the

Gaussian-shape distributions of the particle beam in vertical and horizontal direction).

The number of scattering reactions in the time-interval t2 − t1 for the process X → Y

can then be computed as

N(X → Y ) =

t2
∫

t1

σ(X → Y )L dt = σ(X → Y ) ×Lint, (5.3)

where we used that the cross-section σ(X → Y ) is constant over time and defined the

integrated luminosity for the time-interval t2 − t1, Lint. The center-of-mass energy ECM

influences which processes are possible in the experiment. Finally, the type of the incoming

particles constrains the possible scattering reactions as well.

Each of the above mentioned collider/experiment strategies have their characteristic

advantages and short-comings. While for fixed target experiments it is e.g. rather simple

to increase the luminosity by increasing the fixed-target-density, collider experiments have

advantageous energetic behavior, i.e. with the same beam-energy much higher center-of-

mass energies can be reached compared to fixed-target experiments.

On the accelerator side a linear geometry is favourable because of its rather simple

architecture and the fact that linearly accelerated charged particles to not loose energy

due to synchrotron radiation,

∆Esyn =
4πα

3R
β3γ4, with β =

v

c
and γ =

E

mc2
, (5.4)

where α is the fine structure constant and R is the radius of the accelerator. On the other

hand, the needed distance to accelerate a particle to a desired collision-energy becomes

quickly large in a linear accelerator. In addition, in a circular geometry (synchrotron)

there is the possibility for several experiments running simultaneously, since there can be

more than one collision point for the particles beams. In a linear acceleration geometry

this is more complicated.

Most modern high-energy physics collider experiments are installed at synchrotron ac-

celerators. The limitations in terms of possible center-of-mass collision energies are mainly

given by the energy loss of the particles through synchrotron radiation in eq. 5.4. As an

example, the maximum center-of-mass energy reachable at the LEP collider running at

CERN between 1989 and 2000 was ∼ 209GeV. Beyond this threshold the additional

energy added to accelerate the colliding electrons and positrons was almost completely

radiated off, and no further net acceleration could be achieved. The energy-loss through
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Figure 5.1: Layout of the LHC tunnel including the four experiments LHC-B, ALICE,

ATLAS and CMS.

radiation depends on two adjustable parameters, first on the synchrotron radius R and

second on the colliding particle mass m, i.e. higher center-of-mass energies can be reached

by either increasing the radius R or by using heavier particles in the collision. Since it was

natural to reuse the LEP tunnel, the second option was favored by replacing the colliding

electrons from LEP by heavier particles, e.g. by protons.

The last crucial characteristics of a collider experiment is the type of colliding particles.

These particles can be fundamental particles, i.e. particles that are not built-up by more

fundamental particles in the Standard Model. In this case the complete collision momenta

of the reaction are known if the beam parameters are determined. If the colliding particles

are compound objects, e.g. protons or heavy ions, then the interacting partons carry only

a fraction of the total hadron momentum. Finally, the charge combination of the colliding

particles puts technical requirements on the acceleration machinery. If the particles have

e.g. same sign charges, one magnetic field is not enough to keep both particle beams on

the circular orbit.

5.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [21] is a proton-proton synchrotron with a circumfer-

ence of 27 km located at the European Organization for Nuclear Research (CERN) near

91



5. EXPERIMENTAL APPARATUS

Figure 5.2: Accelerator chain at CERN.

Geneva, Switzerland. The operational start is scheduled for the year 2008, the nominal

center-of-mass energy of 14 TeV should be reached in 2009.

The LHC accelerator ring is installed in the former LEP tunnel at CERN. There will

be four experiments, namely ALICE (A Large Ion Collider Experiment) [57], LHC-b [58],

ATLAS (A Toroidal LHC Apparatus) [59] and CMS (Compact Muon Solenoid) [60]. The

LHC infrastructure with the main accelerator ring and the four experiments is shown in

Fig. 5.1. While the two detectors CMS and ATLAS are multipurpose experiments, LHC-b

is dedicated to the study of b-physics and ALICE to heavy-ion collisions.

In order to keep protons with 7 TeV energy on the circular orbit a magnetic field of

about 8.3 T is needed. This magnetic field is provided by 1232 superconducting dipole

magnets, each with a length of 14.3 m, operating at a temperature of 1.9 K. Additional

400 quadrupole-magnets are installed to focus the proton beams [21].

Before accelerating the beams to their final energy, the LHC ring is fed with protons

at an energy of 450 GeV by the accelerator chain shown in Fig. 5.2. Both beam-pipes of

the LHC accelerator are filled with 2808 bunches of 1.1× 1011 protons each. The bunches

are separated by about 7 m. After filling, the radio-frequency-cavities (indicated as RF

in Fig. 5.1) are used to accelerate the protons up to the nominal 7 TeV. This fill- and

ramping-time is expected to be at the order of one hour. When the protons have reached

their nominal energy, the beams can be used for collision-reactions at the four interaction

points until the beam-quality has dropped below some useful value. The “physics” time

for one fill is estimated to be around 20 hours. The design peak luminosity for the LHC is
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1034 cm−2 s−1. In the beginning of the LHC operation the luminosity will be lower. The

stated start-up luminosity (also referred to as ’low luminosity run’) is 2 × 1033 cm−2 s−1.

During the collisions phase there will be a bunch-crossing at the interaction points

every 25th nano-second, which corresponds to a bunch-collision rate of 40 MHz. At the

design luminosity up to 20 inelastic proton-proton collision are expected for each of these

proton-bunch-crossings. Thus the resulting event-rate per second of ∼ 0.8 × 109 poses

strong requirements on the radiation hardness, the granularity and the response-time of

the detectors running under these circumstances.

5.2 The Compact Muon Solenoid Experiment

One of the four experiments hosted at the LHC is the multi-purpose detector CMS (Com-

pact Muon Solenoid). Its design proposal [61] included the following emphases:

1. a very good and redundant muon system,

2. the best possible electromagnetic calorimeter (ECAL) consistent with 1),

3. a high quality central tracking consistent with 1) and 2),

4. a financially affordable detector.

The specific design goals were mainly motivated by the search for the SM Higgs boson

in a wide mass range, where excellent lepton measurements, as well as very good photon

energy resolutions are needed.

In the CMS detector these goals are achieved using a compact geometry, where all

tracking and calorimetry is located inside a very strong, super-conducting solenoid magnet

with field-strength of 4 T, but actually operated at 3.8 T. In the central detector part

(barrel) the only detector components outside of the solenoid are the iron return-yokes

including the muon-system and a small part of the hadronic calorimeter, discussed later.

A schematic drawing of the CMS detector is shown in Fig. 5.3. The detector has a length

of about 22m, a diameter of about 15m and a total weight of over 12000 tonnes.

We will briefly describe the various detector subsystems in the upcoming sections. For

more detailed information we refer to the various Technical Design Reports [62] and a

recent publication describing the CMS detector as built [63].
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Figure 5.3: The Compact Muon Solenoid (CMS) Experiment at the LHC.

5.2.1 Central Tracking

The purpose of the central tracking system is to measure the position and the momentum

of charged particles, as well as the vertex reconstruction. The tracking system is the inner-

most part of the CMS detector. It consists of the pixel and the silicon-strip detectors and

will take a volume of a length of about 5.4 m and a diameter of about 2.4 m. Together

with the strong (∼ 4T ) magnetic field induced by the super-conducting solenoid magnet

the tracking system allows for a very accurate measurement of the momenta of charged

particles.

The central part of the tracking system is the pixel detector, shown in Fig. 5.4. It

consists of three layers in the barrel and two end-cap discs on both sides. The square

pixel shape is (150 × 150)µm2. The more than 15000 readout chips give about 44 million

readout channels.

Outside of the pixel detector the silicon-strip detector is installed. In the barrel it

consists of four (six) inner (outer) layers. On each side of the inner layers three end-cap

mini-discs are installed. The end-cap silicon-strips consist of nine additional discs. The

schematic longitudinal view of a quarter of the silicon-strip detector is shown in Fig. 5.5.

The expected momentum resolution for the tracking system is ∆pT/p
2
T ' 0.015% in the

central region |η| < 1.6 and ∆pT/p
2
T ' 0.06% for |η| ∼ 2.5.
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Figure 5.4: Schematic drawing of the CMS Pixel Detector.

Figure 5.5: Schematic transverse view of the silicon-strip detector layers.

5.2.2 The Electromagnetic Calorimeter (ECAL)

Around the tracking detector, still completely within the magnet, the electromagnetic

calorimeter (ECAL) is placed. It again consists of a barrel and two end-cap parts. The
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Figure 5.6: Schematic view of the ECAL detector of CMS.

active material of the ECAL are scintillating lead-tungstate crystals, each with a front-face

area of about (2.2×2.2) cm2 ( (2.5×2.5) cm2) and a length of 23 cm (25 cm) in the barrel

|η| < 1.4 (end-cap 2.5 > |η| > 1.4) region. A schematic view of the ECAL is shown in

Fig. 5.6.

The advantage of the lead-tungstate material over other scintillating crystals (such as

BGO-crystals) is the short light decay time (within only 15 ns about 60% of the light is

emitted) combined with its radiation hardness and its high density, allowing for a compact

ECAL design. This is especially important for installing the ECAL (as well as the HCAL)

within the superconducting magnet.

A disadvantage is the relatively small light yield, which requires a strong amplification

of the signal. In the barrel this is achieved by equipping each crystal with two avalanche

photo-diodes (APD). Due to the higher radiation expected, in the end-caps the signal

collection and amplification is realized by vacuum photo-triodes (VPT).

In the barrel the crystals are organized in 36 super-modules, each consisting of 1700

crystals. Eighteen of these super-modules form an ECAL barrel ring, concentric around

the beam pipe. The crystals are oriented in such a way, that they face three degrees

away from the center of the detector (collision point) to minimize the probability of a

particle passing through the inactive material between the crystals. The end-cap crystals

are organized in four so-called ’Dee’s’, each consisting of about 5000 crystals, again tilt by

three degrees away from the central interaction point.
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The length of the crystals corresponds to about 26 interaction lengths, such that an

electron of 35GeV deposits 97% of its energy in a cluster of 5 × 5 crystals. The energy

resolution of the ECAL is designed to be well below 1% for electron/photon energies

above ∼ 30GeV, which is e.g. needed for the discovery of a light Higgs boson in the

H→γγ channel.

The resolution of the ECAL can be parametrized as (see e.g. [64])

σE

E
=

a√
E

⊕ b

E
⊕ c. (5.5)

where a is the stochastic term, b the noise and c the constant term. The stochastic term

arises mainly from fluctuations in the shower containment and photo-statistics. The noise

term b reflects the electronic and the pile-up noise. The design goal for these parameters

is a = 2.7%, b < 200MeV and c = 0.5%, leading to the demanded over-all resolution of

less than 1%. Testbeam data taken in 2004 showed that the ECAL sub-detector is able

to reach this design resolution.

5.2.3 The Hadronic Calorimeter (HCAL)

The last detector sub-system inside the super-conducting magnet is the hadronic calorime-

ter (HCAL). Its purpose is the measurement of the energy of hadrons and ultimately par-

ticle jets as well as the hermetic coverage of the detector in order to be able to measure

the missing transverse energy.

The active parts of the HCAL are plastic scintillator tiles, which alternate with brass

tiles. The purpose of the brass tiles is the absorption of the energy of the incoming

particles, while the scintillators collect the energy as blue scintillation light. This light is

wavelength shifted into blue light, which is collected by an optical fiber readout system

and transported to the photo-diodes transforming the light into an electronic signal.

In the barrel the HCAL is cylinder with a length of 9m and a diameter of 2m − 3m,

covering a pseudo-rapidity range of |η| < 1.48. The end-caps, covering a range of 1.48 <

|η| < 3.0, have a thickness of 1.8m and a radius of about 3m. To provide a maximum

hermetic coverage, so called forward calorimeters are installed at the distance of 11m on

both sides of the interaction point, increasing the covered range up to |η| = 5.

The granularity of the detector is chosen such that highly boosted jets from the decays

of W bosons can still be separated. This is achieved by a division into single readout

channels (so called Calo-Towers) of size ∆η × ∆φ = 0.087 × 0.087. Within such a region

all the energy collected is summed up.
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While in the high-η regions the thickness of the HCAL corresponds to about 10 nuclear

interaction lengths, which is sufficient to collect all of the hadronic energy accurately,

in the central region (η ∼ 0) the thickness of about 80 cm corresponds only to about 5

nuclear interaction lengths. To remedy this shortcoming one additional scintillator layer

is installed outside of the magnet, the so-called hadron outer calorimeter, which covers a

range up to |η| = 1.4. Including this sub-detector, the thickness of the HCAL corresponds

to at least 10 nuclear interaction lengths over the whole pseudo-rapidity region |η| < 5.

The expected intrinsic resolution of the HCAL for the reconstruction of jets with trans-

verse energy of Ejet
T ∼ 100GeV is about 14%, varying strongly with the energy from

∼ 50% for jets with transverse energy of E jet
T ' 20GeV down to < 10% for E jet

T >

200GeV [65].

5.2.4 The Muon System

The muon system (together with the iron flux-return yokes) is the outer-most detector

sub-system of CMS. Its purpose is to identify and measure muons to a high precision,

one of the main design goals of CMS. The muon system takes advantage of three different

technologies, the Drift Tubes (DT) in the barrel (|η| < 1.2), Cathode Strip Chambers

(CSC) in the end-caps (0.9 < |η| < 2.4) and Resistive Plate Chambers (RPC) in both,

barrel and end-caps. A schematic longitudinal view of a quarter of the CMS muon system

is shown in Fig. 5.7.

The size of a typical DT chamber in the barrel is (2 × 2 × 0.4)m3. The drift tubes

consist of aluminum cathodes and stainless steal anode-wires. They are filled with an

Argon-Carbon-Dioxide mixture (Ar − CO2). Each DT chamber contains twelve layers

of drift tubes grouped into three super-layers, where the first and the third super-layer

measure the coordinate of the passing muon in the transverse plane (φ) and the second

super-layer determines the coordinate in the longitudinal direction (z). With this an

angular resolution of about 1mrad is obtained in the transverse plane. The total barrel

muon-system consists of ∼ 250 DT chambers with more than 20000 individual channels.

In the end-cap region CMS relies on the CSC technology, where the cathodes are di-

vided into strips. The CSC are proportional drift chambers with gold-plated anode wires

perpendicular to the cathode strips. The chambers are filled with an Ar − CO2−CF4

gas mixture and are arranged in concentric rings around the beam pipe. The resolution

varies with the distance to the interaction point, from ∼ 75µm (inner-most) to ∼ 150µm

(outer-most). The CMS end-cap muon system is made of 540 CSCs.

In addition to the DTs and the CSCs the muon-system is equipped with RPCs. This

very fast responding system is used by the trigger and allows thus a good understanding
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Figure 5.7: Schematic longitudinal view of the muon system of the CMS detector.

of the muon trigger efficiency. An RPC consists of two parallel phenolic resign plates

separated by a gas gap and a conductive graphite layer forming the electrodes. In the

inner barrel region each DT is accompanied by two layers of RPCs, in all other regions

each muon-system layer contains one RPC layer.

The expected momentum resolution using the combined information of the muon system

is ∼ 1% (∼ 2%) for muons with momenta p ∼ 10GeV around |η| ' 0 (|η| ' 2). This

resolution increases with increasing momentum of the muons up to ∼ 4.5% (∼ 7.0%) for

muons with momenta p ∼ 1000GeV [65].

5.2.5 The Trigger System

At LHC design luminosity about 0.8 × 109 interaction-events per second are expected in

the CMS experiment. Assuming a data size of ∼ 1 MB per event this would lead to a

total of ∼ 800 TB of data per second to store. There is no information system that can

handle this huge amount of data in such a short time. The main purpose of the trigger

system is thus the reduction of the event data to a feasible rate of potentially interesting

events. The maximum data rate is ∼ 100 MB per second, that can be coped with by the

data acquisition system (DAQ).

The data reduction is achieved in two separate steps. The first, completely hardware
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5. EXPERIMENTAL APPARATUS

driven system is the so-called Level 1 trigger (L1). At this stage the most relevant quanti-

ties for the trigger-decision are computed roughly based on the fast information obtainable

from the muon system and the calorimetry. The main quantities characterizing an event

are computed, e.g. the transverse momentum and isolation of the four hardest objects

(muons, electrons, photons, jets as well as missing transverse energy). Threshold cuts on

these quantities allow to reduce the data rate to ∼ 50 − 100 kHz.

