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Abstract

We review lattice results relevant for pion and kaon physics with the aim of making them
easily accessible to the particle physics community. Specifically, we review the determina-
tion of the light-quark masses, the form factor f+(0), relevant for the semileptonic K → π
transition at zero momentum transfer as well as the ratio fK/fπ of decay constants and
discuss the consequences for the elements Vus and Vud of the CKM matrix. Furthermore,
we describe the results obtained on the lattice for some of the low-energy constants of
SU(2)L×SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the deter-
mination of the BK parameter of neutral kaon mixing. We introduce quality criteria and
use these when forming averages. Although subjective and imperfect, these criteria may
help the reader to judge different aspects of current lattice computations. Our main re-
sults are summarized in section 1.2, but we stress the importance of the detailed discussion
that underlies these results and constitutes the bulk of the present review.
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1 Introduction

Flavour physics provides an important opportunity for exploring the limits of the Standard
Model of particle physics and in constraining possible extensions of theories “Beyond the
Standard Model”. As the LHC explores a new energy frontier, the importance of flavour
physics will grow still further, in searches for signatures of new physics through precision
measurements and/or in helping to unravel the theoretical framework behind direct discoveries
of new particles. The major theoretical limitation arises from the precision with which strong
interaction effects can be quantified and large-scale numerical simulations of lattice QCD
provide the opportunity of computing these effects from first principles. In this paper we
review the current status of lattice results for a variety of physical quantities in low-energy
physics; our aim is to provide the answer to the frequently posed question “What is currently
the best lattice value for a particular quantity?” in a way which is readily accessible to
non-lattice-experts. This is generally not an easy question to answer; different collaborations
use different lattice actions (discretizations of QCD) with a variety of lattice spacings and
volumes, and with a range of masses for the u and d quarks. Not only are the systematic
errors therefore different, but also the methodology used to estimate these uncertainties vary
between collaborations. Below we summarize the main features of each of the calculations and
provide a framework for judging and combining the different results. Sometimes it is a single
result which provides the “best” value; more often it is a combination of results from different
collaborations. Indeed, the consistency of values obtained using different formulations adds
significantly to our confidence in the results.

1.1 Scope of the present review

The Flavianet Lattice Averaging Group (FLAG) was constituted in November 2007, at a
general meeting of the European Network on Flavour Physics (Flavianet), with the remit
of providing the current lattice results to the network’s working groups and to the wider
community. In this paper we focus on physically important quantities in kaon and pion
physics, specifically the masses of the light quarks, the CKM matrix element Vus determined
from leptonic and semileptonic kaon decays, the BK parameter of K0 – K̄0 mixing and the
low-energy constants of the SU(2)L× SU(2)R and SU(3)L× SU(3)R chiral Lagrangians. In the
future, we plan to extend the range of topics covered and to update the material regularly.
Below, we review papers which appeared before the closing date of the present edition, 28
February 2011. The averages are based on the results quoted in the tables, which exclusively
list articles that appeared before this date. Most of the data concern simulations for which
the masses of the two lightest quarks are set equal. This is indicated by the notation: Nf =
2 + 1 + 1, for instance, denotes a lattice calculation with four dynamical quark flavours and
mu = md 6= ms 6= mc. Our review is also available on the FLAG webpage [1], which will
be updated as new lattice results appear. A compilation of some of the results discussed
below can also be found on the web page of Laiho, Lunghi and Van de Water [2, 3]. These
authors restrict themselves to simulations with Nf = 2+1 dynamical flavours, but in addition
cover lattice results for bound states containing charmed or beauty quarks, which are beyond
the scope of the present review. Our analysis does include simulations with Nf = 2. The
significance of these data for the physics conclusions to be drawn from the work done on the
lattice is discussed in section 2.2.

It is by now generally accepted that, taken together, QCD and QED provide a very
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accurate approximation for the laws governing the low energy properties of nature – other
degrees of freedom, such as those of theW and Z bosons, appear to be frozen at low energies.
Moreover, since QED is infrared stable, the electromagnetic interaction can be dealt with
perturbatively at low energy, but for QCD, this is not the case. The present review deals
with the information obtained about the low energy structure of that theory by simulating it
on a lattice.

Lattice QCD is a mature field today as a result of a 30-year history of theoretical and
computational developments, many of which were tested on quenched simulations. Indeed
the remarkable recent progress in the precision of lattice calculations is due to improved
algorithms, better computing resources and, last but not least, conceptual developments, such
as improved actions that reduce lattice artifacts, regularizations which preserve (remnants of)
chiral symmetry, understanding the finite size effects, non-perturbative renormalization, etc.
For recent discussions of these developments, we refer to [4, 5]. A concise characterization
of the various discretizations that underlie the results reported in the present review is given
in appendix A.1.2 (cf. [6] for a more extended overview). The recent developments in the
domain of computer algorithms were triggered by [7–10]. For an outline of the progress in
computer architecture, we refer to [11], which also contains an overview of recent developments
in simulation-algorithms.

