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Abstract

In this talk we present techniques for calculating one-loop amplitudes for
multi-leg processes using Feynman diagrammatic methods in a semi-algebraic
context. Our approach combines the advantages of the different methods allow-
ing for a fast evaluation of the amplitude while monitoring the numerical stability
of the calculation. In phase space regions close to singular kinematics we use a
method avoiding spurious Gram determinants in the calculation. As an applica-
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tion of our approach we report on the status of the calculation of the amplitude
for the process pp → bb̄bb̄+X.

1 Introduction

The experimental precision expected to be reached at the LHC demands cross-section
calculations to move from the leading order approximation (LO) to the next-to-leading
order (NLO) for many processes with three, four or even more particles in the final
state. The complexity introduced by both the real and virtual corrections can only be
overcome using automatised tools in the construction of programs for the numerical
evaluation of their matrix elements.

An important step towards the automatisation of NLO calculations was the formula-
tion of local subtraction terms which render real and virtual corrections independently
infrared finite. The two most commonly used subtractions at the one-loop level are
the dipole formalism [1, 2] and the FKS subtraction method [3, 4], both of which have
led to several packages for their automated implementation [5–12]. As one of their ad-
vantages, subtraction methods offer a well-defined way of separating the different parts
of a one-loop calculation. Inspired by this separation, at the Les Houches workshop a
standard interface between Monte Carlo tools, computing the Born level, the real cor-
rections and the subtraction terms, and one-loop programs which only need to provide
the virtual corrections has been proposed [13].

The persistent efforts spent on the improvement of the methods for the calculation
of one-loop amplitudes have recently induced a rapid growth in the number of NLO
predictions for the LHC. The most recent results with four and more final state particles
at the LHC are the corrections to pp → bb̄tt̄ +X [14–16], pp → V + 3j [17–19], pp →
W± + 4j [20], pp → W+W+jj [21] and the qq̄ initiated channel of pp → bb̄bb̄+X [22].
However, many Standard Model processes of similar complexity which are relevant for
the discovery and/or the measurement of the properties of the Higgs boson or new
particles from extensions beyond the Standard Model (BSM) are not yet available at
NLO [23]. Moreover, once new particles are found at the LHC, their detailed study will
require NLO studies in BSM models. We have therefore developed and implemented
methods for the automated evaluation of one-loop Feynman diagrams, which we de-
scribe in Section 2. In Section 3, we present applications of our method, one of which
is the calculation of the gluon induced channel of the process pp → bb̄bb̄+X .
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2 Method

2.1 A Numerator Representation for Feynman Diagrams

Our method for the calculation of one-loop matrix elements is based on the evaluation
of Feynman diagrams. A one-loop diagram can be written as

D =

∫

dnq

iπn/2

N (q, ε)

D1 · · ·DN
, (1)

where Di = [(q + ri)
2 −m2

i + iδ] and the integration momentum can be split into its
projection q̂µ on the physical Minkowski space and an orthogonal component q̃. Instead
of a single diagram, D can also refer to a group of diagrams sharing the same set of
denominators. All quantities are defined such that the following equations hold:

gµν = ĝµν + g̃µν , ĝµµ = 4, g̃µν = −2ε, (2a)

ĝµρ ĝ
ρν = ĝµν , g̃µρ g̃

ρν = g̃µν , ĝµρ g̃
ρν = 0, (2b)

q̂µ = ĝµν q
ν , q̃µ = g̃µν q

ν , q2 = q̂2 − µ2. (2c)

The numerator of the integral can then be expressed in terms of the quantities (q̂, µ2)
as

N (q, ε) = N0(q̂, µ
2) + εN1(q̂, µ

2) + ε2N2(q̂, µ
2) +O(ε3). (3)

The functions N1 and N2 are relevant in regularisation schemes, where internal gauge
bosons are kept in n dimensions (n − 2 polarisations), such as the ’t Hooft-Veltman
scheme or näıve dimensional regularisation. The terms originating fromN2 are of purely
infrared origin and therefore have to cancel out, as shown in [14]. These terms can serve
as an additional check on the amplitude or simply be skipped in the computation. In
the following discussion there is no need to distinguish between the individual functions
Ni(q̂, µ

2), as we can simply consider the calculation of a diagram as separate calculations
of the three terms in D = D0 + εD1 + ε2D2. We refer to these functions collectively
as N (q̂, µ2).

For the algebraic construction ofN (q̂, µ2) from the underlying Feynman rules we use
QGraf [24] for generating the diagrams and Form [25] for their algebraic simplification.
Since we work with helicity projections of amplitudes, we have devised a Form library
for the manipulation of expressions containing helicity spinors [26] which is publicly
available1.

In amplitudes containing external partons, the matrix element and therefore each
diagram is a vector in colour space D =

∑

c D
c |c〉. We avoid working with the vector

components Dc by contracting each diagram with the tree level amplitude, and working

1http://sourceforge.net/projects/spinney-form/
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with the corresponding numerator functions

N (QCD)
i (q̂, µ2) =

∑

c,c′

(

Ac′

Born

)†

N c
i (q̂, µ

2) 〈c′|c〉 . (4)

This step is important to avoid a proliferation of numerical tensor reductions. In fact,
one cannot avoid working with the components Dc for processes where the Born level
vanishes and at the first non-vanishing order one has to calculate the square of the NLO
matrix element2.