If the event data passed these L1 selections, the whole detector data is read out and

processed by the Higher Level Trigger (HLT), containing the Level 2 and 3 (L2 & L3)

trigger steps. Due to the rate reduction more information can be processed for this trigger

selection. For example, at Level 2 part of the tracker information is included. The data

reduction rate of L2 is ∼ 10. At L3 the full tracker information is available and the full

event can be reconstructed. The L3 reduction rate is ∼ 100, resulting in a final event rate

of ∼ 100Hz.
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Chapter 6

Physics Object Reconstruction

In this Chapter we describe the physics object reconstruction within the CMS analysis and

software framework CMSSW [66]. The input of the reconstruction is the digitized detector

response of each of the detector subsystems. The reconstruction is divided into the two

steps of ’low level’ and ’high level’ object reconstruction 1. We will not distinguish between

these two steps, but directly enter the reconstruction of the ’high level’ objects and explain

some details for the underlying ’low level’ object reconstruction where needed.

We want to emphasize that the physics object reconstruction is an ongoing development.

All the details explained below are specific for the software release version CMSSW 1 3 used in

the last Chapter of this thesis. In other, especially more recent software releases some de-

tails such as thresholds and intrinsic cuts, but also reconstruction strategies might change

significantly.

Also we will not discuss all the ’high level’ objects reconstructed in the standard CMSSW

reconstruction procedure. We will focus exclusively on the objects used in the physics

analysis described in the next chapter of this thesis.

6.1 Track Finding

We start the discussion of the reconstruction with the ’low level’ objects of the tracks.

They will be needed for the reconstruction of the electrons and muons, which are ’higher

level’ objects, as well as for their isolation. The track reconstruction is divided into four

steps, as shown in Fig. 6.1.

1 ’Low level’ objects are typically tracks and collected calorimetry information. ’High level’ objects are
for example muons and jets.
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6. PHYSICS OBJECT RECONSTRUCTION

Figure 6.1: Track reconstruction flow within CMSSW.

The initial information is given by the digitized responses of the pixel and the tracking

detectors described in section 5.2.1. In the first step, the local reconstruction, these

digitized responses are converted into RecHits, i.e. into reconstructed hits in the tracker 2.

In the second step, the RecHits are used to find a seed for the reconstruction of the track.

In the third step these seeds are used in a pattern recognition algorithm to find a track

candidate, which, in the fourth step, are fitted to give the final track object. We will

briefly describe each of these steps in the following, for more details see e.g. [67].

6.1.1 Local Reconstruction

The digitized output of the detector has to be translated into RecHits by clustering together

strips (in the silicon-strip detector) or pixels (in the pixel detector). This is done by first

finding a seed strip (pixel), which has to fulfill that the signal over noise ratio (S/N)

is larger than some threshold. Typical values for these thresholds are S/N > 3 for the

silicon and S/N > 6 for the pixel detector. Then adjacent strips (pixels) are added to

this seed forming a cluster when they themselves fulfill a threshold criterion (i.e. S/N > 2

for strip and S/N > 5 for the pixel detector). The positions of resulting clusters are then

determined and they serve as the bases for the further reconstruction.

6.1.2 Seed Finding

The seeds for the track finding are basically pairs of RecHits from the local reconstruction.

This is done by looking for compatible hits in different layers of the tracker. Here compat-

ible means that they fulfill the beam-constraint, i.e. they point to the interaction point.

2 In what follows the tracker means always both, the pixel and the silicon-strip detector.
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6.1. TRACK FINDING

Alternatively to the beam constraint a third hit can be used to define a seed. These seed

hits then define the initial track trajectory for the further processing. The pixel detector is

especially useful for the seed finding since it provides an excellent position measurement.

6.1.3 Pattern Recognition

The pattern recognition is based on a combinatorial Kalman filter method. The algorithm

starts at a seed layer and includes the information of the successive detector layers. This

is done by first deciding which layers are compatible with the seed trajectory, which is

then extrapolated to this layer with the hypothesis of a charged particle in a magnetic

field including information on the material the trajectory has to pass through, i.e. taking

into account multiple scattering and possible energy loss. If a hit is found in the envisaged

layer, it is added to the trajectory and track parameters are recalculated including this

new information. There might be several hits compatible with the extrapolation. If this is

the case all possibilities are pursued further, each building a single track candidate. The

’no-hit’ possibility is also included, taking into account the fact that the particle might

have left no hit in the layer. Therefore after each layer the track parameters are known

to a better precision. This procedure is repeated until either the outermost layer of the

tracker is reached or some ‘stop condition’ is satisfied.

From the above construction ambiguities can arise. The same track can e.g. be recon-

structed starting from different seeds, or a given seed may lead to more than one track.

These ambiguities have then to be resolved in order to avoid double counting of tracks.

Which of the ’over-laying’ tracks is chosen to be removed is basically decided on the

number of hits and on the χ2 of the fit.

6.1.4 Final Fit

Finally the tracks found in step three are re-fitted. This is again done using a Kalman

filter. It is initialized at the layer of the innermost hit. Then the fit proceeds in an iterative

way through the layers, estimating the track parameters again. After having reached the

outer-most layer a second filter is used to run again from the outer-most layer inwards.

Using all the above procedure it has been shown that the track reconstruction efficiency

is about 98% for muons with transverse momentum between 1 and 100GeV in the region

|η| < 2 [67]. It has to be pointed out that these numbers (as well as all the efficiencies

stated later in this chapter) were computed using an older CMS software framework (ORCA).

However, the results do not change significantly (especially not get worse) for the CMSSW

framework. We will refer to the tracks reconstructed according to this procedure as the

ctfWithMaterialTracks.
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Figure 6.2: ECAL stand-alone reconstruction flow.

6.2 Electron Reconstruction

The electron reconstruction starts from the SuperCluster, which is the product of the

ECAL stand-alone reconstruction. A single electron deposits approximately 94 % (97 %)

of its energy in a 3× 3 (5× 5) crystal cluster. Information from the pixel detector and the

tracker is added to construct the final electron objects, the PixelMatchGsfElectrons.

6.2.1 ECAL Stand-Alone Reconstruction

The ECAL stand-alone reconstruction flow is shown in Fig. 6.2. The purpose of this so

called Super-Clustering is the collection of the bremsstrahlung photons, which are emitted

by an electron and spread in φ, to improve the estimate for the initial electron energy.

The starting point is the digitized ECAL detector response, which in a first step is

translated into so called Uncalibrated RecHits, basically corresponding to uncalibrated

energy deposits for each ECAL crystal. After the application of calibration constants

(Calibrated RecHits), the actual clustering of crystals is performed. There are two dif-

ferent clustering algorithms used; the Island algorithm in the end-caps of the ECAL, the

Hybrid algorithm [68] in the barrel. The final step is the application of an energy depen-

dent energy calibration factor, obtained either from test-beam or by using in-situ method

such as Z decays [26].

It has been shown that using the procedure described below for the ECAL stand-alone
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6.2. ELECTRON RECONSTRUCTION

reconstruction, an efficiency of more than 99% for electrons with pT ≥ 7GeV can be

reached [67].

6.2.1.1 Island Clustering

The starting point is a so called seed crystal defined as a crystal with a locally maximum

energy deposit. Then the neighboring crystals around this seed-crystal are scanned and

added to the cluster if they fulfill the following requirements:

• the crystal contains a RecHit with positive energy (well above the noise level);

• the crystal has not been assigned to another cluster and

• the crystal added previously (in the same direction) has a higher energy.

After all the RecHits with positive energy have been assigned to a BasicCluster, these

BasicClusters are merged into so called SuperClusters. The procedure is very similar to

the clustering of the RecHits into BasicCluster. The seed is a locally maximal energetic

BasicCluster, and other nearby clusters are added to the SuperCluster following the recipe

above.

6.2.1.2 Hybrid Super Clustering

This algorithm, only applicable in the barrel of the ECAL, takes into account the knowl-

edge of the shower-shape of the energy-deposits in the ECAL. A charged particle bending

in the magnetic field will deposit its energy spread over a small range in η but a larger

range in φ because of bremsstrahlung in the plane orthogonal to the magnetic field. The

starting point is again a RecHit with a local maximum energy deposit. After this a bar of

1×5 RecHits (1×3 if the energy of the 1×3-bar is smaller than 1GeV) is built around the

seed RecHit. Then, around this basic bar, additional 1 × 5 (1 × 3) bars are added to the

SuperCluster in φ-direction, until the energy deposited in the next bar is lower than some

cut-off, e.g. 0.1 GeV. In contrast to the Island algorithm, the Hybrid algorithm directly

generates SuperClusters.

6.2.2 Pixel Matching and Track Fitting

Since electrons (positrons) are charged particles they should, in addition to the energy

deposit in the ECAL, leave a reconstructable track. The basics of finding these tracks

follow roughly the procedure discussed in section 6.1. However, for the finding of an
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(a) (b)

Figure 6.3: Electron reconstruction efficiency as function of (a) the electron transverse
momentum pT and (b) the electron pseudo-rapidity. The figures are taken from [67].

appropriate seed the calorimetry information is helpful. This is done by matching the

SuperCluster with hits in the pixel detector. Looking for seed hits in the pixel detector

is advantageous here, since the energy-weighted SuperCluster position corresponds to the

impact point of an electron that would not have radiated off any energy before reaching

the ECAL. Since most of the material budget lies after the pixel detector, most of the

electrons have not radiated significantly before reaching the pixel detector.

For this matching hits in the pixel detector are predicted by extrapolating the electron

trajectory on the basis of the information of the SuperCluster to the pixel layers. A first

seed RecHit is then looked for in a relatively wide ∆φ, ∆z window around this prediction.

If a compatible hit is found, its information is used to update the trajectory prediction of

the electron track. This trajectory then drives the search for a second seed hit in analogy

to the seed finding described in section 6.1. It has been shown that the pixel finding

efficiency for electrons with pT = 10GeV is about 90%, averaged over the full ECAL

range [67]. The two pixel hits found then serve as seeds for the further track finding.

However, for electrons the Kalman-filter described above is not adequate for the pattern

recognition. Due to the highly non-Gaussian fluctuations because of bremsstrahlung off

the electrons, a nonlinear filter, the Gaussian-sum-filter (GSF) [69] is used, which describes

the propagation of the electrons in the magnetic field much better. The track found (if

it exits) is called the GSF-track. Together with the SuperCluster, this forms the electron

candidate referred to as the PixelMatchGsfElectron. If no compatible track is found, the

object typically is a photon candidate.

We show the electron reconstruction efficiencies as a function of the electron transverse
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Figure 6.4: Muon reconstruction chain.

momentum pT in Fig. 6.3(a) and as a function of the pseudo-rapidity η in Fig. 6.3(b). The

reconstruction efficiency is above 90% everywhere, except for very low pT (pT < 10), very

high η (η > 2) and the barrel-endcap transition region (η = 1.4) [67]. Again these plots

and numbers were computed using the ORCA framework. However, the general behavior

holds for the used version of CMSSW as well.

6.3 Muon Reconstruction

The muon reconstruction is divided into three step, shown in Fig. 6.4. First the digitized

detector response is combined into so called segments. In the second step (stand-alone

muon reconstruction) these segments serve for the finding of muon trajectories in the

muon system only (muon detector tracks). In the last step these tracks are combined with

information from the tracker to give the final muon candidates.

6.3.1 Stand-Alone Muon Reconstruction

The starting point are the RecHits in the drift tubes (DT) in the barrel, the cathode strip

chamber (CSC) in the end-caps and the resistive plate chambers (RPC) in both barrel

and end-caps. The hits from the DT and the CSC are combined into so called segments.

This is done in a similar manner as the pattern recognition in the tracker. Hits in the

inner-most muon chambers serve as seed for the extrapolation of the trajectory into the

outer layers using again Kalman-filter techniques. The precise strategy varies, depending

on if a hit is found in a DT or a CSC. In the propagation of the trajectory from layer to

layer potential energy loss in the material, effects of multiple scattering and a non-uniform

magnetic filed are taken into account. Similar to the track finding, the track parameters

are updated after each step. The procedure ends when the outer-most layer of the muon

system is reached. Then a back-fitting (from outer-most to inner-most) is done and finally
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(a) Stand-Alone Reconstruction (b) Global Reconstruction

Figure 6.5: Muon reconstruction efficiency as a function of the pseudo-rapidity η, in (a)
using the stand-alone and in (b) the global muon reconstruction. The Figures are taken
from [67].

the trajectory of the muon candidate can be extrapolated to the interaction point. The

tracks found in this procedure are the StandAloneMuons.

The stand-alone muon reconstruction efficiency as a function of the pseudo-rapidity

for different muon momenta is shown in Fig. 6.5(a). With the exception of the detector

transition regions the efficiency is ∼ 99% [67].

6.3.2 Global Muon Reconstruction

In the last step of the muon reconstruction the information from the tracker is used. Similar

to the case of electrons the stand-alone muons can be used to find seeds for the pattern

recognition in the tracker. Here the two hits forming the seed have to come from two

different layers. To find the initial tracker trajectory parameters, an additional beam-spot

constraint is applied. Then the procedure for finding the tracks follows the steps described

in section 6.1, where again a Kalman-filter is used. Finally several refitting procedures

are applied in order to have an accurate momentum reconstruction for the muons. The

collection of resulting muon candidates is referred to as the GobalMuons-collection.

The global muon reconstruction efficiency is shown in Fig. 6.5(b). The efficiency is

∼ 95−99% over the whole pseudo-rapidity range, again with the exception of the detector
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Figure 6.6: Jet reconstruction flow within CMSSW.

transition regions.

6.4 Jet Reconstruction

The reconstruction flow for jets with CMSSW is shown in Fig. 6.6. The starting point are

the digitized hadronic (HCAL) and electromagnetic (ECAL) calorimeter responses. From

these the ECAL RecHits and the HCAL RecHits are constructed independently, corresponding

to the energy deposits in a single crystal (ECAL RecHits) or an HCAL cell (HCAL RecHits).

In the next steps these RecHits are combined into so called CaloTowers, which correspond to

the combination of the hadronic and the electromagnetic energy deposited in a calorimetry

region defined by the HCAL granularity.

The CaloTowers are reconstructed as follows. For all the HCAL RecHits the sum of the

ECAL RecHit energies is computed by summing up the energies in all the crystals corre-

sponding to the calorimeter region defined by the HCAL RecHit-cell. The hadronic (elec-

tromagnetic) energy of this CaloTower is then set to the corresponding HCAL RecHit-energy

(sum of the ECAL RecHit-energies) if they are above a certain threshold. The energy

thresholds used for the reconstruction of the CaloTowers are summarized in Table 6.1.

There HB, HE and HO denote cells in the hadronic-barrel, the hadronic-endcap and the

hadronic outer-barrel calorimeter; EB and EE stand for the electromagnetic barrel and

endcap calorimeter respectively. The total energy of the CaloTower is the sum of the

hadronic and the electromagnetic energy in that cell.

After having found all the CaloTowers in the event, they can be combined into jets

using any jet-algorithm. For the purpose of the clustering the CaloTowers are treated as
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Energy thresholds [GeV]

HB HO HE
∑

EB
∑

EE
0.9 1.1 1.4 0.2 0.45

Table 6.1: Energy thresholds used for the reconstruction of the CaloTowers. Σ denotes the
sum over 25 crystals, corresponding to one HCAL tower.

massless particles with energies defined by the CaloTower-energies and directions defined

by the positions of the center of the CaloTowers and the interaction point. In this thesis

the preferred jet-algorithm is the kT-jet-algorithm [50] in the E-scheme. For the following

analysis we use the algorithm parameter R = 0.6. We refer to the jets found with this

algorithm as the caloJets Fastjet6-collection.
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Chapter 7

Higgs Search in the WW Channel
with the CMS Experiment

In chapter 4 the effects of higher order QCD corrections up to NNLO for the H→WW signal

after selection cuts at the LHC have been studied at parton level. It was found that the

fixed (N)LO calculations do not result in a reliable prediction, since the effects of multiple

soft and collinear radiation are important in the phase-space region selected by the cuts

(cf. Table 4.5, section 4.3.2). At fixed NNLO these additional radiation effects appear

to be negligible and the uncertainty from varying the renormalization and factorization

scales µR and µF is reduced. Moreover, the cross-sections obtained with parton-shower

MC models (MC@NLO and HERWIG), inclusively re-weighted to NNLO, agree very well

with this fixed-order prediction.

However, the cross-sections listed in Table 4.5 will not be measured directly in the real

experiment. Selection cuts and detector effects, such as cracks in the calorimeters etc.,

will reduce the measured event rate. In this chapter we investigate these effects, and

show how they can be factorized from the hard scattering process such that the partonic

cross-sections from chapter 4 can be propagated into a prediction for the experimentally

measured event rate. This expected rate can then be used for the computation of the

signal significance or exclusion limits at the LHC.