Each discretization has its merits, but also its shortcomings. One of the main points
emerging from this review is that the large variety of discretizations employed by the various
collaborations lead to consistent results, confirming universality within the accuracy reached.
In our opinion, only the eventual convergence of the various lattice results, obtained with
different discretizations and methods, can lead to a reliable determination, for which all
systematic errors can be claimed to be fully under control.

The lattice spacings reached in recent simulations go down to 0.05 fm or even smaller. In
that region, growing autocorrelation times may slow down the sampling of the configurations
[12–16]. Many groups check for autocorrelations in a number of observables, including the
topological charge, for which a rapid growth of the autocorrelation time is observed if the
lattice spacing becomes small. In the following, we assume that the continuum limit can be
reached by extrapolating the existing simulations.

Lattice simulations of QCD currently involve at most four dynamical quark flavours. To
connect these with the QCD sector of the Standard Model, which is characterized by Nf = 6,
one considers a sequence of effective theories, obtained from full QCD by sending one of
the quark masses after the other to infinity: QCD5, QCD4, . . . The series terminates with
gluodynamics, QCD0. The physical value of the coupling constant is conventionally specified
in terms of the value in QCD5, in the MS scheme at scale µ = MZ . We characterize the
masses of the light quarks by their running MS values in QCD4 at scale µ = 2 GeV.2

In this language, lattice calculations with Nf = 3 concern QCD3. This theory deviates
from full QCD by Zweig-suppressed corrections of O(1/m2

c). Note that calculations with
Nf = 2 dynamical flavours often include strange valence quarks interacting with gluons, so
that bound states with the quantum numbers of the kaons can be studied – what these
simulations share with QCD2 is that strange sea quark fluctuations are neglected. Likewise,
calculations done in the quenched approximation, in which sea quark effects are treated as a

2Note that this convention is not universally adopted – the scale at which QCD3 is matched to QCD4 is
not always taken below 2 GeV. The difference between the numerical values in QCD3 and QCD4 is small, but
with the increase of precision on the lattice, it does become necessary to specify which one of these effective
theories the quoted running masses refer to (see section 3).
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mean field, can be made to involve light valence quarks and mesons as well as baryons, while
in QCD0, the spectrum exclusively contains glueballs.

For Nf ≤ 3, the connection between the observables and the running coupling constant
and quark masses of the effective theory is now understood at the non-perturbative level. In
the case of QCD3, for instance, which is obtained from the QCD sector of the Standard Model
by sending mt,mb and mc to infinity, the running quark masses mu(µ), md(µ), ms(µ) and
the running coupling constant g(µ) can unambiguously be related to the masses Mπ+ , MK+ ,
MK0 and the mass of one of the baryons that occur in the spectrum, so that the simulation
yields parameter free results for all of the observables of the effective theory in terms of these
masses. The lattice results obtained so far, which concern the isospin limit of QCD3, agree
with experiment, within the accuracy of the calculation. The results reported for the masses
of the long-lived baryons in BMW 08 [17], for instance, have a precision of better than 4%. In
particular, if the scale is fixed with MΞ, the mass of the Ω can be calculated to an accuracy
of 1.5%. The fact that the result agrees with experiment indicates that the residual effects
generated by the neglected heavy degrees of freedom are small.

We concentrate on pion and kaon observables and assume that, at the precision indicated,
simulations which do not account for the heavy degrees of freedom represent a sufficiently
accurate approximation to full QCD. In particular, for fK/fπ and f+(0), where flavour sym-
metry suppresses the dynamics, we expect the effects generated by the presence of heavy
sea quarks to be too small to be seen, despite the fact that the level of accuracy reached
is impressive indeed. We emphasize that the estimates quoted below and labeled Nf = 2
or Nf = 2 + 1 concern the values of the relevant quantities in full QCD – the label merely
indicates the method by means of which these estimates are obtained.

At low energies, the fact that QCD has an approximate, spontaneously broken chiral
symmetry plays a crucial role. In the limit where the masses of the three lightest quarks are
set to zero, this symmetry becomes exact, so that the spectrum contains a massless octet
of Nambu-Goldsone bosons. There are lattice formulations of the theory that preserve this
symmetry and we refer to appendix A.1.2 for an overview. We rely on the understanding
of the dependence on the lattice spacing reached with Symanzik’s effective theory [18, 19].
This framework can be combined with Chiral Perturbation Theory (χPT), to cope with the
Nambu-Goldstone nature of the lowest excitations that occur in the presence of light quarks
[20–40]. The form of the effective theory depends on the discretization used – see appendix
A.4 for a brief characterization of the different variants in use.