2.2 Tensor Reduction at the Integrand Level

Complete reducibility of one-loop diagrams to scalar integrals implies that the q-dependence
of the numerator can be expressed in terms of the denominators Di [27–31]:

N (q̂, µ2) =
∑

j1<...<jN−1

aj1...jN−1
(q)Dj1 · · ·DjN−1

+
∑

j1<...<jN−2

bj1...jN−2
(q)Dj1 · · ·DjN−2

+
∑

j1<...<jN−3

cj1...jN−3
(q)Dj1 · · ·DjN−3

+
∑

j1<...<jN−4

dj1...jN−4
(q)Dj1 · · ·DjN−4

+
∑

j1<...<jN−5

dj1...jN−5
(q)Dj1 · · ·DjN−5

. (5)

The calculation of a one-loop diagram therefore amounts to the extraction of the co-
efficients, which are the residues of the integrand at the cuts Dj1 = . . . = Djr = 0. A
suitable parametrisation of the coefficients and a fast implementation of the method in
terms of a Fortran 90 library Samurai3 is described in [32].

The decomposition given in Equation (5) works with n-dimensional rather than
four-dimensional propagators D̂i = [(q̂ + ri)

2 − m2
i ] and keeps the dependence on µ2

in the numerator. This improvement over the original OPP method [27, 28] allows the
determination of the amplitude including both the cut-constructible and the rational
part. The Samurai implementation also includes several reconstruction tests which
provide a measure for the quality of the numerical result for a given diagram. This in-
formation can be used to dynamically switch to an alternative reduction method when

2We keep the name NLO for the one-loop order even if the Born level vanishes and the one-loop
matrix element formally becomes the LO.

3https://samurai.web.cern.ch/samurai/
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the precision of the reconstruction is not sufficient. Typically, unitarity based reduction
methods fail in the neighbourhood of kinematical points with vanishing Gram determi-
nants. Traditionally, implementations of unitarity methods go to higher precision when
such a case is detected. The following two sections introduce a method which avoids
the use of higher precision implementations.

2.3 Improved Algebraic/Numerical Tensor Reduction

The shortcomings of tensor reduction methods in the neighbourhood of vanishing Gram
determinants can be cured either by expanding tensor coefficients about limits of van-
ishing Gram determinants [33] or by extending the integral basis by integrals which are
non-scalar but which have fast and stable implementations [34–36]. The latter approach
has been followed in implementing the Fortran 95 library Golem95 [37]4, which in its
current version can be used for the reduction of tensor integrals with up to six exter-
nal legs for massive and massless loop-propagators. For some R ≤ N , the numerator
structure of a Feynman diagram in a gauge theory can always be written as

Di =

∫

dnq

iπn/2

∑R
r=0C

(r)
µ1...µr

qµ1 · · · qµr

D1 · · ·DN
=

R
∑

r=0

C(r)
µ1...µr

In,µ1...µr

N , (6)

where the tensor integrals have the decomposition

In,µ1...µr

N =
∑

j1...jr

[rj1 · · · rjr ]
µ1...µr AN,r

j1...jr
+

∑

j1...jr−2

[

g··rj1 · · · rjr−2

]µ1...µr

BN,r
j1...jr−2

+
∑

j1...jr−4

[

g··g··rj1 · · · rjr−4

]µ1...µr

CN,r
j1...jr−4

. (7)

The coefficient functions AN,r, BN,r and CN,r are implemented in the Golem95 library,
which apart from these tensor coefficients, also provides all the scalar integrals, both
finite and divergent ones5, involving massless and massive particles with real masses.
An extension of the library which, amongst other improvements, allows for complex
masses will be released soon.

2.4 Tensorial Reconstruction at the Integrand Level

In Equations (5) and (6) we introduced two different decompositions of the numerator
function N (q̂, µ2), which can be rewritten as

N (q̂, µ2) =

⌊R/2⌋
∑

α=0

(

µ2
)α

R−2α
∑

r=0

Ĉ(r,α)
µ1...µr

q̂µ1 · · · q̂µr (8)

4http://lappth.in2p3.fr/Golem/golem95.html
5regulated dimensionally
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It turns out that a method for the numerical reconstruction of the tensor coefficients
Ĉ(r,α) can be constructed by means of extracting the coefficients of a multivariate poly-
nomial in the variables (q̂0, . . . , q̂3, µ2). As explained in Section 2.2, a numerical imple-
mentation of N (q̂, µ2) is sufficient as input for such a reconstruction, which is described
in detail in [38]. For nearly all relevant cases tensorial reconstruction (8) requires fewer
samplings of the numerator function than reduction at the integrand level (5). An im-
provement of the Samurai algorithm can therefore be achieved by passing a numerator
function to the tensor reduction which has been obtained from the original numerator
by tensorial reconstruction. Another possibility is to combine Samurai and Golem95
as shown in Figure 1.