To do this, the study is divided as follows: First event samples for the various background

and the signal processes are generated using MC event generators. Then these events are

passed through the CMS detector simulation. From the simulated detector response the

final state particles are reconstructed using the procedures discussed in chapter 6. After

this a set of experimental selection cuts will be defined, transporting the partonic signal

cuts from section 4.1 into an experimental environment. We then study the effect of
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these selection cuts on the signal cross-section and compare the results with the partonic

predictions from section 4, including systematic, statistical and theoretical uncertainties.

In addition, the cross-sections for the most important background processes after the

selection cuts will be estimated. Finally these numbers are used to compute the signal

significance and the exclusion-power of the CMS experiment for a Higgs mass hypothesis

of mH = 165GeV.

7.1 Analysis Strategy

The strategy for finding or excluding the Higgs boson in the WW channel pursued here

relies on counting the total number of events that pass the selection cuts. Even though

there are differences in some kinematic distributions between the signal and the back-

ground (e.g. transverse momenta of the leptons, angle between the leptons etc), at low

luminosities it is hardly possible to resolve this differences due to the lack of statistics.

However, for higher integrated luminosities the usage of this information can lead to an

improvement in the expected signal significances and exclusion limits. It has been shown

in [70] that especially for the determination of the Higgs boson mass, if an excess is ob-

served, such variables can be useful. We do not pursue this approach here, but point out

that all our conclusions can principally be adapted to such an analysis.

For the estimation of the expected discovery power of the CMS experiment the expected

signal significance 〈sig〉 will be calculated. The expected significance defines the probability

that the background only would give equal or more events than are expected to be observed

if the signal is present. The probabilities are calculated including all systematic and

theoretical uncertainties (which will be discussed in detail below) following the recipe

in [72].

The exclusion limit will be computed using the Modified Frequentist Approach. The

signal confidence level is defined as

CLS =
CLS+B

CLB
, (7.1)

where CLS+B (CLB) is the confidence level for the signal+background (background only)

hypothesis. Again we follow the detailed description of the statistical method in [72].

7.2 Event Sample Production and Cross-Sections

All the samples used are produced within the CMS software framework CMSSW [66]

release version CMSSW 1 3. The background processes included in the study, together
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process σNLO [pb] generator

qq → WW 114.3 PYTHIA/MC@NLO

tt 840 TopRex [73]
Z/γ∗ → `` 5600 PYTHIA
ZZ 15.3 PYTHIA
WZ 49.9 PYTHIA

gg → WW → `ν`ν 0.48 —

Wtb → WW bb → `ν`ν 3.4 —

gg → H → WW → `ν`ν
mH = 165GeV

2.44, µ = mH/2
1.80, µ = 2mH

PYTHIA/MC@NLO

Table 7.1: Processes used in the H→WW study, together with their NLO cross-sections
and the MC event generator used to produce the samples.

with their cross-sections, are listed in the first part of Table 7.1. Where no decay is

specified the cross-section corresponds to the inclusive process; ` denotes the sum over all

combinations of e, µ and τ . The processes gg → WW and Wtb could not be simulated for

this study. Their contribution to the background after the selection cuts will be estimated

using the results of [26].

All the samples are produced using the LO event generators PYTHIA [11] and TopRex[73]

and are inclusively re-weighted to the NLO cross-sections 1. An exception to this is

the WW sample, which is re-weighted differentially in the pT of the WW-pair to the

MC@NLO prediction.

The last lines in the table show the signal cross-sections for a Higgs mass hypothesis

of mH=165 GeV for the two scale choices µ = mH/2 and µ = 2mH. Similarly to the

WW process, the signal events are re-weighted differentially in the transverse momentum

of the Higgs (pH
T) to the MC@NLO spectrum. For the inclusive cross-section we use here

the fixed NLO prediction, i.e. in the remainder of this thesis, all signal cross-sections labeled

(N)NLO denote the MC@NLO numbers inclusively re-weighted to the fixed (N)NLO cross-

section.

7.3 Object Identification and Selection Cuts

Before the selection cuts can be applied the final state objects have to be defined from

the detector response. This procedure leads to some small modifications of the selection

cuts as well, since e.g. the missing transverse energy cannot be computed directly from the

1 The re-weighting techniques have been discussed in detail in section 2.3.
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neutrino momenta. We will therefore define a set of experimental signal cuts that translate

the partonic signal cuts from section 4 into an experimental environment.

For convenience the partonic signal cuts from chapter 4 are listed here:

Partonic Signal Cuts

1. Both charged leptons should have a transverse momentum p`
T > 25GeV and be in

the central detector region |η| < 2.0;

2. these leptons must be isolated from hadrons; the hadronic energy within a cone

of R = 0.4 around each lepton must not exceed 10% of the corresponding lepton

transverse momentum;

3. the di-lepton mass should be in the range 12GeV < m`` < 40GeV; the lower cut

reduces contaminations from b-resonances;

4. the missing transverse energy Emiss
T in the event should exceed 50GeV;

5. the opening angle φ`` between the two leptons in the plane transverse to the beam-

pipe should be smaller than 45◦;

6. there should be no jet with transverse momentum larger than 25GeV in the central

detector region |ηjet| < 2.5 and

7. the harder lepton is required to have a transverse momentum in the range 30GeV <

p`,max
T < 55GeV.

The first step is the selection and identification of all important final state objects. This

selection will reduce the number of events with two identified leptons compared to the

partonic study, where naturally all leptons ’pass’ the selection criteria. The objects to

identify are

• the charged, isolated leptons (electrons and muons),

• the jets and

• the missing transverse energy.

7.3.1 Electron Identification

The starting point of the electron identification is the PixelMatchGsfElectron collection

described in section 6.2. The analysis is very sensitive to lepton misidentification since
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Figure 7.1: Energy resolution for reconstructed and identified, isolated electrons coming
from a Higgs with mass mH=165 GeV.

such misidentification increases the background and uncertainty of the expected event rate

dramatically. Therefore we have to make sure that the misidentification rate is as small

as possible, while keeping the reconstruction efficiency high. To achieve this the following

criteria are imposed on the electron candidates [74]:

• The energy deposition in the hadronic calorimeter (H) should be small compared to

the energy deposited in the electromagnetic calorimeter (E), i.e. H/E < 0.05.

• The GSF-track and the associated SuperCluster have to match within

1. |ηtrack − ηSC| < 0.005,

2. |φtrack − φSC| < 0.02 and

3. ESC/ptrack > 0.8,

where η is the pseudo-rapidity, φ the angle in the transverse plane, E the energy and p

the total spatial momentum of the track or the SuperCluster (SC), respectively.

One of the most powerful cuts against the contamination of background events is the

isolation. The isolation for the electrons is defined as:

• The sum of the transverse energies of all tracks within a cone of R = 0.2 around the

electron track divided by the SuperCluster transverse energy ESC
T has to be smaller

than 0.05. The sum runs over all ctfWithMaterialTracks that satisfy

1. ptrackT > 0.9GeV and

2. |ztrack − zelectron| < 0.2 cm, where z is the longitudinal position of the track

extrapolated to the beam-pipe.
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Figure 7.2: Electron reconstruction/identification efficiency as a function of the electron
transverse momentum pT and the pseudo-rapidity η.

To avoid counting the track of the electron-candidate in this sum, the transverse

momentum of the electron GSF-track is subtracted.

We label these criteria as the isolated electron identification, and they will (partly) replace

points 1 and 2 of the partonic signal cuts in the case of electrons.

It is important to understand how well the detector is able to measure the energies of

the electrons of interest, namely the ones satisfying p`
T > 20GeV and |η| < 2.0. The

relevant observable is the energy resolution ρE , defined as

ρE =
Erec −Egen

Egen
, (7.2)

where Erec is the reconstructed and Egen the generated energy of the electron. The corre-

sponding distribution for electrons coming from the decay of a Higgs with mH=165 GeV is

shown in Fig. 7.1. The distribution is not symmetric around the maximum, indicating

a slightly larger fraction of underestimated electron-energies compared to overestimated

ones. This tail originates from the fact that electrons tend to radiate photons, that are

not entirely collected in the SuperCluster, carrying away a fraction of the initial electron

momentum. The peak region can be fitted with a Gaussian function to obtain the mean

µ = −2.26 × 10−3 and the standard deviation σ = 1.24 × 10−2. It can be concluded that

the energy of the electrons passing the isolated electron identification are measured with

an accuracy of ∼ 1.2%.

The second and more severe difference with respect to the partonic study is the recon-

struction efficiency of the electrons, defined as

εrec =
Nrec

Ngen
, (7.3)
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where Nrec denotes the number of electrons reconstructed and identified and Ngen is the

number of generated electrons at parton level. Again the electrons of interest are the

ones satisfying pT > 20GeV and |η| < 2.0. As the selection efficiency is constant in

the selected phase-space region to a good approximation, it will factorize from the hard

scattering process and all the other selection cuts.

The reconstruction efficiencies for the electrons from the decay of a Higgs with a mass

of mH=165 GeV as functions of the electron transverse momentum pT and the electron

pseudo-rapidity η are shown in Fig. 7.2. With the exception of the barrel-endcap transition

region around |η| = 1.4, the efficiency is ∼ 78% and does not vary as a function of pT and

η.

To compute these efficiencies the PYTHIA sample for the signal was used, which consists

of ∼ 50000 events in total. For completeness we quote the overall electron reconstruction

efficiency as

εrec =
19808

25395
' 0.78, (7.4)

i.e. 78% of all the electrons within pT > 20GeV and |η| < 2.0 generated in the signal

sample are reconstructed and identified by the above criteria.

7.3.2 Muon Identification

The starting point for the muon identification is the globalMuons collection (cf. section 6.3).

Since muons are essentially the only particles leaving hits in the muon chambers of the

detector, the misidentification of other particles as muons is expected to be very small.

The only additional selection criterion is therefore the isolation. The isolation of muons

is defined as:

• The sum of the transverse momenta of all ctfWithMaterialTracks within a cone of

radius R = 0.3 around the muon track has to be smaller than 2GeV. The sum runs

over all tracks that satisfy

1. ptrackT > 0.9GeV,

2. |ztrack − zmuon| < 0.2 cm and

3. number of hits in the tracker, #hits > 5.

In order to make sure that the transverse momentum of the muon-track is excluded,

tracks within a radius of R = 0.01 around the muon-track are not included in this

sum.
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Figure 7.3: Momentum resolution for reconstructed and identified, isolated muons coming
from a Higgs with mass mH=165 GeV.

Figure 7.4: Muon reconstruction efficiency as a function of the muon transverse momentum
pT and pseudo-rapidity η for the mH=165 GeV signal sample.

These criteria, together with the isolated electron identification from section 7.3.1, are

referred to as the isolated lepton identification in the upcoming sections.

The momentum resolution for the muons is computed as

ρp =
prec − pgen

pgen
, (7.5)

for muons satisfying pT > 20GeV and |η| < 2.0. The corresponding distribution is shown

in Fig. 7.3. The Gaussian fit yields a mean of µ = 1.56 × 10−3 and a standard deviation

of σ = 1.17× 10−2, indicating that the momenta of the selected muons are measured with

an error of ∼ 1.2%.

The reconstruction efficiencies as functions of the muon transverse momentum and

pseudo-rapidity are shown in Fig. 7.4. Again the efficiencies are approximately constant
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and the over-all reconstruction efficiency is

εrec =
21884

24277
' 0.90. (7.6)

7.3.3 Leptonic Selection Variables

The selection criteria for the experimental signal cuts replacing points 1 and 2 as well as

the purely leptonic selection criteria 3, 5 and 7 of the partonic signal cuts can now be

defined as:

Experimental Signal Cuts

1. Events are accepted if there are at least two leptons satisfying the isolated lepton

identification criteria with pT > 25GeV and |η| < 2.0;

2. the di-lepton mass should be in the range 12GeV < m`` < 40GeV;

3. the opening angle φ`` between the two leptons in the plane transverse to the beam-

pipe should be smaller than 45◦ and

4. the harder 2 lepton is required to have a transverse momentum in the range 30GeV <

p`,max
T < 55GeV.

The energy/momentum has been shown to be measured accurately for the leptons in the

selected phase-space region (defined by cut 1 in the list above) and the reconstruction

efficiencies for these leptons are constant to a good approximation. These efficiencies

should thus factorize from the hard scattering process and the other leptonic selection cuts

(cuts 2, 3 and 4 in the list). This factorization can be tested by a comparison with the

partonic predictions from chapter 4. To do this the partonic distributions obtained with

MC@NLO are first multiplied by 9, which corresponds to including all possible final-state

lepton combinations of e, µ and τ 3, and then by the event selection efficiency obtained

using the fully simulated signal sample. This efficiency is shown in Table 7.2. The total

scaling factor fscale is then

fscale = 9 × εlep = 9 × 0.183 = 1.647. (7.7)

We have to specify in some more detail the treatment of the final states including τ lep-

tons in this approach. The τ leptons are not directly observed in the experiment. To a

significant fraction, they decay leptonically, resulting in a similar final state signature as

2 By the ’harder’ lepton we refer to the one with larger transverse momentum pT.
3 All the results in chapter 4 were computed for one such lepton combination.
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mH = 165GeV Nevents σNLO [fb], µ = mH/2

total 89844 2440
accepted 16481 447

εlep 0.183

Table 7.2: Number of events passing the isolated lepton identification criteria and corre-
sponding NLO cross-sections.

the other leptonic W decay modes. The kinematic distributions of the muons and elec-

trons from these τ decays can not be expected to be identical to the distributions for the

prompt 4 electrons and muons; in fact they are much softer since a significant fraction

of the momentum is carried away by the additional neutrino. In the partonic study of

chapter 4 the decay of τ leptons in final states was not discussed at all. However, in the

simulated MC sample these decay modes are included. The efficiency in Table 7.2 has

therefore to be understood as the combination of the isolated lepton identification effi-

ciencies and the branching ratio of the τ leptons into electrons and muons. The fraction

of events containing at least one electron or muon from a τ decay is fτ ' 28%, using a

branching ratio for a τ decaying into an electron or a muon of BR(τ → e, µ) ' 0.35 [3].

These decay modes thus contribute significantly to the total event rate and cannot be

neglected. By applying the scaling factor from eq. 7.7 it is assumed that the effects of the

contribution of the final states including τ leptons factorize. We do not explicitly prove

this approach here, but keep in mind that it might lead to disagreements between the

partonic predictions from chapter 4 and the full simulation of the signal sample.

The cumulative distributions for the purely leptonic variables (invariant mass m``, the

angle φ`` and the transverse momentum of the harder lepton p`,max
T ) from the scaled

partonic study (MC@NLO) and the full simulation (CMSSW) can now be compared 5.

The distributions for the scale choice µ = mH/2 are shown in the left part of Fig. 7.5. On

the right side the ratios of the cumulative cross-sections obtained with the detector study

(CMSSW) and the partonic study (MC@NLO) are shown. The agreement between the

distributions for all three variables is good. The only significant difference can be seen

for very small opening angles φ``. The origin of the difference might be related to the

isolation requirement or the fact, that the differential re-weighting of the PYTHIA sample

to the Higgs transverse momentum distribution fails to describe the φ`` spectrum reliably

in the very small opening angle region (cf. Fig. 4.5 in section 4.2.1). Since the envisaged

cut is at 45◦, where the distributions agree, this effect can be neglected.

This agreement for the distributions indicates that the adopted factorization-approach

4 We define the prompt electrons and muons as the ones coming from the decay of a W boson of the
Higgs decay.

5 See section 2.2.1.2 for the definition of the cumulative cross-section.
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Figure 7.5: Cumulative cross-sections for the leptonic selection variables φ``, m`` and
p`,max
T compared for the study including detector effects (CMSSW) and the partonic pre-

dictions (MC@NLO).

is valid to a sufficient amount of precision.
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Figure 7.6: Cumulative cross-section as a function of pveto
T . The band corresponds to a

variation of the JES in the range 0.9 − 1.1.

7.3.4 Jet Identification and Jet Veto

Having discussed in detail the leptonic selection criteria we now turn to the identification

of jets and the corresponding selection cut, the jet-veto. The measurement of the energy

of a jet is experimentally very difficult. It is expected that the raw energy of the jets

reconstructed within the CMSSW framework underestimate the true jet-energy by a factor

of about 1.5 in the low pjet
T region. This factor, known as the jet energy scale (JES), is

energy- and detector-region-dependent and has to be determined experimentally. To avoid

the problem of the determination of the JES the raw transverse energy of the jet without

any further corrections can be considered. However, the uncertainty in the JES will

contribute to the final systematic uncertainties.