As the calculations become more precise, it is important to emphasize the need for contin-
ued close collaboration between the lattice and χPT communities. Lattice computations are
generally performed at u and d quark masses which are heavier than the physical ones and
the results are then extrapolated to the physical point. Although these masses are decreasing
very significantly with time (see, in particular, the most recent calculations by BMW [41] and
PACS-CS [42]), it remains true that this extrapolation is one of the most significant sources
of systematic error. Indeed several lattice collaborations have found that the expansion of
M2

π , M
2
K , fπ, fK to first non-leading order in the quark masses mu,md,ms [SU(3) χPT to

NLO] does not yield an adequate parametrization of the data, and so cannot reliably be used
for guiding the chiral extrapolation. In part, the problem may be due to the fact that in the
simulations, the mean mass of u and d is usually significantly heavier than in nature, while
ms is taken in the vicinity of the physical mass of the strange quark, so that the kaon mass
is then too heavy for χPT to be of use, but it may also indicate that contributions of NNLO
need to be accounted for to have sufficient accuracy (an analytic approximation for the latter
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that goes beyond the double-log approximation [43] is proposed in [44, 45]). One method to
circumvent the impasse is to (a) work at a smaller value of ms, so that the data taken concern
the region where the kaon mass does not exceed its physical value [46, 47] and (b) use NNLO
χPT for the extrapolation to the quark masses of physical interest. Alternatively, one may
try to apply brute force, lower the mean mass of u and d to the physical value and avoid using
an extrapolation altogether [41, 42]. Which one of these approaches yields better results yet
remains to be seen, but all of them can teach us something about the low-energy regime of
QCD and can contribute to a better determination of the low-energy constants of χPT.

1.2 Summary of the main results

We end this introduction with a summary of our main results, but we stress that they should
be considered together with the many comments and observations which accompany their
determination. The lattice results for the running masses of the three lightest quarks are
discussed in detail in section 3. Using the MS scheme and fixing the running scale at 2 GeV,
the lattice data with Nf = 2 + 1 dynamical flavours lead to

mud = 3.43 ± 0.11MeV , ms = 94± 3MeV ,
ms

mud
= 27.4 ± 0.4 , (1)

with mud ≡ 1
2(mu + md). We emphasize that these results represent a very significant im-

provement of our knowledge: as compared to the estimates for the light quark masses given
by the Particle Data Group [48], the uncertainties in the above estimates for ms, mud and
ms/mud are reduced by about an order of magnitude, in all three cases ! Note also that the
estimates (1) agree with the only Nf = 2 determination that satisfies our quality criteria [49]:

mud = 3.6± 0.2MeV , ms = 95± 6MeV ,
ms

mud
= 27.4 ± 0.4 . (2)

The lattice simulations are performed with mu = md, so some additional input is required to
obtain mu and md separately (see the discussion in section 3.4). We quote

mu = 2.19 ± 0.15MeV , md = 4.67 ± 0.20MeV ,
mu

md
= 0.47 ± 0.04 . (3)

In the determination of the CKMmatrix elements Vus and Vud, the term f+(0) (form factor
relevant for the semileptonic transition K0 → π−, evaluated at zero momentum transfer) and
the ratio fK/fπ of the kaon and pion decay constants play a central role. Both of these
quantities can now be determined rather precisely on the lattice. Adding statistical and
systematic errors in quadrature, the results for f+(0) read

f+(0) = 0.959 ± 0.005 , (direct, Nf = 2 + 1), (4)

f+(0) = 0.956 ± 0.008 , (direct, Nf = 2).

On the basis of the detailed discussion in section 4.3, we conclude that the value

f+(0) = 0.956 ± 0.008 (direct) (5)

represents a conservative estimate for the range permitted by the presently available direct
determinations of f+(0) in lattice QCD.
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For fK/fπ, the results are

fK/fπ = 1.193 ± 0.005 , (direct , Nf = 2 + 1) , (6)

fK/fπ = 1.210 ± 0.018 , (direct , Nf = 2) ,

where the first number is the average of three calculations whereas the second stems from
a single one. We refer to these results, which do not rely on the Standard Model, as direct
determinations.