Reconstruction Test

Run Samurai with reconstructed N(q)

Contract Tensor Coeff. in golem95

Construct Tensor Coefficients

failure

success

Figure 1: Possible ways of using Samurai and Golem95 together with tensorial re-
construction. On the left branch Samurai is called with the numerator reconstructed
according to Eq. (8), which can speed up the calculation. If the consistency check in
Samurai fails Golem95 is called as a rescue system. On the right branch the call to
Samurai is skipped and Golem95 is used as the sole tensor reduction method.

3 Applications

3.1 Automated One-Loop Matrix Element Evaluation

We have combined the components described in Section 2 to build an automated gen-
eral one-loop evaluator for matrix elements (GOLEM). The implementation is realised
in form of a python program called golem-2.0 [39–41]. We have recently added an
interface for importing Feynman rules from FeynRules [42]. Furthermore, the program
supports the Binoth Les Houches Accord [13] which defines a standard way of com-
municating information between Monte Carlo generators and one-loop matrix element
codes. The numerical code is generated in Fortran 95 using the optimising code gen-
erator haggies [43] but can be linked both by the Fortran [44] and C conventions.
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3.2 Results for pp → bb̄bb̄+X

At the LHC the signature of four b-jets can be a significant background for Higgs
searches in models beyond the Standard Model [23,45,46]. Owing to large uncertainties
and huge backgrounds this search channel has been neglected in most phenomenological
studies for the LHC. Since in some BSM scenarios one of the Higgs bosons can be
predominantly decay into a four-b final state, it will be crucial to include the NLO
corrections in αs in future studies.

In our setup, the virtual matrix elements have been generated using golem-2.0 for
the processes qq̄/gg → q1q̄1q2q̄2, where q, q1 and q2 represent different quark flavours.
The amplitudes for the bb̄bb̄ final state have been obtained using the relation [40]

Abb̄bb̄(1, 2; 3, 4, 5, 6) = Aq1q̄1q2q̄2(1, 2; 3, 4, 5, 6)−Aq1q̄1q2q̄2(1, 2; 3, 6, 5, 4), (9)

where a permutation of the momenta encodes a simultaneous permutation of momenta,
colour and helicity labels. This trick reduces the number of diagrams and therefore the
code size by a factor two. The Born level amplitude and the real emission corrections
were calculated using MadGraph [47] and MadEvent [48]; for the subtraction of the
infrared singularities MadDipole [8, 10] has been employed. On top of the programs
described in Section 2, the library OneLOop [49] was used for the evaluation of the scalar
integrals. The virtual corrections were integrated over phase space by reweighting sets
of unweighted Born level events {pi}. In order to obtain the virtual corrections for an
observable defined by the measurement function F({pi}) we evaluate the Monte Carlo
sum

〈F〉virt =
σBorn

N

N
∑

i=1

(

1 +
A†

BornAvirt + h.c.

A†
BornABorn

)

F({pi}). (10)

In order to obtain an estimate for the computational cost and the numerical stability
of the generated code, we have evaluated the matrix element for 500 points, starting
from a fixed kinematics as specified in [50] and rotating the final state particles about
the z-axis which coincides with the direction of the incoming particles.

The results for the gluon induced subprocess are shown in Figure 2. As expected [50,
51] the amplitude develops a relatively sharp peak around θ0 ≈ 2.32 and at θ1 = θ0 +π
because these points are close to a double parton scattering kinematics. On a Xeon 5500
CPU the computation of a single phase space point in our setup requires 18 seconds for
the virtual corrections and 11ms for the real corrections including subtractions.

4 Conclusion

In this talk we have reported on the status and various developments in the Golem
and the Samurai project. Samurai is a program for the unitarity based reduction of
one-loop amplitudes which, amongst other improvements, preserves the n-dimensional

7



-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0 π/2 π 3π/2 2π

2
s 

R
e 

M
B*
M

V

rotation angle θ

Born
Virtual

Figure 2: Born (dashed) matrix element squared and the interference term between
Born and virtual corrections (straight line) of the gg → bb̄bb̄ amplitude. The curves
have been obtained by rotating the final state particles about the z-axis. The amplitude
peaks around θ0 ≈ 2.32 and θ1 = θ0 + π which are points close to double parton
scattering kinematics.

information of the numerator and is therefore capable of evaluating the amplitude
including all rational terms. The tensor reduction library Golem95 has been extended
with integrals with massive loop propagators; a new version extending the integrals
further to the case of complex masses will be released soon. We have presented a
method for the numerical reconstruction of tensor coefficients from the numerator of the
integrand of a one-loop Feynman diagram, which can be used to combine the advantages
of unitarity based and conventional tensor reduction methods. These different tensor
reduction strategies are combined in the one-loop matrix element generator golem-2.0,
which has been used for the calculation of the QCD corrections of the process pp →
bb̄bb̄+X . Phenomenological results for this process are to be expected soon.
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