The starting point for the jet identification is the uncorrected caloJets Fastjet6 collec-

tion, that contains all jets clustered using a kT algorithm with cone-size R = 0.6 6. The

only additional requirement is a cut on the so-called α-parameter defined as

αjet =

∑

ptrackT

E
jet

T

, (7.8)

where the sum runs over all ctfWithMaterialTracks satisfying

1. the track is within the jet, i.e. ∆R(track− jet) < 0.6;

2. the transverse momentum ptrackT > 2GeV and

3. the number of hits in the tracker is #hist > 5.

6 The default choice of the cone-size in chapter 4 was R = 0.4.
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For a real jet αjet should be close to 0.66, since on average 2/3 of the particles in a jet

are electrically charged. To reduce the fraction of fake jets, e.g. jets from the underlying

event, we impose a lower cut of 0.2 on this parameter for jets with transverse energy

E
jet

T < 20GeV. Then the identified jets consist of all caloJets Fastjet6-jets satisfying

• p
jet

T > 20GeV and |ηjet| < 2.5 or

• p
jet

T < 20GeV, |ηjet| < 2.5 and αjet > 0.2.

The cumulative distribution as a function of the jet-veto value pveto
T should be compared

to the partonic distribution obtained with MC@NLO, similarly to the leptonic cut variables

in section 7.3.3. However, a similarly good agreement can not be expected for this variable.

The comparison is shown in Fig. 7.6. To simulate a miss-estimation of the JES by ±10% it

is varied between 0.9 and 1.1, i.e. the reconstructed raw jet transverse energy is multiplied

by a factor of 0.9 and 1.1, respectively. The variation of the cumulative cross-section under

this variation of the JES is shown as the band in Fig. 7.6.

It can be seen how a certain pveto
T in the partonic case corresponds to a veto at a lower

value of pveto
T in the case of the full detector simulation. To keep the jet-veto efficiency

close to the partonic study we apply a veto on the raw jet energy at pveto
T = 15GeV,

which corresponds roughly to a veto-value of pveto
T = 25GeV in the partonic simulation

(indicated by the dotted line in Fig. 7.6). However, this change in the cut variable will

change the over-all selection efficiency after all cuts are applied.

7.3.5 Missing Transverse Energy

There are different ways for the reconstruction of the missing transverse energy from the

experimental data. In order to avoid large corrections (i.e. due to the JES and muon

corrections), and thus systematic uncertainties, the strategy should be kept as simple as

possible.

In the partonic study the missing transverse energy has been computed directly from the

neutrino momenta. Obviously this can not be done in an experimental environment. In

the case where no hadronic activity is present in the final state, i.e. the final state consists

of only the identified leptons, the missing transverse energy corresponds exactly to the

transverse energy of the lepton pair. Since a jet-veto is imposed, the hadronic activity

in the final state is small. This method for computing the missing transverse energy is

therefore justifiable. The resolution of the missing transverse energy reconstruction is then

basically dictated by the momentum resolution of the lepton reconstruction, which is very

good for the selected leptons as shown in sections 6.2 and 6.3.
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Figure 7.7: Cumulative cross-section as a function of the missing transverse energy with
the jet-veto applied. The band corresponds to a variation of the JES in the range 0.9−1.1.

The comparison of the cumulative cross-sections as functions of the minimum missing

transverse energy Emiss,cut
T between the partonic study (MC@NLO) and the full simulation

(CMSSW) is shown in Fig. 7.7, where in addition to the selection of the leptons the jet-

veto cut as described in the previous section at pveto
T = 15GeV (full simulation) and

pveto
T = 25GeV (partonic study) has been imposed. The band corresponds again to a

variation of the JES in the range 0.9 − 1.1.

For very low cut values the difference is dominated by the efficiency difference of the

jet-veto. With increasing cut-value the cross-sections come closer, and especially in the

intermediate region, around the nominal value of Emiss,cut
T = 50GeV (denoted by the

dotted line) the agreement is good.

It will become clear later that the cut on the missing transverse energy has almost

no effect after the application of all other cuts. This can be understood from the fact

that the demand for two sufficiently hard leptons (p`
T > 25GeV), that are close to each

other in the transverse plane (φ`` < 45◦), with little additional hadronic activity (jet-veto)

automatically produces large missing transverse energy.

7.4 Accepted Cross-Section and Uncertainties

The whole set of experimental signal cuts can now be defined:

Experimental Signal Cuts

1. Events are accepted if there are two leptons (electrons or muons) satisfying the

isolated lepton identification criteria with pT > 25GeV and |η| < 2.0;
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cut mH = 165GeV σNLO [fb] ε [%]

µ = mH/2 µ = 2mH

total 2440 1880 —
1 lepton selection 350.4 ± 4.2 259.0 ± 3.1 14.4 ± 0.2 (14)
2 φ`` < 45◦ 192.7 ± 3.1 142.4 ± 2.3 7.91 ± 0.13 (55)
3 12GeV < m`` < 40GeV 135.3 ± 2.7 100.0 ± 2.0 5.56 ± 0.11 (70)
4 pveto

T = 15GeV 63.2 ± 1.8 46.7 ± 1.3 2.60 ± 0.07 (47)
5 Emiss

T > 50GeV 62.9 ± 1.8 46.5 ± 1.3 2.58 ± 0.07 (100)

6 30GeV < p`,max
T < 55GeV 52.5 ± 1.7 38.8 ± 1.2 2.15 ± 0.07 (83)

Table 7.3: Cross-sections for the signal process H → WW with the two scale choices
µ = mH/2 and µ = 2mH after each of the experimental signal cut, as well as the total (in
brackets relative) selection efficiencies.

2. the opening angle φ`` between the two leptons in the plane transverse to the beam-

pipe should be smaller than 45◦;

3. the di-lepton mass should be in the range 12GeV < m`` < 40GeV;

4. there should be no jet passing the jet identification criteria in the central detector

region (|ηjet| < 2.5) with transverse energy larger than 15GeV;

5. the missing transverse energy computed as the vector sum of the selected lepton

momenta should be larger than 50GeV and

6. the harder lepton is required to have a transverse momentum in the range 30GeV <

p`,max
T < 55GeV.

The NLO signal cross-sections after each cut for the two scale choices µ = mH/2 and

µ = 2mH
7 are listed in Table 7.3. In the right column the selection efficiency in percent

with respect to the total cross-section (in brackets with respect to the cross-section after

the previous cut) are shown. The quoted errors are the statistical errors, amounting to

∆MCstat = 3.2% for the final numbers. These errors are only dependent on the sam-

ple size used to determine the efficiencies and could thus be reduced by using a larger

sample. The generated Higgs sample corresponds to about 80’000 re-weighted events.

The over-all selection efficiency is 2.15%. We find a reduction compared to the par-

tonic study from section 4.2 by a factor of ∼ 3. A main part of this difference comes

from the lepton-identification efficiency, which is naturally 100% at parton-level, and the

inclusion of the τ final state configurations. This can be confirmed by computing the par-

tonic MC@NLO cross-sections for both scale choices including this lepton-identification

7 We vary again the factorization and the renormalization scales simultaneously µ = µR = µF.
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efficiency. The resulting cross-sections are

fscale × σMC@NLO
acc (µ = mH/2) =55.95 ± 0.79 fb and

fscale × σMC@NLO
acc (µ = 2mH) = 43.66 ± 0.58 fb.

(7.9)

The remaining difference between these numbers and the numbers from Table 7.3 can be

explained by the differences in the cumulative cross-section for the jet-veto in Fig. 7.6. It

can again be seen that the partonic picture, neglecting underlying event, hadronization

and detector effects up to the lepton identification, gives a very accurate description of

the selection efficiency.

7.4.1 Systematic Uncertainty

To estimate the uncertainty introduced by the jet energy scale the cross-sections after all

selection cuts are computed varying the JES between 0.9−1.1. The numbers for µ = mH/2

are

σNLO
acc (JES = 0.9) = 55.0 ± 1.7 fb and

σNLO
acc (JES = 1.1) = 50.2 ± 1.6 fb.

(7.10)

The relative uncertainty on the cross-section caused by the variation of the JES is thus

∆JES = 4.7%.

As the leptons are measured very accurately, the only additional (non-theoretical) un-

certainty we add is the one from the lepton identification. We estimate this uncertainty to

be ∆lep−id = 5% [26]. Since the missing transverse energy is computed from the leptons,

no additional uncertainty has to be included for this variable. Assuming the MC statisti-

cal uncertainty the lepton-identification and the JES uncertainties are not correlated, the

total non-theoretical systematic uncertainty is

∆sys =
√

∆2
lep−id + ∆2

MCstat + ∆2
JES = 7.6%. (7.11)

7.4.2 Theoretical Uncertainty

In addition to the systematic uncertainties from the experimental procedures theoretical

uncertainties have to be included. One of them comes from the variation of the factoriza-

tion and the renormalization scales. We define the mean expected cross-section 〈σNLO
acc 〉

and the scale uncertainty ∆scale as

〈σNLO
acc 〉 =

σNLO
acc (µ = mH/2) + σNLO

acc (µ = 2mH)

2
= 45.7 fb (7.12)
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and

∆NLO
scale =

σNLO
acc (µ = mH/2) − σNLO

acc (µ = 2mH)

σNLO
acc (µ = mH/2) + σNLO

acc (µ = 2mH)
= 15.1%. (7.13)

It has be shown in section 4.2.2 how the NLO cross-section is unreliable and how the scale

uncertainty is reduced by going to NNLO predictions. We therefore re-weight the NLO

predictions from Table 7.3 inclusively to the NNLO cross-section. The mean expected

NNLO cross-section is then

〈σNNLO
acc 〉 =

σNNLO
acc (µ = mH/2) + σNNLO

acc (µ = 2mH)

2
= 53.9 fb. (7.14)

with a scale uncertainty of ∆NNLO
scale = 8.0%.

It has to be pointed out that there is no theoretical motivation for the treatment of

the uncertainty from the scale variation as Gaussian distributed around the mean of the

cross-sections for the scale choices µ = mH/2 and µ = 2mH. In order to estimate the

uncertainty more precisely the scales should be varied independently and over a larger

region 8. However, the description above serves as a practical treatment of these un-

certainties and allows to visualize the importance of the higher-order corrections up to

NNLO.

There are other theoretical uncertainties that have to be included, namely the uncer-

tainties on the value of αs and on the parton distribution functions. The uncertainty on

the strong coupling constant αs is about 2% (cf. section 1.3.3). This uncertainty prop-

agates into the final cross-section estimation (at LO as ∆α2
s
' 4%). The estimation of

the uncertainty from varying the PDFs is more complicated. A rough estimate can be

computed by comparing the accepted cross-section at parton level from MC@NLO with

the alternative PDF set CTEQ6M [76] for a scale choice of µ = mH/2. The resulting

cross-section is

σNLO
acc (CTEQ6M) = 58.95 ± 0.82 fb. (7.15)

The uncertainty from this variation is then

∆PDF =
σNLO

acc (CTEQ6M) − σNLO
acc (MRST2004NLO)

σNLO
acc (MRST2004NLO)

' 5%. (7.16)

Finally one should include the uncertainties from the infinite-top-mass approximation

and the neglecting of the b-loop in the Gluon-Fusion-process. These uncertainties have

been computed at an earlier stage of this thesis (section 2.2.1) as ∆b/t = 5%.

8 Such a study has been performed in section 4.2.2 for the NNLO cross-sections, where it was found
that the uncertainty is stable within a lager variation range for the scales.
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(a) (b)

Figure 7.8: Comparisons of the various relative uncertainties at NLO (a) and NNLO(b).

Assuming that all these theoretical uncertainties are approximately uncorrelated 9 we

can add them up to the total theoretical uncertainty (excluding the scale uncertainty) of

∆theo =
√

∆2
αs

+ ∆2
PDF + ∆2

b/t = 8.1%. (7.17)

7.4.3 Comparison of the Uncertainties

We can now compare the systematic and the scale uncertainty with the statistical un-

certainty as a function of the integrated luminosity Lint. The statistical uncertainty is

computed using exact Poisson statistics with the mean values defined in eq. 7.12 (NLO)

and eq. 7.14 (NNLO). The comparison is shown in Fig. 7.8, on the left using the NLO and

on the right the NNLO scale uncertainty. The total uncertainty is defined as

∆tot =
√

∆2
sys + ∆2

stat + ∆2
scale. (7.18)

In both cases the uncertainties are dominated by the statistical uncertainty for low lu-

minosities. In the NLO case the scale uncertainty is larger than the statistical uncertainty

for integrated luminosities of more than ∼ 850 pb−1. In the NNLO case the scale uncer-

tainty is at the level of the systematic uncertainty and the total uncertainty is dominated

by statistical effects over the whole luminosity range under investigation.

9 Especially in the case of the uncertainty on αs and the PDFs this is an approximation. In addition,
the uncertainties on αs and the PDFs are correlated with the scale uncertainty.
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7.5 Background Event-Rates

To compute the signal significance and the exclusion limits the number of background

events after the selection cuts has to be found. In a real experiment this number should

be estimated as much as possible from data independently from Monte Carlo simulation.

A way to do this is to measure the background events in some signal-free phase-space and

then to extrapolate this number into the signal-region.

Such side-band phase-space regions have been proposed for the WW- and the tt- back-

ground in [48], i.e. the WW-background can be estimated in the high-invariant mass region

m`` > 60GeV with larger opening angle φ`` < 140◦; the tt-background can be measured

in the phase-space region where two identified jets are required in the central detector

region.

The extrapolation of the expected background events into the signal region relies typ-

ically on the selection efficiency ratio between the signal-region and the normalization-

region computed using MC simulation methods. We do not discuss this here, but compute

the number of background events in the signal-region simply by using the MC simulation

and quoting a total systematic uncertainty on these numbers of ∆sys = 20%. This num-

ber has been shown to be a reliable estimate for the uncertainties introduced through the

side-band-extrapolation technique [26].

We estimate the cross-section for the background processes from Table 7.1 imposing the

experimental signal cuts from section 7.4. For the Drell-Yan background Z/γ ∗ → `` none

of the 1.2 million simulated events survive the selection cuts. Thus we can only give an

upper limit on this background cross-section as

σNLO
acc (Z/γ∗ → ``) < 3 fb. (7.19)

This value is rather large. It corresponds to the cross-section value if one of the events

would remain after the cuts and is thus highly dominated by the statistics. We expect that

using higher statistics samples, the value is decreased by at least one order of magnitude.

We therefore do not include this background for the further study. The cross-sections after

every selection cut (in brackets the selection efficiency with respect to the cross-section

after the previous cut) for the other four simulated background-processes are shown in

Table 7.4.

As expected, the dominating background-processes after the selection are the WW-

continuum (∼ 11 fb) and the tt-process (∼ 17 fb). For the WW-background the spin-

structure of the initial-state particles renders the angular cut (φ``) particularly restrictive

(6%), for the tt-process the jet-veto (2.2%) and the angular cut (15%) have the largest
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σNLO [fb]

cut process WW tt

total 114300 840000
1 lepton selection 1566 ± 97 (1.4 %) 19416 ± 77 (2.3 %)
2 φ`` < 45◦ 93.2 ± 17.0 (6.0 %) 2864 ± 30 (15 %)
3 12GeV < m`` < 40GeV 38.7 ± 12.2 (42 %) 1186 ± 19 (41 %)
4 pveto

T = 15GeV 13.0 ± 1.9 (34 %) 25.9 ± 2.8 (2.2 %)
5 Emiss

T > 50GeV 12.9 ± 1.9 (99 %) 25.6 ± 2.8 (99 %)

6 30GeV < p`,max
T < 55GeV 10.9 ± 1.8 (84 %) 16.7 ± 2.3 (65 %)

εtot ( 9.6 ± 1.6 ) × 10−5 ( 2.0 ± 0.3 ) × 10−5

cut process WZ ZZ

total 49900 15300
1 lepton selection 843 ± 14 (1.7 %) 514 ± 11 (3.4 %)
2 φ`` < 45◦ 57.2 ± 3.8 (6.8 %) 34.5 ± 2.8 (6.7 %)
3 12GeV < m`` < 40GeV 5.27 ± 1.15 (9.2 %) 3.70 ± 0.92 (11 %)
4 pveto

T = 15GeV 2.51 ± 0.79 (48 %) 0.92 ± 0.46 (24 %)
5 Emiss

T > 50GeV 2.51 ± 0.79 (100 %) 0.92 ± 0.46 (100 %)

6 30GeV < p`,max
T < 55GeV 1.76 ± 0.66 (70 %) 0.46 ± 0.33 (50 %)

εtot ( 3.5 ± 1.3 ) × 10−5 ( 3.0 ± 2.1 ) × 10−5

Table 7.4: NLO cross-sections for the various background processes after the selection
cuts. In brackets the efficiencies for each single cut.

impact. The contamination from the other two processes (WZ, ZZ) is mainly reduced

through the angular cut (∼ 7%) and the restrictions on the invariant mass of the lepton

pair m`` (∼ 10%).