Two precise experimental results constrain the determination of Vus and Vud: the observed
rate for the semileptonic K0 → π− decay determines the product |Vus|f+(0), while the ratios
of the kaon’s and pion’s leptonic widths determine the ratio |Vus|fK/|Vud|fπ. In section 4.4,
these results are combined with the lattice determinations of fK/fπ and f+(0) to test the
unitarity of the CKM matrix. We find that the first row obeys this property within errors:
|Vud|2 + |Vus|2 + |Vub|2 = 1.002 ± 0.015 and 1.036 ± 0.037 for Nf = 2 + 1 and Nf = 2,
respectively.3 In obtaining these results, we have not made use of the recent determinations
of |Vud| from super-allowed nuclear β-decays [50], but these are perfectly consistent with the
outcome of the lattice calculations. In fact, the unitarity test sharpens considerably if the
results obtained on the lattice are combined with those found in β-decay: the interval allowed
for the sum |Vud|2 + |Vus|2 + |Vub|2 then shrinks by more than an order of magnitude. Since
this interval includes unity, CKM unitarity passes the test.

Within the Standard Model of particle physics, the CKM matrix is unitary. As explained
in section 4.5, this condition and the experimental results for |Vus|f+(0), |Vus|fK/|Vud|fπ
imply three equations for the four quantities |Vud|, |Vus|, fK/fπ, f+(0). Thus it is sufficient
to add one additional constraint, such as the lattice result for fK/fπ or f+(0), to determine
all four of these quantities. Averaging over the numbers obtained for fK/fπ and f+(0) with
Nf = 2 + 1 dynamical quark flavours, we find

|Vud| = 0.97427 ± 0.00021 , |Vus| = 0.2254 ± 0.0009 , (7)

f+(0) = 0.9597 ± 0.0038 ,
fK
fπ

= 1.1925 ± 0.0050 .

The results obtained from the data with Nf = 2 are the same within errors:

|Vud| = 0.97433 ± 0.0042 , |Vus| = 0.2251 ± 0.0018 , (8)

f+(0) = 0.9604 ± 0.0075 ,
fK
fπ

= 1.194 ± 0.010 .

Since the lattice results are consistent with CKM unitarity, it was to be expected that the
above values for f+(0) and fK/fπ are consistent with those derived from the direct determi-
nations, listed in equation (6). The main effect of the unitarity constraint is a reduction of
the uncertainties.

As far as the low-energy constants are concerned, there are many results coming from
lattice calculations which are of interest. A coherent picture does not emerge yet for all cases,
but for two quantities related to the SU(2) chiral expansion, the lattice provides results which
are competitive with what has been obtained from phenomenology. These are

ℓ̄3 = 3.2± 0.8 and
Fπ

F
= 1.073 ± 0.015 (9)

3The experimental information on |Vub| shows that the contribution from this term is negligibly small.
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which are estimates based on Nf = 2, Nf = 2+1 and even Nf = 2+1+1 calculations. We refer
the interested reader to Section 5 for further results and all details about the calculations.

For the BK parameter of K-K̄ mixing we quote (BK refers to the MS-scheme at scale 2
GeV, while B̂K denotes the corresponding renormalization group invariant parameter):

BK = 0.536 ± 0.017 , B̂K = 0.738 ± 0.020 (Nf = 2 + 1) , (10)

BK = 0.516 ± 0.022 , B̂K = 0.729 ± 0.030 (Nf = 2) .

1.3 Plan of the paper

The plan for the remainder of this paper is as follows. In the next section we suggest criteria
by which the quality of lattice calculations can be judged and compared. We recognize of
course that these are necessarily subjective and generally give an incomplete picture of the
quality of a given simulation. Nevertheless we feel that some framework of quality standards
is necessary. There then follow five sections with physics results: quark masses (section 3),
Vus as determined from leptonic and semileptonic Kaon decays (section 4), the low energy
constants of SU(2)L×SU(2)R and SU(3)L×SU(3)R chiral perturbation theory (sections 5.1
and 5.2 respectively) and the BK parameter which contains the non-perturbative strong
interaction effects in K0–K̄0 mixing (section 6).

The final point we wish to raise in this introduction is a particularly delicate one. As
stated above, our aim is to make lattice QCD results easily accessible to non-lattice-experts
and we are well aware that it is likely that some readers will only consult the present paper
and not the original lattice literature. We consider it very important that this paper is not
the only one which gets cited when the lattice results which are discussed and analyzed here
are quoted. Readers who find the review and compilations offered in this paper to be useful
are therefore kindly requested also to cite the original sources – the bibliography at the end
of this paper should make this task easier. Indeed we hope that the bibliography will be one
of the most widely used elements of the whole paper.

2 Quality criteria

In this article we present a collection of results and references concerning lattice results of
physical quantities in low energy particle physics. In addition however, we aim to help the
reader in assessing the reliability of particular lattice results without necessarily studying the
original article in depth. We understand that this is a delicate issue and are well aware of
the risk of making things “simpler than they are”. On the other hand, it is rather common
nowadays that theorists and experimentalists use the results of lattice calculations in order
to draw the physics conclusions coming from a new measurement or a new analysis of a set of
measurements, without a critical assessment of the quality of the various calculations. This
may lead to a substantial underestimate of systematic errors or in the worst case to a distorted
physics conclusion. We believe that despite the risks mentioned, it is important to provide
some compact information about the quality of a calculation.

2.1 Colour code

In the past, at lattice conferences, some speakers have used a “colour code” to provide such
information, for example when showing plots [51]. We find that this way of summarizing the
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quality of a lattice calculation serves well its purpose and adopt it in what follows. We identify
a number of sources of systematic errors for which a systematic improvement is possible and
assign to each calculation a colour with respect to each of these:
⋆ when the systematic error has been estimated in a satisfactory manner and convincingly

shown to be under control;

• when a reasonable attempt at estimating the systematic error has been made, although
this could be improved;

� when no or a clearly unsatisfactory attempt at estimating the systematic error has been
made.

The precise criteria used in determining the colour coding is unavoidably time-dependent
because as lattice calculations become more accurate the standards against which they are
measured become tighter. Today, our definition of the colour code related to the systematic
error coming from i) the chiral extrapolation, ii) the continuum extrapolation, iii) the finite-
volume effects, and (where applicable) iv) the renormalization and v) the running of operators
and their matrix elements are as follows:

• Chiral extrapolation:
⋆ Mπ,min < 250 MeV

• 250 MeV ≤Mπ,min ≤ 400 MeV
� Mπ,min > 400 MeV
It is assumed that the chiral extrapolation is done with at least a three-point analysis
– otherwise this will be explicitly mentioned in a footnote. In case of nondegeneracies
among the different pion states Mπ,min stands for a root-mean-squared (RMS) pion
mass.

• Continuum extrapolation:
⋆ 3 or more lattice spacings, at least 2 points below 0.1 fm

• 2 or more lattice spacings, at least 1 point below 0.1 fm
� otherwise
It is assumed that the action is O(a)-improved, i.e. the discretization errors vanish
quadratically with the lattice spacing – otherwise this will be explicitly mentioned in
a footnote. Moreover the colour coding criteria for non-improved actions change as
follows: one lattice spacing more needed.

• Finite-volume effects:
⋆ Mπ,minL > 4 or at least 3 volumes

• Mπ,minL > 3 and at least 2 volumes
� otherwise
These criteria apply to calculations in the p-regime, and it is assumed that Lmin ≥ 2
fm, otherwise this will be explicitly mentioned in a footnote and a red square will be
assigned. In case of nondegeneracies among the different pion states Mπ,min stands for
a root-mean-squared (RMS) pion mass.

• Renormalization (where applicable):
⋆ non-perturbative

• 2-loop perturbation theory
� otherwise
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• Running (where applicable):

For scale-dependent quantities, such as quark masses or BK , it is essential that contact
with continuum perturbation theory can be established. Various different methods
are used for this purpose (cf. Appendix A.3): Regularization-independent Momentum
Subtraction (RI/MOM), Schrödinger functional, direct comparison with (resummed)
perturbation theory. In the case of the quark masses, a further approach has been
proposed recently: determination of ms via the ratio mc/ms. Quite irrespective of
the particular method used, the uncertainty associated with the choice of intermediate
renormalization scales in the construction of physical observables must be brought under
control. This is best achieved by performing comparisons between non-perturbative and
perturbative running over a reasonably large range of scales. These comparisons were
initially only made in the Schrödinger functional (SF) approach, but are now also being
performed in RI/MOM schemes.

In the framework of the Schrödinger functional, the comparison of the lattice results
for the relevant renormalization factors with perturbation theory has thoroughly been
explored. Among the calculations relying on the RI/MOM framework, the most recent
ones are aiming for a level of control over running and matching which is of comparable
quality. However, since these approaches are new, we postpone the formulation of
quantitative criteria until the systematics associated with their use is better understood.
We mark those data for which information about non-perturbative running checks is
available and give some details, but do not attempt to translate this into a colour-code.

The mass of the pion plays an important role in our colour coding, but there are fermion
action discretizations in which pion states are non-degenerate. This is the case in particu-
lar for the twisted-mass formulation of lattice QCD. In that discretization, isospin symme-
try and parity are traded for a chiral symmetry which simplifies the renormalization of the
theory [52] and, at “maximal twist”, eliminates leading O(a) discretization errors from all
observables [53]. As a consequence of the loss of isospin symmetry, the charged and neutral
pions have different masses, even when the u and d quarks are mass degenerate. This mass
difference is an O(a2) discretization effect, whose actual size depends on the specific choice
of the lattice regularization (in both the gauge and fermionic part of the action). In the
Nf = 2 simulation of [54] it is found 1 −Mπ0/Mπ+ ∼ 0.2 for a ∼ 0.09 fm. Since the charged
pion mass turns out also to be larger than the mass of the neutral pion, when applying the
criterion adopted for assessing the quality of the chiral extrapolation to twisted mass fermion
simulations we will conservatively choose as Mπ,min the mass of the charged pion.