The two additional background processes Wtb and gg→WW could not be simulated

for this study. Their contribution to the total background is estimated using the numbers

from an earlier study [26], where very similar cuts have been imposed. The ratio of Wtb/tt

events after the selection cuts has been computed to σ(Wtb)/σ(tt) = 0.14. The expected

cross-section after the selection cuts is thus estimated as

σNLO
acc (Wtb) = 2.34 fb. (7.20)

The ratio of the gluon-induced and the quark-induced WW background has been estimated

to be 31%. The estimation for the gg→WW cross-section after the selection is therefore

σNLO
acc (gg → WW) = 3.38 fb. (7.21)

The total cross-section for the background-processes included is then

σNLO
acc (background) = (35.5 ± 7.1) fb, (7.22)
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where the aforementioned total systematic uncertainty of 20 % has been assumed.

Using all of the above, the mean expected signal over background ratio after selection

cuts can be computed. In this calculation the systematic and the scale uncertainties on

the signal cross-section (we neglect the additional theoretical uncertainties discussed at

the end of section 7.4) as well as the total uncertainty on the background of 20% are

included. The ratios using the NLO and the NNLO signal predictions are

S/B NLO = 1.29 ± 0.33 and

S/B NNLO = 1.52 ± 0.34.
(7.23)

Due to the higher NNLO cross-section the ratio increases by ∼ 18% when going from

NLO to NNLO.

7.6 Expected Signal Significance and Exclusion Limit

The estimated signal and background cross-sections can now be used to compute the

expected signal significance and exclusion limit for the CMS experiment. For the com-

putation of these quantities we follow the strategy presented in [72] using exact Poisson

statistics and include the uncertainties discussed above.

The signal significance, if d events are observed, can be defined as

sig(d) ≡ 1 − CLB(d), (7.24)

where CLB(d) is the background only confidence level for d events observed. This confi-

dence level is

CLB(d) =
∑

d′<d

p(d′, B), (7.25)

with p(d,B) the Poisson probability for observing d events if B events are expected.

Similarly the signal+background confidence level can be defined as:

CLS+B(d) =
∑

d′<d

p(d′, S +B). (7.26)

The confidence level for the exclusion is

CLS =
CLS+B

CLB
. (7.27)

A ’five (two) sigma discovery’ is defined as the situation when 1−CLB(d) is smaller than

5.7 × 10−7 (0.0455). As ’excluding the signal at 95 % (99%) confidence level’ we refer to

the situation when CLS is smaller than 0.05 (0.01).
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Using the definitions above the mean expected signal significance 〈1−CLB〉 if the signal

is present and the mean expected exclusion limit 〈CLS〉 in the absence of a signal can be

computed as

〈1 − CLB〉 =
∑

d

p(d, S +B)

(

1 −
∑

d′<d

CLB(d)

)

and

〈CLS〉 =
∑

d

p(d,B)CLS(d),

(7.28)

where the values are averaged by summing the weighted results for all possible outcomes d

of the experiment. Analytically the sums in eq. 7.28 run over an infinite number of terms.

For practical purposes the sums can be truncated when the total probability reaches

99.99%, i.e. as soon as

∑

d

p(d,B) ≥ 0.9999 or respectively

∑

d

p(d, S +B) ≥ 0.9999.
(7.29)

In addition to the mean expected values the most probable expected values of the signal

significance 1 − CLB(d∗) and the exclusion limit CLS(d
∗) can be computed, where d∗

denotes the most probable number of expected events in the signal+background (signal

significance) and the background only (exclusion limit) hypotheses.

The uncertainties used are the following. For the background it is 20%. For the sig-

nal we include the systematic, the theoretical and scale uncertainty, resulting in a total

uncertainty of ∼ 18% for the NLO and ∼ 13% for the NNLO case. We use the (N)NLO

signal predictions from section 7.4 and the background estimates B from section 7.5.

We show the mean (solid) and the most probable (dashed) expected signal significance

in Fig. 7.9(a) as a function of the integrated luminosity for the NLO and the NNLO cross-

sections. The dotted lines correspond to the 5-σ (2-σ) discovery line. The discontinuities

in the dashed lines originate from the discrete possibilities for the outcome of the experi-

ment. The figure shows the improvement for the expected exclusion limit and the signal

significance by using the NNLO numbers, in both the mean and the most probable case.

While at NLO a 2-σ discovery can be made on average after collecting data corresponding

to an integrated luminosity of ∼ 200 pb−1, at NNLO this can already be reached with an

integrated luminosity of ∼ 120 pb−1. In the most probable case at NNLO a 5-σ discovery

is possible for Lint ' 700 pb−1. At NLO this threshold is reached in the most probable case

after Lint ' 1.1 fb−1 (not shown in the plot). In an earlier study using similar selection

cuts [26] this value has been estimated to be Lint ' 0.9 fb−1, which compares well with the

prediction presented here. In general it can be observed how an average experiment would
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(a) Signal Significance (b) Exclusion Limit

Figure 7.9: Expected mean (solid line) and most probable (dashed line) signal significance
(a) and exclusion limit (b) for the CMS experiment as a function of the integrated lumi-
nosity. The Higgs mass is set to mH=165 GeV and both, the NLO and the NNLO signal
cross-section predictions, are compared.

do much ’worse’ than the most probable one, indicating that estimating the discovery

potential from the most probable experiment is highly optimistic.

A similar picture can be observed for the exclusion limit, shown in Fig. 7.9(b). Solid

lines again denote the mean and dashed lines the most probable exclusion limits for both,

NLO and NNLO predictions. The dotted lines denote here the 95% (99%) exclusion

confidence levels, i.e. in a hypothetically infinite number of real experiments, a statement

like ’the signal is not present in the data’ would be true in 95% (99%) of the cases when

a confidence level CLS of 0.05 (0.01) is measured. Again, the increase in the expected

signal cross-section from NLO to NNLO affects the exclusion limit. While at NNLO on

average ∼ 600 pb−1 are needed to exclude a signal at 99% confidence level, at NNLO this

mark is reached for an integrated luminosity of ∼ 350 pb−1. In the most probable cases

these values are reduced to 300 pb−1 (200 pb−1) in the NLO (NNLO) case. Again these

values have to be roughly doubled to estimate the performance of an average experiment.

7.7 Conclusions of this Chapter

In this chapter the H → WW → `ν`ν cross-section for a Higgs mass hypothesis of mH =

165GeV has been computed using full CMS detector simulation. It has been shown how

the effects of the experimental lepton reconstruction can be factorized from the hard
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scattering process, if the lepton reconstruction efficiencies are approximately constant

in the selected phase-space region. Thus the cumulative cross-sections in the leptonic

selection variables can be compared to the partonic predictions and agree very well. The

only complication is the jet-veto cut, since partonic and experimental jets are defined in a

different way. However, as long as the experimental jet-veto efficiency is not much smaller

than the partonic one, it can be safely argued that the higher-order QCD effects behave

in the same way as in the partonic case, if the veto value is large enough that effects of

multiple soft and collinear radiation can be neglected (cf. chapter 4).

Differential re-weighting of the signal events to the MC@NLO Higgs transverse momen-

tum spectrum and subsequent inclusive re-weighting to the NNLO cross-section results in

a very reliable prediction for the experimentally measured cross-section and the expected

event rate. We used this cross-section, together with an estimate for the background event

rate, to compute the signal significance in the signal+background and the exclusion limit in

the background only hypotheses, including the most important theoretical and systematic

uncertainties. It could been shown that the effect of the NNLO corrections has indeed an

non-negligible impact and it can be concluded that, if the simulated lepton reconstruction

efficiencies are reliable, a signal can either be observed or excluded with high confidence

after the collection of data corresponding to an integrated luminosity of less than 1 fb−1,

in agreement with earlier studies performed.
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Conclusions

The discovery of the Higgs boson is the missing piece in the otherwise very well con-

firmed Standard Model of Particle Physics. Searches for this crucial ingredient for the

understanding of electro-weak symmetry breaking have been performed at all high energy

particle collider experiments, so far with negative outcome.

A new generation of experiments at the Large Hadron Collider (LHC) at CERN will

give access to a new energy domain within a foreseeable time. While physics beyond the

Standard Model is expected to become visible at these new energy scales, the discovery of

the Higgs boson is still one of the main goals of these experiments. As for other searches

the strategy relies heavily on simulations and theoretical calculations of the envisaged

discovery process. For a discovery, and especially for any exclusion, it is absolutely vital

to have very precise predictions as well as a good understanding of the uncertainties.

For example, an over-estimation of the expected Higgs cross-section may lead to a ’false’

exclusion, since not enough signal events are observed in the experimental data.

The thesis presented here discusses in unprecedented detail the phenomenology of a

Higgs boson produced in the so called Gluon-Fusion channel at the LHC. First, the fully

differential program FEHiP, that includes higher order QCD effects up to next-to-next-

to-leading order (NNLO), is used to study the effects of these QCD corrections on the

kinematics of the Higgs boson itself. While the corrections have been know to be im-

portant in the inclusive case, it was found that they vary significantly between different

Higgs phase-space regions. In the very low Higgs transverse momentum region it was

observed that the fixed-order calculation might break down and re-summation of large

logarithmic terms be necessary. This assumption is tested against calculations including

these terms, either through re-summation ((N)NLO+(N)NLL) or through a parton-shower

algorithm (HERWIG, MC@NLO). It was found that while at NLO the Higgs transverse

momentum spectrum has to be integrated up to a value of ∼ 50GeV for a Higgs boson

of mass mH = 165GeV in order to render the logarithmic terms arising from multiple

soft and collinear radiation negligible, at NNLO this is already achieved for a value of

∼ 20GeV. Furthermore it is discussed how the Higgs-kinematics dependent corrections

can be incorporated into MC event generators using differential re-weighting techniques.

135



Then the program FEHiP is used to investigate the higher order QCD effects in the

specific decay mode H → γγ, after a typical set of experimental selection cuts are applied.

It is found that the corrections behave very ’inclusive-like’ and differential re-weighting is

not needed to render the prediction for the cross-section more reliable. On the other hand

some variables were found not to be reliably predictable by fixed-order calculations up to

NNLO.

In the next step FEHiP was extended to include the decay mode H → WW → `ν`ν,

the most promising discovery channel for a Higgs boson with mass mH ∼ 2mW. In order

to extract the signal events over the large background a set of very restrictive cuts has to

be applied. The effects of the higher order QCD corrections on each variable restricted

by the selection cuts has been studied in detail, again comparing to the predictions of the

parton-shower programs HERWIG and MC@NLO. While the perturbative behavior of the

variables was found to be very sensitive to the size of the allowed phase-space region, the

comparisons to the parton-shower programs showed a very good agreement. To make a

prediction for the expected cross-section at an experiment like CMS, all the selection cuts

have been applied at parton-level. It was found that the K-factors after these cuts differ

dramatically from the inclusive K-factors. The K-factors of ∼ 2 in the inclusive case are

reduced to ∼ 1 after the selection cuts are applied, again demonstrating the strong phase-

space dependence of the higher order QCD corrections. On the other hand the variation

of the cross-section under the variation of the renormalization and factorization scales is

strongly reduced after the cuts, indicating a very good convergence of the perturbative

expansion. From these observations it is concluded that the NNLO prediction for the

cross-section after the application of the cuts is very precise (at the order of 10%).

Finally, the phenomenology discussed before was used in a simulation of the search

for the Higgs in the H→WW channel with the Compact Muon Solenoid (CMS) exper-

iment. Detector effects on the expected cross-section were discussed and it was argued

that they can be treated as factorizable from the hard scattering process to a good ap-

proximation, if the specific lepton reconstruction efficiencies are constant in the envisaged

phase-space region. Using this approach together with an estimation of the most impor-

tant background processes, the expected mean and most probable signal significances (in

the signal+backgrounds hypothesis) and exclusion limits (in the background only hypoth-

esis) were computed using standard statistical methods. It was found that, using the

NNLO predictions for the Higgs cross-section with mH=165 GeV, the CMS experiment,

in the most probable case, will have to collect ∼ 800 pb−1 of data for a 5-σ discovery and

∼ 350 pb−1 for an exclusion at 99% confidence level. An average experiment can discover

the Higgs boson at a 2-σ level after collection data that corresponds to L ∼ 150pb−1 and

exclude its existence at 95% confidence level for L ∼ 200 pb−1.
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Appendix A

Dirac Algebra

The Dirac algebra is defined via the anti-commutation relation

{γµ, γν} ≡ γµγν + γνγµ = 2gµν × � n×n, (A.1)

where g is the metric of an n-dimensional vector-space. We are interested in the 4-

dimensional Minkowski-space, i.e. the relativistic 3-space + 1-time dimensional vector-

space with metric

gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (A.2)

The so called Weyl or chiral representation of the Dirac algebra in this vector-space is

γ0 =

(

0 � 2×2

� 2×2 0

)

; γj =

(

0 σj

−σj 0

)

, (A.3)

with σi the Pauli-matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

and σ3 =

(

1 0
0 −1

)

. (A.4)

It is convenient to define a 5th matrix γ5 as

γ5 ≡ iγ0γ1γ2γ3γ4 =

(

− � 2×2 0
0 � 2×2

)

. (A.5)
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We summarize (without proof) the trace-theorems for products of these matrices as

tr(1) = 4

tr(any odd # of γ’s) = 0

tr(γµγν) = 4gµν

tr(γµγνγργσ) =4(gµνgρσ − gµρgνσ + gµσgνρ)

tr(γ5) = 0

tr(γµγνγ5) = 0

tr(γµγνγργσγ5) = − 4iεµνρσ .

(A.6)
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Appendix B

Higgs Production Cross-Sections

In this appendix the calculations for the Higgs production at the LHC via the Higgs-

Strahlung and the Gluon-Fusion process are presented. The cross-section for a hadron

collider process can be written (cf. section 1.4) as

σ =

1
∫

0

dx1dx2

∑

i,j

fi(x1)fj(x2)σ̂
i,j(x1, x2), (B.1)

where we sum over all patrons in the colliding hadrons, fi(xk) is the parton density for

partons of type i in the hadron at momentum fraction xk,

pk = xkPk, (B.2)

with P1,2 the four-momenta of hadrons 1 and 2, which collide at a with center-of-mass

energy s = (P1 + P2)
2.

The partonic cross-section σ̂ is

σ̂ =
1

2E12E2|v1 − v2|

∫ (

∏ d4pf

(2π)3
δ(m2

f − p2
f )

)

|M|2(2π)4δ(4)(p1 + p2 −
∑

pf ), (B.3)

where the integration goes over the phase-space of all final state particles pf with masses

mf , Ei (vi) is the energy (velocity) of the incoming parton pi, i ∈ {1, 2} in the laboratory

rest-frame. For the computation of the S-matrix element M the Feynman-rules described

in chapter 1 are used.

Using formula (B.2) and the fact that the incoming partons (as well as the hadrons) can

be treated as massless (|v1 − v2| = 2), the prefactor in (B.3) and the invariant mass of the

parton-pair become

1

2E12E2|v1 − v2|
=

1

2x1x2s
and (p1 + p2)

2 = x1x2s. (B.4)
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B.1 N-Body Phase-Space

First the phase-spaces for the final-state multiplicities needed below are computed. The

phase-space integral for the n-body phase-space is

∫

dΠn =

∫

(

∏

n

d4pf

(2π)3
δ(m2

f − p2
f )

)

(2π)4δ(4)(Q−
∑

n

pf ), (B.5)

where Q is the sum of all initial state four-momenta. The integral above is Lorentz-

invariant, thus it can be computed in any frame, i.e. in the rest-frame of the momentum

Q, where Q = (ECM,~0), with ECM the center-of-mass energy of all incoming particles.

B.1.1 1-Body Phase-Space

The evaluation of the 1-body phase-space is trivial,

∫

dΠ1 =

∫

d4p

(2π)3
δ(m2 − p2)(2π)4δ(4)(Q− p) = (2π)δ(m2 −Q2), (B.6)

with m the mass of the final-state particle.