In staggered fermion calculations,4 the Nambu-Goldstone pion has “taste” partners whose
masses are those of the Nambu-Goldstone boson plus a discretization error of order a2, which
can be significant at larger lattice spacings. For instance, in MILC’s simulations, at a =
0.15 fm and for a Nambu-Goldstone mass of 241 MeV, the largest taste partner (i.e. the taste
singlet) mass is 673 MeV and the RMS taste-partner mass is 542 MeV [59]. The situation
improves significantly as the lattice spacing is reduced: the singlet and RMS masses become
341 MeV and 334 MeV at a = 0.045 fm for a Nambu-Goldstone of mass 324 MeV. While it
is possible to pick out the Nambu-Goldstone pion in the valence sector, the contributions of
the sea correspond to some complicated admixture of the 16 taste partners. MILC reduces to
one the contribution of the four quark tastes associated with a single quark flavor by taking

4We refer the interested reader to a number of good reviews written about the subject [6, 55–58].
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the fourth root of the quark determinant, and hence the name rooted staggered fermions.
In any event, the effective pion mass in the sea can be significantly larger than that of
the valence Nambu-Goldstone and, in comparing staggered fermion calculations with those
performed using other discretizations, it makes sense to quote as an Mπ,min a value which is
characteristic of the sea pion mass contributions. For most quantities, the RMS taste-partner
pion mass is a reasonable choice.

Of course any colour coding has to be treated with caution. First of all we repeat that the
criteria are subjective and evolving. Sometimes a single source of systematic error dominates
the systematic uncertainty and it is more important to reduce this uncertainty than to aim
for green stars for other sources of error. In spite of these caveats we hope that our attempt
to introduce quality measures for lattice results will prove to be a useful guide. In addition we
would like to underline that the agreement of lattice results obtained using different actions
and procedures evident in many of the tables presented below provides further reassurance.

Finally it is important to stress that the colour coding does not imply any credit for the
development of theoretical or technical ideas used in the simulations. Frequently new ideas
and techniques are first tested on smaller lattices, perhaps on quenched configurations or at
heavier quark masses, to demonstrate their feasibility. They may then be applied on more
modern lattices by other collaborations to obtain physical results, but since our primary aim
is to review the latest results concerning quantities of physical interest, we do not try to
attribute credit to the underlying ideas or techniques.

For a coherent assessment of the present situation, the quality of the data plays a key
role, but the colour code cannot be made visible in the figures. Simply showing all data
on equal footing would give the misleading impression that the overall consistency of the
information available on the lattice is questionable. As a way out, the figures do indicate the
quality in a rudimentary way: data for which the colour code is free of red tags are shown as
green symbols, otherwise they are depicted in red. Note that the pictures do not distinguish
updates from earlier data obtained by the same collaboration – the reader needs to compare
the legends to identify closely correlated data.

2.2 Averages and estimates

For some observables there may be enough independent lattice calculations of good quality
that it makes sense to average them and propose such an average as the best current lattice
number. In order to decide if this situation is realized for a certain observable we rely on
the colour coding. Unless special reasons are given for making an exception, we restrict the
averages to data for which the colour code does not contain any red tags. In some cases,
the averaging procedure nevertheless leads to a result which in our opinion does not cover
all uncertainties – this happens, in particular, if some of the data have comparatively small
systematic errors. In such cases, we may provide our estimate as the best current lattice
number. This estimate is not obtained with a prescribed mathematical procedure, but is
based on our own assessment of the information collected on the lattice.

There are two other important criteria which also play a role in this respect, but which
cannot be represented with the colour coding, because a systematic improvement is not possi-
ble. These are: i) the publication status, and ii) the number of flavours. As far as the former
is concerned we adopt the following policy: we consider in our averages only calculations
which have been published, i.e. which have been endorsed by a referee. The only exception
to this rule is an obvious update of numbers appearing in a previous publication. Other cases
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will be listed and identified as such also by a (coloured) symbol, but not used in averages:

• Publication status:
A published or plain update of published results
P preprint
C conference contribution

Several active lattice collaborations do their calculations with only two dynamical flavours
(Nf = 2). We are not aware of visible differences between results obtained in this framework
and QCD with Nf = 3. At the present level of accuracy, it is thus perfectly meaningful to
compare results obtained for Nf = 2 with experiment. On the other hand, the two theories
are intrinsically different; the manner in which quantities like the coupling constant or the
quark masses depend on the running scale depends on Nf .

Since we are not aware of an a priori way to quantitatively estimate the difference between
Nf = 3 and Nf = 2 calculations we will present separate averages (where applicable) for the
two sets of calculations. Averages of Nf = 3 and Nf = 2 calculations will not be provided. A
first lattice calculation with Nf = 4 dynamical flavours has recently appeared [60]. While in
principle it would be cleaner to keep Nf = 4 separate from the rest, we believe that, for the
quantities under discussion in this review, the effects of the c-quark are below the precision
of current lattice calculations: if appropriate, we will average Nf = 4 and Nf = 3 results.

We stress that Nf = 2 calculations have in several cases a better control over systematic
effects than Nf = 3 calculations, as will be clear in colour coding tables below, and therefore
play a very important role today in the comparison with experiment. Several calculations
discussed below provide examples of the relevance of Nf = 2 calculations today, and in
particular they enter in some of our estimates. In the future, as the accuracy and the control
over systematic effects in lattice calculations will increase, it will hopefully be possible to
see a difference between Nf = 2 and Nf = 3 calculations and so determine the size of the
Zweig-rule violations related to strange quark loops. This is a very interesting issue per se,
and one which can be quantitatively addressed only with lattice calculations.

One of the problems that arises when forming averages is that not all of the data sets
are independent – in fact, some rely on the same ensembles. For this reason, we do not
average updates with earlier results. Note that, in this respect, the figures give a somewhat
distorted picture: they include all of the data listed in the tables and, moreover, indicate their
quality only in a very rudimentary way. Specific problems encountered in connection with
correlations between different data sets are mentioned in the text. In our opinion, the variety
of algorithms and configurations used and the fact that we attach conservative errors to our
estimates ensure that these correlations do not distort our results in a significant manner.

We take the mean values from the standard procedure, where χ2 is evaluated by adding
the statistical and systematic errors in quadrature (data sets for which the error estimate
only accounts for the statistical uncertainties are not taken into consideration). The standard
procedure also offers an estimate for the net uncertainty δ to be attached to the mean: if the
fit is of good quality (χ2

min/dof ≤ 1), calculate δ from χ2 = χ2
min + 1; otherwise, stretch the

result obtained in this way by the factor S =
√
χ2
min/dof. The problem with this recipe is

that the systematic errors are not stochastic. In particular, applying it to the lattice data on
mud, ms, ms/mud and fK/fπ, one arrives at a total error that is smaller than the smallest
systematic error of the individual data sets. In our opinion, the latter represents a lower
limit for the total error to be attached to the average. It is not a trivial matter, however,
to split the total error of the average into a statistical and a systematic part. We are not
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aware of a generally accepted prescription for doing this and refrain from proposing one in
this review. In application to the lattice data to be discussed below, where the statistical
errors are small compared to the systematic ones and thus barely affect the result, replacing
the quantity δ by the smallest systematic error of the individual data sets does not lead to
a significant underestimate of the total error. In the following, we adopt this prescription,
which has the advantage of being simple and transparent. For a more sophisticated discussion
of the problem, we refer to [61]. At the precision used in the present review, the numerical
results obtained for the total errors with the method proposed there are the same.

3 Quark masses

Quark masses are fundamental parameters of the Standard Model. An accurate determination
of these parameters is important for both phenomenological and theoretical applications. The
charm and bottom masses, for instance, enter the theoretical expressions of several cross
sections and decay rates, in heavy quark expansions. The up, down and strange quark masses
govern the amount of explicit chiral symmetry breaking in QCD. From a theoretical point of
view, the values of quark masses provide information about the flavour structure of physics
beyond the Standard Model. The Review of Particle Physics of the Particle Data Group
contains a review of quark masses [48], which covers light as well as heavy flavours. The
present summary only deals with the light quark masses (those of the up, down and strange
quarks), but discusses the lattice results for these in more detail.

Quark masses cannot be measured directly with experiment, because quarks cannot be
isolated, as they are confined inside hadrons. On the other hand, quark masses are free
parameters of the theory and, as such, cannot be obtained on the basis of purely theoretical
considerations. Their values can only be determined by comparing the theoretical prediction
for an observable, which depends on the quark mass of interest, with the corresponding
experimental value. What makes light quark masses particularly difficult to determine is the
fact that they are very small (for the up and down) or small (for the strange) compared to
typical hadronic scales. Thus, their impact on typical hadronic observables is minute and it
is difficult to isolate their contribution accurately.