B.1.2 2-Body Phase-Space

The 2-body phase-space is

∫

dΠ2 =

∫

d4p1d
4p2

(2π)6
δ(m2

1 − p2
1)δ(m

2
2 − p2

2)(2π)4δ(4)(Q− p1 − p2). (B.7)

First both mass-constraint δ-functions are integrated out. This leads to

∫

dΠ2 =

∫

d3~p1d
3~p2

4E1E2(2π)2
δ(4)(Q− p1 − p2)

=

∫

d3~p1d
3~p2

4E1E2(2π)2
δ(3)(−~p1 − ~p2)δ(ECM −E1 −E2)

=

∫

d3~p1

4E1E2(2π)2
δ(ECM −E1 −E2),

(B.8)

where the remaining δ-function has been split into the energy and the spatial momentum

part. The energies E1 and E2 are then

E1 =
√

m2
1 + ~p2

1 and E2 =
√

m2
2 + ~p2

1. (B.9)
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p2

p1

Z

µ

ε, ρ

pZ

ν
q

Figure B.1: Feynman-diagram for the LO Higgs-Strahlung process.

Using spherical coordinates and integrating over the last δ-function the phase-space inte-

gral becomes

∫

dΠ2 =

∫

dΩ

16π2

d|~p1||~p1|2
E1E2

δ(ECM −E1 −E2) =

∫

dΩ

16π2

|~p1|
(E1 +E2)

=

√

(Q2 − (m1 −m2)2)(Q2 − (m1 +m2)2)

8πQ2
,

(B.10)

where E2
CM has been replaced by Q2. In the case of two massless particles this becomes

simply
∫

dΠ2 =
1

8π
. (B.11)

B.2 Higgs-Strahlung Channel

The Feynman-diagram for the Higgs-Strahlung process in association with a Z-boson is

shown in Fig. B.1. The matrix element for this process is

iM =vs(p2)
ig

2 cos θw
γµ(cA − cV γ

5)ur(p1)

( −i

q2 −m2
Z

)(

gµν − qµqν
m2

Z

)

2i
m2

Z

v
gνρε∗ρ(pZ)

=A× vs(p2)γ
µ(cA − cV γ

5)ur(p1) ×Gρ
µε

∗
ρ(pZ),

(B.12)

where unitarity gauge has been used for the gauge-boson propagator. The pre-factor A is

defined as

A =
2ig m2

Z

2v cos θw(q2 −m2
Z)

(B.13)

and the tensor Gρ
µ as

Gρ
µ =

(

gµν − qµqν
m2

Z

)

gνρ. (B.14)
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The amplitude of the process, averaged over all incoming spin-states s, r and summed

over all final state Z polarization states, is then

1

4

∑

pol

∑

s,r

|M|2 =
|A|2
4

×
∑

s,r

[ur
c(p1)u

r
d(p1)v

s
f (p2)v

s
a(p2)]×

γµ
ab(cA − cV γ

5)bc(cA + cV γ
5)deγ

α
efG

ρ
µG

σ
α ×

∑

pol

ε∗ρ(pZ)εσ(pZ).
(B.15)

We now use the identities for the sum over the spin-states of the external fermions 1

∑

s

us(p)us(p) =
∑

s

vs(p)vs(p) = pµγ
µ ≡ p/ , (B.16)

to obtain

1

4

∑

pol

∑

s,r

|M|2 =
|A|2
4



(p1/ )cd(p2/ )faγ
µ
ab(cA − cV γ

5)bc(cA + cV γ
5)deγ

α
efG

ρ
µG

σ
α

∑

pol

ε∗ρ(pZ)εσ(pZ)





=
|A|2
4

tr
[

γβγµ(cA − cV γ
5)γδ(cA + cV γ

5)γα
]

p1δp2βG
ρ
µG

σ
α

∑

pol

ε∗ρ(pZ)εσ(pZ).

(B.17)

The trace can be evaluated using the identities from Appendix A. There are four different

terms contributing, namely

t1 = + c2Atr
[

γβγµγδγα
]

,

t2 = − cAcV tr
[

γβγµγ5γδγα
]

,

t3 = + cAcV tr
[

γβγµγδγ5γα
]

,

t4 = − c2V tr
[

γβγµγ5γδγ5γα
]

.

(B.18)

Closer investigation shows that the trace-structures of t2 and t3 (using {γ5, γµ} = 0) as

well as of t1 and t4 (using (γ5)2 = 1) are the same. The sum of all four terms is therefore

tβµδα ≡
∑

ti = (c2A + c2V )tr
[

γβγµγδγα
]

− 2cAcV tr
[

γβγµγδγαγ5
]

. (B.19)

This then becomes

tβµδα = 4(c2A + c2V )(gβµgδα − gβδgµα + gβαgµδ) + 8icAcV ε
βµδα. (B.20)

1 These are only valid if the fermions are massless. Otherwise there is a contribution of the mass to the
identities and they are no longer equal for the fermion- and the anti-fermion-spinors. For our purposes we
can treat all incoming quarks as massless.
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B.2. HIGGS-STRAHLUNG CHANNEL

The last unresolved ingredient in eq. B.17 is the sum over the polarization states. In the

unitarity-gauge 2 this is simply

∑

pol

ε∗ρ(pZ)εσ(pZ) = −gρσ +
pZρpZσ

m2
Z

. (B.21)

After putting everything together the result for the amplitude reads

1

4

∑

pol

∑

s,r

|M|2 =
|A|2
4
tβµδαp1δp2βG

ρ
µG

σ
α

(

−gρσ +
pZρpZσ

m2
Z

)

. (B.22)

Inserting momentum-conservation (q = p1 +p2) and using the algebraic manipulation tool

FORM [77] to contract all the Lorentz-indices, the result is reduced to

1

4

∑

pol

∑

s,r

|M|2 =
g2m4

Z

v2 cos2 θw((p1 + p2)2 −m2
Z)2

(c2A + c2V )2 p1 · p2

=
g2m4

Z

v2 cos2 θw((p1 + p2)2 −m2
Z)2

(c2A + c2V )(p1 + p2)
2,

(B.23)

where it has been used that the incoming quarks can be treated as massless (p2
i = 0).

At this point it makes sense to discuss which modifications eq. B.23 would undergo if

the Higgs boson was produced in association with a W instead of a Z. Obviously the

masses in the propagator and in the coupling to the Higgs become mW. In addition the

coupling constant g
cos θw

is replaced by g√
2
. Finally, the W couples exclusively to left-

handed fermions, i.e. cA = cV = 1. With these modifications in mind, we will derive the

cross-section for the Higgs production in association with a W at the end of this section.

The total inclusive partonic cross section for this process, using equations B.23, B.3, B.4

and B.10, reads

σ̂qq→HZ(y) =
g4

64π
× m2

Z(c2A + c2V )

m2
W cos2 θw

×

m2
Z

y2

(

1 − (mH −mZ)2

y

)
1

2
(

1 − (mH +mZ)2

y

)
1

2
(

1 − m2
Z

y

)−2

,

(B.24)

where is has been defined that y = x1x2s and used that 1/v2 = g2/(4m2
W).

In the case of W-production in association with the Higgs the result is

σ̂qq→HW(y) =
g4

64π
×

m2
W

y2

(

1 − (mH −mW)2

y

)
1

2
(

1 − (mH +mW)2

y

)
1

2
(

1 − m2
W

y

)−2

.

(B.25)

2 We could have used any other gauge. The final results are the same, but in other gauges we would need
to include the Goldstone-boson emission diagrams. In the unitarity-gauge the Goldstone-boson-propagator
vanishes.
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Figure B.2: Cross-sections for the Higgs-Strahlung process at the LHC as a function of the
Higgs mass. The bands correspond to an uncertainty of the variation of the factorization
scale µR.

In order to obtain hadronic cross-sections the partonic formulas have to be integrated

over the PDFs according to eq. B.1. We only consider the light quarks u and din the

proton. For the production with a Z-boson we need the quark combinations uu and dd

and for the production in association with W-bosons the combinations ud and du are

relevant. The cross-section of eq. B.24 can be split into the two possible flavour channels

by using the values for cA and cV from Tab. 1.3. This leads to

σ̂uu→HZ = σ̂qq→HZ with (c2A + c2V ) =
1

2
− 4

3
sin2 θw +

16

9
sin4 θw (B.26)

and

σ̂dd→HZ = σ̂qq→HZ with (c2A + c2V ) =
1

2
− 2

3
sin2 θw +

4

9
sin4 θw. (B.27)

The hadronic cross-sections are then

σqq→HZ = 2

1
∫

0

dx1dx2

[

fu(x1)fu(x2)σ̂uu→HZ(x1x2s) + fd(x1)fd(x2)σ̂dd→HZ(x1x2s)
]

(B.28)

for Z-boson production and

σqq→HW = 2

1
∫

0

dx1dx2

[

fu(x1)fd(x2) + fd(x1)fu(x2)
]

σ̂qq→HW(x1x2s) (B.29)

for W-boson production. We want to point out that the PDFs are implicitly dependent

on the factorization scale µR.
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These cross-sections can now be computed using any standard numerical integration

technique. We will use here a VEGAS MC program PVEGAS [78]. For the PDFs we use

the MRST2001 LO set [24] from the LHAPDF package [80], and we vary the factorization

scale between mW/Z/2 and 2mW/Z. The center-of-mass energy is 14TeV. The resulting

cross-sections as a function of the Higgs mass are shown in Fig. B.2. The bands correspond

to the uncertainty from the variation of the factorization scale.

B.3 Gluon-Fusion Channel

B.3.1 Matrix Element

Using the Feynman-diagram in Fig. B.3 one finds

iMµν =(−1)

∫

ddk

(2π)d
×

Tr

[(

− im
v

)

i ( 6 k′ +m)

k′2 −m2
igst

aγµ i ( 6 k +m)

k2 −m2
igst

bγν i ( 6 k′′ +m)

k′′2 −m2

]

,

(B.30)

with m the mass of the quark in the loop and v the Higgs vacuum-expectation value. Due

to the fermion loop a factor of −1 has to be applied, and we have to integrate over the

undetermined loop momentum k (see e.g. [1]). In addition dimensional regularization is

used to find a finite amplitude at the end of the calculation by taking the limit d→ 4.

Slightly rewriting this leads to

iMµν =
g2
sm

v
Tr
[

tatb
]

∫

ddk

(2π)d

1
(

k′2 −m2
)

(k2 −m2)
(

k′′2 −m2
)×

Tr
[(

6 k′ +m
)

γµ (6 kβ +m) γν
(

6 k′′ +m
)]

,

(B.31)

with the color-factor Tr
[

tatb
]

= Cδab and C = 1/2. The momenta in the loop are

k′ =k + p1

k′′ =k − p2.
(B.32)

The denominator of the integrand can be Feynman-parametrized like

1

D
=

1
(

k′2 −m2
)

(k2 −m2)
(

k′′2 −m2
)

=

1
∫

0

dxdydz δ(x + y + z − 1)
2

(

x
(

k′2 −m2
)

+ y (k2 −m2) + z
(

k′′2 −m2
))3 .

(B.33)
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pH

k

k′′

k′

p2

p1

a, µ

b, ν

Figure B.3: Feynman-diagram for the LO Gluon-Fusion process.

Using identities from eq. B.32 and integrating over y (using y = 1 − x− z), one finds

1

D
=

1
∫

0

dx

1−x
∫

0

dz
2

(k2 + 2k · (xp1 + zp2) −m2)3
, (B.34)

where all terms including p2
i = 0 (massless gluons) have been discarded.

Shifting the integration variable k to

` = k + xp1 − xp2 ⇒ k = `+ zp2 − xp1 (B.35)

gives a denominator of

1

D
=

1
∫

0

dx

1−x
∫

0

dz
2

(`2 + 2xzp1p2 −m2)3
. (B.36)

Finally, substituting z ′ = z/(1 − x) results in

1

D
=

1
∫

0

dx

1
∫

0

dz′
2(1 − x)

(`2 + 2z′x(1 − x)p1p2 −m2)3
. (B.37)

The numerator in eq. B.31 is

Nµν = Tr
[(

6 k′ +m
)

γµ ( 6 k +m) γν
(

6 k′′ +m
)]

. (B.38)

We perform the trace over the fermion-line using eq. B.32 and the commutation rules for

the Dirac matrices from eq. A.6. Notice, that since in the denominator the `-dependent

term only depends only on the 4-length of `, all terms linear in ` in the numerator will

vanish after integrating from −∞ to ∞. We can discard them immediately, and find

Nµν = 4m
[

4`µ`ν − gµν`2 + (4x2 − 2x)pµ
1p

ν
1

+ (−2z′ + 4z′
2
+ 2xz′ − 8xz′

2
+ 4x2z′

2
)pµ

2p
ν
2

+ (−1 + 2z′ + 2x− 6xz′ + 4x2z′)pµ
1p

ν
2

+ (1 − 4xz′(1 − x))pν
1p

µ
2

+gµν
(

m2 − (1 − 2xz′(1 − x))p1 · p2

)]

(B.39)
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The matrix total element reads now

iMµν =
4g2

sm
2

v
δab

1
∫

0

dxdz′
∫

dd`

(2π)d

(1 − x)(4`µ`ν − gµν`2 +Xµν)

(`2 + 2z′x(1 − x)p1p2 −m2)3
, (B.40)

with Xµν all the terms in the brackets of (B.39) that do not depend on `. We change

from Minkowski- to Euclidean-metric by Wick-Rotation and set `0E = i`0, with `E the new

integration variable in 4-dimensional Euclidean space. We find then

iMµν =
−4ig2

sm
2

v
δab

1
∫

0

dxdz′
∫

dd`E

(2π)d

(1 − x)((1 − 4/d)`2Eg
µν +Xµν)

(

`2E + ∆
)3 , (B.41)

where we it has been used that `µ`ν = 1
d`

2gµν , and

∆ = m2 − 2z′x(1 − x)p1 · p2. (B.42)

The integration over euclidean space can now be performed (see e.g. [1]). For the `E-

independent part Xµν we find

∫

ddlE

(2π)d

(1 − x)Xµν

(

l2E + ∆
)3 =

1

(4π)d/2

Γ (3 − d/2)

Γ(3)

(1 − x)Xµν

∆3−d/2
. (B.43)

The integration over the first part of eq. B.41 gives

∫

dd`E

(2π)d

(1 − x)`2E
(

`2E + ∆
)3

(

1 − 4

d

)

gµν =
1

(4π)d/2

Γ (2 − d/2)

Γ(3)

(1 − x)

∆2−d/2

d

2

(

1 − 4

d

)

gµν

=
1

(4π)d/2

Γ (3 − d/2)

Γ(3)

(1 − x)

∆3−d/2
(−∆gµν) ,

(B.44)

where in the last step we used the relation xΓ(x) = Γ(x + 1). Now both terms B.43

and B.44 are finite. We can set d = 4, use Γ(1)/Γ(3) = 1/2 and find

iMµν =
−ig2m2

8π2v
δab

1
∫

0

dxdz
(1 − x)

∆
(−∆gµν +Xµν), (B.45)

with

Y µν := −∆gµν +Xµν = (4z′x(1 − x) − 1)(gµν p1 · p2 − pν
1p

µ
2 ) + Zµν . (B.46)

Here Zµν stands for all the remaining terms in Y µν . We do not explicitly list them all, since

we will argue in a moment that all those terms will vanish, once taking a suitable gauge

for the initial state gluon-polarization states. Notice the manifestly transverse character

of the first part of Y µν .
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In order to find the amplitude we have to multiply this with the polarization vectors

of the incoming gluons and average over these polarization states. The sum over the

transverse polarization states together with the fact that the gluons are massless makes

all the terms in Zµν zero, and we end up with

1

4

∑

pol

|M|2 =
1

9

(p1 + p2)
2g4

s

v2π4





1
∫

0

dxdz
(1 − x)(−1 + 4xz(1 − x))

1 − xz(1 − x)τ





2

, (B.47)

with

τ ≡ (p1 + p2)
2

m2
. (B.48)

For now we define the Feynman-parameter integral as

F (τ) =

1
∫

0

dxdz
(1 − x)(−1 + 4xz(1 − x))

1 − xz(1 − x)τ
, (B.49)

and we will explicitly solve it in section B.3.2.

Using the 1-body phase-space from eq. B.6 the total cross-section becomes

σgg→H =
2

9

α2
sg

2
w

πs

m2
H

m2
W

∫

dxfg(x)fg

(

m2
H

xs

)

1

x

∣

∣

∣

∣

∣

∑

q

F (τq)

∣

∣

∣

∣

∣

2

, (B.50)

where, in addition, the definition of the Higgs vacuum expectation value has been used.

The functions fg are the gluon density functions in the proton, τq = m2
H/m

2
q , αs = g2

s/4π

and we sum over all possible quark types q in the loop. Notice, that the renormalization

scale dependency only enters via the strong coupling constant, which will be evaluated as

αs(µR). The factorization scale dependency comes from the PDFs.

B.3.2 Evaluation of the Feynman Integral

The only unresolved ingredient in formula B.50 are the Feynman-parameter integrals. We

solve them using di-logarithms defined as

Li2(x) = −
1
∫

0

dt
log(1 − xt)

t
(B.51)

and the useful identities

Li2(1 − x) = Li2(1) − Li2(x) − log(1 − x) log(x) and

Li2(1/x) = −Li2(x) + 2Li2(−1) − 1

2
log2(−x).

(B.52)
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The Feynman-parameter integral is

F (τ) =

∫

dxdz
(1 − x)(−1 + 4xz(1 − x))

1 − xz(1 − x)τ
=

∫

dxdz
−4

τ
X

(

τ/4 − 1

1 − zΩ
+ 1

)

, (B.53)

where we have used the substitutions X = (1 − x) and Ω = τxX. The integration of the

second part in the brackets is trivial;

I1 ≡
∫

dxdz
−4

τ
(1 − x) = −2

τ
. (B.54)

For the first part we introduce the additional substitution z̃ = 1 − zΩ to find

I2 ≡
∫

dxdz
−4

τ
X
τ/4 − 1

1 − zΩ
=

1
∫

0

dx
1

Ω

1−Ω
∫

1

dz̃
4X(τ/4 − 1)

z̃

=
τ − 4

τ

1
∫

0

dx
log(1 − τx(1 − x))

x
.

(B.55)

We define the variables

ρ± =
τ ±

√
τ2 − 4τ

2τ
(B.56)

which satisfies

1 − x(1 − x)τ = τ(x− ρ+)(x− ρ−) (B.57)

and find

I2 =
τ − 4

τ

∫

dx

(

log(τ)

x
+

log(x− ρ+)

x
+

log(x− ρ−)

x

)

=
τ − 4

τ

∫

dx

(

log(τ)

x
+

log(−ρ+)

x
+

log(−ρ−)

x
+

log(1 − x/ρ+)

x
+

log(1 − x/ρ−)

x

)

(B.58)

The sum of the first three terms in the integrand vanishes using ρ+ρ− = 1/τ . We are then

left with

I2 =
τ − 4

τ

∫

dx

(

log(1 − x/ρ+)

x
+

log(1 − x/ρ−)

x

)

. (B.59)

We can rewrite this using the definition of the Di-Logs in eq. B.51 and the identities B.52

as

I2 =
τ − 4

τ

(

−4Li2(−1) + Li2(1) +
1

2
(log2(−ρ+) + log2(−ρ−)) − log(ρ+) log(ρ−)

)

,

(B.60)

with the values Li2(1) = π2/6 and Li2(−1) = −π2/12.
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Figure B.4: LO cross-sections for the Gluon-Fusion process at the LHC as a function
of the Higgs mass. The bands correspond to an uncertainty from the variation of the
factorization and renormalization scales µR and µR.

If we assume τ to be real valued, i.e. τ ≥ 4, then we can use analytic continuation of the

logarithm to find log(−ρ±) = log(ρ±) ± iπ 3. The integral becomes then

I2 =
τ − 4

2τ

[

log

(

ρ+

ρ−

)

− iπ

]2

=
τ − 4

2τ

[

log

(

1 +
√

1 − 4/τ

1 −
√

1 − 4/τ

)

− iπ

]2

. (B.61)

In the case of the ρ± being complex, i.e. τ < 4, we can use the same analytic continuation,

and we find

I2 =
τ − 4

2τ

[

log

(

1 + i
√

4/τ − 1

1 − i
√

4/τ − 1

)

− iπ

]2

=
τ − 4

2τ
× 4 arcsin2

(
√

τ

4

)

. (B.62)

The final result for the Feynman-parameter integral reads

F (τ) = −2

τ
+
τ − 4

2τ
×







[

log

(

1+
√

1−4/τ

1−
√

1−4/τ

)

− iπ

]2

, if τ ≥ 4

4 arcsin2
(√

τ
4

)

, if τ < 4.







(B.63)

B.3.3 Cross-Section at the LHC

Using formulas eq. B.50 and eq. B.63 we can now use numerical integration techniques to

find the LO cross-section at the LHC. We only consider the top and the bottom quarks in

3 The differences in the sign for the imaginary term iπ arises from the fact that ρ+ = 1 − ρ−, i.e. the
imaginary parts of the two variables ρ+ and ρ− have always opposite sign. By approaching the negative
real axis this causes that the two variables to circle the origin in opposite direction.
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the loop and set the masses to mb = 4.2GeV and mt = 175GeV. We use the MRST2001

LO PDF set [24] and vary the renormalization and factorization scales simultaneously

between half and double the Higgs mass mH. The resulting cross-sections for various

Higgs mass hypotheses are shown in Fig. B.4.
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Appendix C

Sector Decomposition

The parameter integrals in the higher order correction terms in the perturbative expansion

of quantum field theories typically contain ultraviolet (UV) and infrared (IR) divergences.

These divergences generally inhibit the direct numerical evaluation of such integrals. The

treatment of these divergences becomes more and more complicated with increasing order.

For the UV divergences subtraction methods have been developed, that have been proven

to be valid to all orders in perturbation theory [81]. Concerning the IR (soft and collinear)

divergences a similar scheme could not be established so far. The so called Sector De-

composition method serves here as a constructive method to isolate these divergences, in

principle to all orders in perturbation theory. The algorithm, based on the decomposi-

tion of the parameter phase-space into sectors in which the divergences factorize, can be

used for the treatment of IR as well as UV divergences arising in loop- and phase-space

integrals. Especially, but not exclusively, it has been proven to be useful to compute

differential quantities in NNLO perturbative QCD [82, 75].

An extensive discussion of the Sector Decomposition method can be found in [83]. In the

following we elaborate a simple example visualizing the main ideas behind the method.

Consider the two-dimensional parameter integral

I =

1
∫

0

dx dy x−1−εy−ε (x+ (1 − x)y)−1 (C.1)

on the unit square, shown in the first step of Fig. C.1. The integrand has a singular region

when both x and y go to zero, i.e. the singularities are overlapping. The singularities can

be factorized by decomposing the integral I as

I =

1
∫

0

dx dy x−1−εy−ε (x+ (1 − x)y)−1 (Θ(x− y) + Θ(y − x)) , (C.2)
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Figure C.1: Example for the Sector-Decomposition algorithm: Splitting of the integration
area in order to factorize overlapping singularities in (x, y) = (0, 0).

with Θ(x) the step function defined as

Θ(x) =

{

1, if x ≥ 0
0, if x < 0

. (C.3)

Now the integral is

I =

1
∫

0

dx

x
∫

0

dy x−1−εy−ε (x+ (1 − x)y)−1 +

1
∫

0

dy

y
∫

0

dxx−1−εy−ε (x+ (1 − x)y)−1 .

(C.4)

This decomposition into two triangular sectors is shown in step 2 in Fig. C.1. The sectors

are then remapped to the unit squares by substituting y → y/x in the first and x→ x/y

in the second sector (step 3 in Fig. C.1). The integral is then

S1+S2 ≡ I =

1
∫

0

dx dy x−1−2εy−ε (1 + (1 − x)y)−1+

1
∫

0

dx dy x−1−εy−1−2ε (1 + (1 − y)x)−1 .

(C.5)

The singularities are now factorized in both sectors and the denominators take a constant

value > 0 on the entire unit square.

The 1/ε poles can be extracted by Taylor-expanding around ε = 0 using

x−1+κε =
1

κε
δ(x) +

∞
∑

n=0

(κε)n

n!

[

logn x

x

]

+

. (C.6)

The plus-distribution is defined by its action on a test function f(x) according to

1
∫

0

dx f(x) [g(x)]+ =

1
∫

0

dx (f(x) − f(0))g(x). (C.7)

The sectors become then

S1 =

∫ 1

0
dx dy

(

1

−2ε
δ(x) +

∞
∑

n=0

(−2ε)n

n!

[

logn x

x

]

+

)

×
( ∞
∑

n=0

(−2ε)n

n!
logn y

)

d(x, y)

(C.8)
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and

S2 =

∫ 1

0
dx dy

(

1

−εδ(x) +
∞
∑

n=0

(−ε)n

n!

[

logn x

x

]

+

)

×
(

1

−2ε
δ(y) +

∞
∑

n=0

(−2ε)n

n!

[

logn y

y

]

+

)

d(y, x),

(C.9)

with the denominator function d(x, y) = (1 + (1 − x)y)−1. Ordering in powers of ε leads

to

S1 =

1
∫

0

dx dy

[−1

2ε
δ(x) +

(

1

[x]+
+ log y δ(x)

)

+ O(ε)

]

d(x, y) (C.10)

and

S2 =

1
∫

0

dx dy [
1

2ε2
δ(x)δ(y) − 1

ε

(

δ(x)

[y]+
+

1

2

δ(y)

[x]+

)

+

(

1

[x]+

1

[y]+
+ 2

[

log y

y

]

+

δ(x) +
1

2

[

log x

x

]

+

δ(y)

)

+ O(ε)]d(y, x).

(C.11)

The divergences are now manifest as terms with poles at ε = 0. These terms have to

cancel order by order with terms from other contributions. If for example eq. C.1 is a real

radiation diagram, the divergent terms would cancel with contributions from the virtual

correction diagrams. This cancellation can be verified numerically, by comparing the

coefficients of the divergent terms order by order in ε. After this verification the divergent

terms can be dropped and the finite terms integrated numerically using standard MC

integration techniques.
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Appendix D

The H→WW Decay in FEHiP

With the program FEHiP, as available in [84], Higgs production in the Gluon-Fusion chan-

nel up to NNLO can be computed (cf. chapter 2). The only implemented decay mode is

the di-photon decay. In the following we explain in some detail how we have added to the

program the full decay of the Higgs boson into leptons via a pair of W bosons.

The inclusion of this decay mode can be divided into several steps. First we compute the

full decay matrix-element for the process H → WW → `ν`ν, which has to be integrated

over the final-state particle phase-space. In the inclusive case this would simply correspond

to the multiplication of the Higgs production cross-section with the branching ratio for the

full decay. Since we want to impose selection cuts on the final-state particle observables we

have to parametrize the final-state phase space appropriately. Then we are able to write

a selection routine, that returns, as a function of the Higgs momentum and potential

additional gluon momenta, either zero (if the ’event’ does not pass the selection cuts) or

the weight of the full decay (otherwise).

Finally we discuss how the numerical integration is highly sensitive to the selection cuts

and how we have to modify the numerical integration strategy in order to overcome this

obstacle.

D.1 Concept

FEHiP uses the sector-decomposition techniques to compute the Higgs production cross-

section. In this technique the finding of singular phase-space regions is fully automated

and the cancellation of 1/ε poles that describe divergences in dimensional regularization is

performed numerically. The result of the procedure is a finite set of sectors Si, i ∈ 1, .., N ,

that have to be numerically integrated in a hyper-cube of dimension d. The dimension
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D. THE H→WW DECAY IN FEHIP

varies with the final-state particle multiplicity. The total cross-section is then the integral

over the sum of all these sectors 1, i.e.

σ =

1
∫

0

(

d
∏

k=1

dλk

)

∑

i

Si({λk}), (D.1)

where the sectors are dependent on the integration variables λk. The particle momenta

can be obtained through a sector-dependent mapping of the λ’s to the Higgs and gluon

kinematics. In general each sector consists of several mappings of integration variables

to kinematics, i.e. one point in integration phase-space generally corresponds to multiple

physical final-state phase-space points. For simplicity we neglect this fact at this stage.

Using this we can write the cross-section including the Higgs decay as

σ =

1
∫

0

(

d
∏

k=1

dλk

)

∑

i

Si({λk})Σ({pi}), (D.2)

where Σ describes the full decay of the Higgs into leptons as well as some selection func-

tion, and {pi} is the collection of the Higgs and gluon momenta. We want to emphasize

that the function Σ is not factorizable from the sum over all the sectors. As mentioned

before, the mapping of the integration variables to the kinematics {pi} is sector dependent,

furthermore each sector typically consists of several mappings (i.e. even the factorization

of Σ within this sum is not generally true, we only use it here to keep the notation simple).

We now compute the decay function Σ. The integral of interest is

Σ =
π

mHΓH(2π)9

∫

[dp][dq][dp̃][dq̃]|M |2δ4(pH − p− q − p̃− q̃), (D.3)

where pH is the Higgs momentum and p, q, p̃, q̃ are the final state lepton momenta and

[dp] = dp4δ(p2) is the Lorentz-invariant measure of the four-dimensional integration. To

apply a selection we multiply the integrand with a selection function O that then depends

on the full event kinematics {pf} (cf. section 2.3). The prefactor of this function comes

from the Higgs propagator, as well as from some constant extracted for the computation

of the decay width.
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D.2. MATRIX ELEMENT

H

W+

W−

`+

`−

ν̄

ν

pH

pW1

pW2

p

q

q̃

p̃

Figure D.1: Feynman-diagram for the Higgs decaying in H → WW → `ν`ν.

D.2 Matrix Element

We show the tree level Feynman diagram for the Higgs decay into leptons via a pair of

W bosons in Fig. D.1. Using the Feynman-rules from chapter 1 the matrix element is

iM =us(p)

(

ig

2
√

2

)

γµ(1 − γ5)vs′(q)

(

−i

p2
W1

−m2
W + imWΓW

)

×
(

gµν −
pµ
W1
pν
W1

m2
W − imWΓW

)

2i
m2

W

v
gνσ

(

−i

p2
W2

−m2
W + imWΓW

)

×
(

gσρ −
pσ
W2
pρ
W2

m2
W − imWΓW

)

u(q̃)r

(

ig

2
√

2

)

γρ(1 − γ5)vr′(p̃),

(D.4)

where we have used a simple Breit-Wigner propagator for the W boson (see e.g. [85]),

s(′), r(′) are the lepton-spin indices and mW and ΓW denote the W mass and width. We

square this and sum over all final state spin states. We then use again the tool FORM to

perform the trace over the gamma-matrices and to contract all the Lorentz-indices. The

final square of the amplitude is then

|M|2 =
4m4

Wg
4
w

v2
·





4(p · q̃)(q · p̃)
(

m4
W1

+ (Γ2
W − 2m2

W1
)m2

W +m4
W

)(

m4
W2

+ (Γ2
W − 2m2

W2
)m2

W +m4
W

)



 .
(D.5)

We want to point out the difference between mW, which is the physical W on-shell mass,

and mW1
/mW2

, which are the square roots of the squares of the W four-momenta pW1

and pW2
.

1 If a sector has dimension less than d, then this sector is simply extended to d by multiplications with
one.
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D. THE H→WW DECAY IN FEHIP

D.3 H→WW Phase-Space

The phase-space is actually nothing but the 1→4, massive to massless phase-space. We

want to parametrize this phase-space by variables λ ∈ [0, 1]. In order to take explicitly

into account the Breit-Wigner shape of the W propagator it is useful to split the decay

into two step, namely first to treat the Higgs decay into W bosons, and then the decay

of the W bosons into leptons. For this we parametrize the phase-space in four-momenta-

transfers, similar to the Higgs production phase-space parametrization. In principle any

other parametrization would be possible, i.e. a parametrization taking into account the

specific selection cuts on the final state particles (pT, η). We tested such a parametrization

as well and found no significant improvement for the numerical integration behavior.

By inserting the integration over the mass of both W bosons we rewrite eq. D.3 as

Σ =
4π

mHΓH(2π)9

∫

dmW1
dmW2

mW1
mW2

d4pW1
d4pW2

d4p d4q d4p̃ d4q̃ |M |2

δ4(pH − pW1
− pW2

)δ4(pW1
− p− q)δ4(pW2

− p̃− q̃)

δ(p2
W1

−m2
W1

)δ(p2
W2

−m2
W2

)δ(p2)δ(q2)δ(p̃2)δ(q̃2).

(D.6)

The splitting of the phase-space is then manifest and we can parametrize first the H→WW phase

space, which is

Ω =

∫

d4pW1
d4pW2

δ4 (pH − pW1
− pW2

) δ(p2
W1

−m2
W1

)δ(p2
W2

−m2
W2

) =

=

∫

d4pW1
δ(p2

W1
−m2

W1
)δ((pH − pW1

)2 −m2
W2

)

(D.7)

with pW2
= pH − pW1

. (D.8)

After inserting integration over two Lorentz invariant scalars s1w and s2w one gets

Ω =

∫

ds1wds2w

∫

d4pW1
δ(p2

W1
−m2

W1
)δ(m2

H − 2pHpW1
+ p2

W1
−m2

W2
)

δ

(

s1w − (g1 − pW1
)2

(g1 + g2)2

)

δ

(

s2w − (g2 − pW1
)2

(g1 + g2)2

)

,

(D.9)

where g1 and g2 are the four-momenta of the two interacting partons from the initial

protons Pi with

g1 = x1P1

g2 = x2P2.
(D.10)
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D.3. H→WW PHASE-SPACE

Going into the rest frame of the CM system of the two partons this leads to

Ω =

∫

ds1wds2w

∫

d4pW1
δ(p2

W1
−m2

W1
)δ(m2

H − 2pHpW1
+ p2

W1
−m2

W2
)

δ

(

s1w −
−p0

W1
+ pz

W1√
s

−
p2
W1

s

)

δ

(

s2w −
−p0

W1
− pz

W1√
s

−
p2
W1

s

)

,

(D.11)

with s = (g1 + g2)
2 the squared CM energy of the partons.

Now the integration variables are changed to

Ω =

∫

ds1wds2w

∫

dp0
W1
dpz

W1
dp⊥W1

dφ p⊥W1
δ(p2

W1
−m2

W1
)

δ(m2
H − 2pHpW1

+ p2
W1

−m2
W2

)

δ

(

s1w −
−p0

W1
+ pz

W1√
s

−
p2
W1

s

)

δ

(

s2w −
−p0

W1
− pz

W1√
s

−
p2
W1

s

)

.

(D.12)

Integrating over dp0
W1

, dpz
W1

and dp⊥W1
using the first and the two last δ-distributions one

gets

p0
W1

=

√
s

2
(−s1w − s2w) +

m2
W1√
s

pz
W1

=

√
s

2
(+s1w − s2w)

p⊥W1
=

[(

√
s s1w −

m2
W1√
s

)(

√
s s2w −

m2
W1√
s

)

−m2
W1

]1/2

(D.13)

and the integral Ω becomes

Ω =
s

4

∫

ds1wds2w

∫

dφ δ(m2
H − 2pHpW1

+m2
W1

−m2
W2

). (D.14)

Setting B1w := (s1w −m2
W1
/s) and B2w := (s2w −m2

W1
/s) eq. D.13 simplifies to

p0
W1

=

√
s

2
(−B2w −B1w)

pz
W1

=

√
s

2
(−B2w +B1w)

p⊥W1
=
[

s (B1wB2w −m2
W1
/s)
]1/2

.

(D.15)

Using eq. D.15 to evaluate the last δ-distribution, the restriction for the angle φ between

pH and pW1
becomes

cos(φ) =
δm2 + 2p0

Hp
0
W1

− 2pz
Hp

z
W1

2p⊥Hp
⊥
W1

(D.16)
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D. THE H→WW DECAY IN FEHIP

with δm2 := m2
W2

−m2
W1

−m2
H and the integral

Ω =

√
s

2

∫

dB1wdB2wI(B1w, B2w) (D.17)

with

I(B1w, B2w) :=
[

4p⊥H
2

(

B1wB2w −
m2

W1

s

)

−
(

δm2

√
s

−B1w

(

p0
H + pz

H

)

−B2w

(

p0
H − pz

H

)

)2
]−1/2

.
(D.18)

The square root condition leads to the following boundaries for the integration variables:

α2 − β2 <B2w < α2 + β2

α1(B2w) − β1(B2w) <B1w < α1(B2w) + β1(B2w)
(D.19)

with

α2 :=
−C2h(m̃2

W1
− m̃2

W2
+ m̃2

H)

2m̃2
H

β2 :=
1

2m̃2
H

√

C2
2hδm̃++δm̃−−δm̃−+δm̃+−

(D.20)

and

δm̃±± := m̃W1
± m̃W2

± m̃H

m̃i := mi/
√
s with i = H,W1,W2,

(D.21)

as well as

α1(B2w) :=
−2B2wm̃

2
H + C2h(m̃2

W2
− m̃2

W1
− m̃2

H +B2wC1h)

C2
2h

β1(B2w) :=
2

C2
2h

[(C2h(−B2w + C2h)m̃2
W1

+ C2hB2wm̃
2
W2

+

B2w(B2w − C2h)m̃2
H)(m̃2

H −C1hC2h)]1/2.

(D.22)

Here C1h and C2h are defined as

C1h :=
m2

H − (g1 − pH)2

(g1 + g2)2

C2h :=
m2

H − (g2 − pH)2

(g1 + g2)2
.

(D.23)

Changing integration variables to λ1 and λ2 with λi ∈ [0, 1] one gets

Ω =
1

2m̃2
H

∫ 1

0
dλ1dλ2

√

δm̃++δm̃−−δm̃+−δm̃−+

(1 − λ1)λ1
. (D.24)
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Furthermore one can change the integration variable λ1 according to

λ1 =
cos(πλ̂1) + 1

2

dλ1 = −π sin(πλ̂1)dλ̂1

2

(D.25)

and ends up with

Ω =
π

2m̃2
H

∫ 1

0
dλ̂1dλ2

√

δm̃++δm̃−−δm̃+−δm̃−+. (D.26)

The Lorentz invariant scalars B1w and B2w become then

B2w =
1

2m̃2
H

(

C2h(m̃2
W1

− m̃2
W2

+ m̃2
H) + (2λ2 − 1)

√

C2
2hδm̃++δm̃−−δm̃+−δm̃−+

)

B1w =
C1h

2
+
C1h(m̃W1

− m̃W2
)(m̃W1

+ m̃W2
)

2m̃2
H

+

(2λ2 − 1)(C1hC2h − 2m̃2
H)
√

C2
2hδm̃++δm̃−−δm̃+−δm̃−+

2C2
2hm̃

2
H

+

2 cos(π λ̂1)

√

(1 − λ2)λ2(C1hC2h − m̃2
H)δm̃++δm̃−−δm̃+−δm̃−+

C2
2hm̃

2
H

(D.27)

The momenta in the proton-proton rest frame are then

p0
W1

=
1

2

√
X(−x1B2w − x2B1w)

pz
W1

=
1

2

√
X(x2B1w − x1B2w)

p⊥W1
=
√

x1x2X(B1wB2w − m̃2
W1

)1/2,

(D.28)

with

X = (P1 + P2)
2

the proton-proton squared CM energy.

D.4 W→`ν`ν Phase-Space

Having parametrized the Higgs decay, we now find a parametrization for the W → `ν`ν

phase-space, which is

Ξ =

∫

d4p d4q δ4(pW1
− p− q)δ(p2)δ(q2) =

=

∫

d4p δ(p2)δ((pW1
− p)2)

(D.29)
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with

q = pW1
− p. (D.30)

Again, we insert Lorentz-scalars such as

Ξ =

∫

da1l da2l d
4p δ(p2)δ((pW1

− p)2)×

δ(a1l −
(g1 − p)2

(g1 + g2)2
)δ(a2l −

(g2 − p)2

(g1 + g2)2
)

(D.31)

with g1 and g2 again the momenta of the initial partons.

Using analogue techniques as in th H → WW case with the final-state particle masses set

to 0 we find

Ξ =
π

2

∫ 1

0
dλ̂1dλ2, (D.32)

where the Lorentz invariant scalars a1l and a2l are

a2l = −B2w(1 − γ2)

a1l =
m̃2

W1

B2w
(1 − 2γ2) −B1w(1 − γ2)+

2m̃W1

B2w
cos(π γ̂1)

√

(1 − γ2)γ2(B1wB2w − m̃2
W1

).

(D.33)

The momenta in the proton-proton rest frame are then

p0 =
1

2

√
X(−x1a2l − x2a1l)

pz =
1

2

√
X(x2a1l − x1a2l)

p⊥ =
√

x1x2X(a1la2l)
1/2.

(D.34)

D.5 Total Phase-Space

The decay-function Σ reads now

Σ =

√
s

(4π)5m̃3
HΓH

∫

dmW1
dmW2

mW1
mW2

×
∫ 1

0
dλ̂1dλ2dγ̂1dγ2dˆ̃γ1dγ̃2|M |2

√

δm̃++δm̃−−δm̃+−δm̃−+

(D.35)

where γ̃i refer to the pW2
→ p̃ q̃ phase space.

For later manipulation we change the masses under the square root back to the nominal

masses

δm±± := mW1
±mW2

±mH, (D.36)
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which leads to

Σ =
1

(4π)5m3
HΓH

∫

dmW1
dmW2

mW1
mW2

×
∫ 1

0
dλ̂1dλ2dγ̂1dγ2dˆ̃γ1dγ̃2|M |2

√

δm++δm−−δm+−δm−+.

(D.37)

Using the square amplitude from eq. D.5 this becomes

Σ =
m4

Wg
4
w

v2m3
HΓH26π5

∫

dmW1
dmW2

mW1
mW2

×
∫ 1

0
dλ̂1dλ2dγ̂1dγ2dˆ̃γ1dγ̃2

√

δm++δm−−δm+−δm−+×








(p · q̃)(q · p̃)
(

(

m2
W1

−m2
W

)2
+m2

WΓ2
W

)(

(

m2
W2

−m2
W

)2
+m2

WΓ2
W

)









.

(D.38)

The boundaries of the integrations over dmW1
and dmW2

are defined by the square root

in the integrand,

δm++δm−−δm+−δm−+ ≥ 0. (D.39)

The boundaries are then

mW1
∈ [0,mH]

mW2
∈ [0,mH −mW1

].
(D.40)

Changing the mass integration variables according to

z1 := tan−1

(

m2
W1

−m2
W

mWΓW

)

z2 := tan−1

(

m2
W2

−m2
W

mWΓW

) (D.41)

we find

Σ =
2π3m2

Wg
4
w

v2m3
HΓHΓ2

W28π5

∫ zmax
i

zmin
i

dz1dz2

∫ 1

0
dλ̂1dλ2dγ̂1dγ2dˆ̃γ1dγ̃2×

√

δm++δm−−δm+−δm−+ (p · q̃)(q · p̃) ,
(D.42)

with

zmin
1 := tan−1

( −m2
W

mWΓW

)

zmax
1 := tan−1

(

m2
H −m2

W

mWΓW

)

zmin
2 := tan−1

( −m2
W

mWΓW

)

zmax
2 := tan−1

(

(mH −mW1
)2 −m2

W

mWΓW

)

,

(D.43)
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where now all the δmii and mW1
are functions of zi.

Mapping the zi interval to αi ∈ [0, 1] and using the definitions of gw and v the final result

reads

Σ =

√
2(Gfm

2
W)3(zmax

1 − zmin
1 )(zmax

2 − zmin
2 )

23π5m3
HΓHΓ2

W

×
∫ 1

0
dα1dα2dλ̂1dλ2dγ̂1dγ2dˆ̃γ1dγ̃2

√

δm++δm−−δm+−δm−+ (p · q̃)(q · p̃) ,
(D.44)

with Gf the Fermi-constant. For convenience we define this as

Σ = C ×
1
∫

0

dΛD({pf}), (D.45)

with

C ≡
√

2(Gfm
2
W)3(zmax

1 − zmin
1 )(zmax

2 − zmin
2 )

23π5m3
HΓHΓ2

W

,

D({pf}) ≡
√

δm++δm−−δm+−δm−+ (p · q̃)(q · p̃) ,
(D.46)

and dΛ denotes the integration over all the variables in eq. D.44. Here D({pf}) symbols

the implicit dependence of the integrand on the particle kinematics.

We can now write the total cross-section including the decay as

σ =

1
∫

0

(

d
∏

k=1

dλk

)

∑

i



Si({λk}) ×C

1
∫

0

dΛD({pf})O({pf})



 , (D.47)

where we have now explicitly added a selection function O. We can interchange the sum

over the sectors and the integration over the decay phase-space in order to only have to

integrate over one set of variables. This reads then

σ =

1
∫

0

dΩ
∑

i

(Si({λk}) × CD({pf})O({pf})) , (D.48)

where the integration hyper-cube dimension is now d+ 8, i.e. the dimension of the sector

plus the dimension of the decay phase-space and

dΩ =

(

d
∏

k=1

dλk

)

dΛ. (D.49)
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(a) (b) (c)

Figure D.2: Schematic example for the VEGAS MC algorithm.

D.6 Numerical Integration

D.6.1 VEGAS algorithm

In order to discuss the numerical integration strategy we want to briefly describe the

program used in FEHiP, the Vegas program of PVEGAS [78]. The idea of the Vegas

algorithm [79] is stratified and importance sampling. We explain this algorithm on a

simple two-dimensional example, i.e.

σ =

1
∫

0

dλ1dλ2I(λ1, λ2), (D.50)

where I is some function that is finite over the whole two-dimensional integration region.

Each integration variable is then divided into a fixed number of bins. As an example

we divide each variable in three bins of the same size, see Fig. D.2(a). In the next step

we sample the integrand in an appropriate number of phase-space points to estimate the

importance of the function I. We show this in Fig. D.2(b). Dark (light) regions denote

phase-space regions where the weight of the integrand is large (small). The information

on the importance of the integrand is not stored in each of the sub-regions (these are in

general hyper-cubes). For each variable we allocate a one-dimensional histogram storing

the projection of the integrand onto this variable. This is shown as the small region below

(left) of the variable axis.

In the second step the binning in each integration variable is modified in such a way,

that the total weight of the integrand of all the bins is smoothed out (Fig. D.2(c)), i.e. in
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Figure D.3: Example for an integrand with non-factorizing singularities.

the important regions the bins get smaller, while in the unimportant regions the bins get

wider (the total number of bins stays unchanged).

In the further sampling of the integrand we first choose one of the sub-regions randomly,

and then a phase-space point within this sub-region. This procedure is performed iter-

atively, such that we end up sampling the phase-space in more detail in the important

region. The procedure is called the adaptation of the grid, meaning that the binning in

each of the variables gets adapted to the shape of the integrand.

This procedure is very successful as long as the important regions can be factorized in

the single integration variables. In Fig. D.3 we show an example for an integrand with

so-called non-factorizing singularities. The projection of the importance on the variable

axis is flat and the adaptation cannot take place successfully. Integrands like this usually

cannot be integrated accurately with the VEGAS algorithm.

D.6.2 Integrating the Higgs Process

In principle eq. D.48 is ready for numerical integration using the above described technique.

In fact it has been shown that for the inclusive case (i.e.O = 1), the adaptation of the grid

is sufficient to obtain an accurate result after a reasonable number of iterations. However,

When we include a selection function, this adaptation can be spoiled by introducing non-

factorizable singularities as discussed above. We want to explain how this singularities

can arise, again using simple two-dimensional example.

First notice that the integrand in eq. D.48 is a sum over sectors. There is no general

rule that these sectors behave in a similar way. We show an example for the addition of

two sectors in Fig. D.4(a).
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(a)

(b)

Figure D.4: Example for an integrand as the sum of two sectors with (a) no selection and
(b) a selection applied.

Each of the sectors, as well as the sum of both, is well-behaved and we expect adaptation

to work fine. In fact, for the sum of both no adaptation is needed since the importance of

the total integrand is flat. We now want to apply a selection function. As discussed before,

since for every sector we expect a different mapping of the integration variables to the

kinematic variables, we cannot expect that the function selects the same integration region.

This is shown in Fig. D.4(b). We use the same integrands as before and the red squares

denote the integration regions selected by the kinematic cuts. The total integrand now is

not flat any more as in the inclusive case, but we introduced non-factorizing singularities

and the grid adaptation might break down.

This behavior is exactly what we observe in the case of the H→WW process with the

selection cuts from section 4.1 applied. The integration strategy that is successful for the

inclusive cross-section (as well as for the di-photon decay) does not result in an accurate

prediction for the cross-section after the selection cuts. To overcome this problem we
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proposed several possible solutions. One of them is the usage of a different integration

algorithm that uses binary splitting of the integration region instead of binning in each

integration variable (FOAM algorithm [86]). While this approach showed a big improve-

ment concerning the grid-adaptation, it increased the number of needed sampling points

dramatically, such that no results could be obtained within a reasonable computing time.

The most successful solution to the problem of the non-factorizing singularities occurring

due to the application of the selection cuts is the interchange of the sum and the integration

in eq. D.48, reading

σ =
∑

i

1
∫

0

dΩ(Si({λk}) × CD({pf})O({pf})) , (D.51)

where each sector is integrated separately and the results of each sector are added at the

end. Although the number of sampling points is increased (generally by a factor equal

to the number of sectors), the computing time is still much smaller than in the case of

the binary splitting (where the number of sampling points generally behaves like a power

law). The grid-adaptation for each of the sectors separately is then also guaranteed. This

can also be seen in our example. While the sum of the restricted sectors in Fig. D.4(b)

behaves badly, the individual sectors do not show any non-factorizable singularities.

An additional benefit of integrating the sectors independently is, that each sector can be

integrated on another computational unit, making parallelization and the use of computer

clusters straight forward.
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