Fortunately, the spontaneous breaking of SU(3)L⊗SU(3)R chiral symmetry provides ob-
servables which are particularly sensitive to the light quark masses: the masses of the resulting
Nambu-Goldstone bosons (NGB), i.e. pions, kaons and etas. Indeed, the Gell-Mann-Oakes-
Renner relation [62] predicts that the squared mass of a NGB is directly proportional to the
sum of the masses of the quark and antiquark which compose it, up to higher order mass
corrections. Moreover, because these NGBs are light and are composed of only two valence
particles, their masses have a particularly clean statistical signal in lattice QCD calculations.
In addition to which, the experimental uncertainties on these meson masses are negligible.

Three flavour QCD has four free parameters: the strong coupling, αs (alternatively ΛQCD)
and the up, down and strange quark masses, mu, md and ms. However, present day lattice
calculations are performed in the isospin limit, and the up and down quark masses get replaced
by a single parameter: the isospin averaged up and down quark mass, mud = 1

2(mu +md). A
lattice determination of these parameters requires two steps:

1. Calculations of three experimentally measurable quantities are used to fix the three bare
parameters. As already discussed, NGB masses are particularly appropriate for fixing
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the light quark masses. Another observable, such as the mass of a member of the baryon
octet, can be used to fix the overall scale. It is important to note that most of present
day calculations are performed at values of mud which are still substantially larger than
its physical value, typically four times as large. Thus, reaching the physical up and down
quark mass point still requires a significant extrapolation. The only exceptions are the
PACS-CS 08, 09, 10 [42, 63, 64] and BMW 08, 10A [17, 65] calculations discussed below,
where masses very close to the physical value are reached. The situation is radically
different for the strange quark. Indeed, modern simulations can include strange quarks
whose masses bracket its physical value, and only interpolations are needed.

2. Renormalizations of these bare parameters must be performed to relate them to the
corresponding cutoff-independent, renormalized parameters.5 These are short distance
calculations, which may be performed perturbatively. Experience shows that one-loop
calculations are particularly unreliable for the renormalization of quark masses, in all
discretizations. Thus, at least two loops are required to have trustworthy results. Nev-
ertheless, it is best to perform the renormalizations non-perturbatively, to avoid poten-
tially large perturbative uncertainties due to neglected higher order terms.

Of course, in quark mass ratios the renormalization factor cancels, so that this second step is
no longer relevant.

3.1 Contributions from the electromagnetic interaction

As mentioned in section 2, the present review relies on the hypothesis that, at low energies,
the Lagrangian LQCD + LQED describes nature to a high degree of precision. Moreover, we
assume that, at the accuracy reached by now and for the quantities discussed here, the
difference between the results obtained from simulations with three dynamical flavours and full
QCD is small in comparison with the quoted systematic uncertainties. The electromagnetic
interaction, on the other hand, cannot be ignored. Quite generally, when comparing QCD
calculations with experiment, radiative corrections need to be applied. In lattice simulations,
where the QCD parameters are fixed in terms of the masses of some of the hadrons, the
electromagnetic contributions to these masses must be accounted for.6

The electromagnetic interaction plays a crucial role in determinations of the ratio mu/md,
because the isospin breaking effects generated by this interaction are comparable to those from
mu 6= md (see subsection 3.4). In determinations of the ratio ms/mud, the electromagnetic
interaction is less important, but at the accuracy reached, it cannot be neglected. The reason
is that, in the determination of this ratio, the pion mass enters as an input parameter. Because

5Throughout this review, the quark masses mu, md and ms refer to the MS scheme at running scale
µ = 2GeV and the numerical values are given in MeV units.

6Since the decomposition of the sum LQCD + LQED into two parts is not unique, specifying the QCD part
requires a convention. In order to give results for the quark masses in the Standard Model at scale µ = 2GeV,
on the basis of a calculation done within QCD, it is convenient to match the two theories at that scale. We
use this convention throughout the present review. Note that a different convention is used in the analysis of
the precision measurements carried out in low energy pion physics. The result a0 Mπ+ = 0.220(5)(2)(6) of the
NA48/2 collaboration [66] for the I = 0 S-wave ππ scattering length, for instance, also concerns QCD in the
isospin limit, but refers to the convention where M̂π is identified with Mπ+ . When comparing lattice results
with experiment, it is important to fix the QCD parameters in accordance with the convention used in the
analysis of the experimental data (for a more detailed discussion, see [67–70]).
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Mπ represents a small symmetry breaking effect, it is rather sensitive to the perturbations
generated by QED.

We distinguish the physical mass MP , P ∈ {π+, π0, K+, K0}, from the mass M̂P within
QCD alone. The e.m. self-energy is the difference between the two, Mγ

P ≡ MP − M̂P . Since
the self-energy of the Nambu-Goldstone bosons diverges in the chiral limit, it is convenient
to replace it by the contribution of the e.m. interaction to the square of the mass,

∆γ
P ≡M2

P − M̂2
P = 2MPM

γ
P +O(e4) . (11)

The main effect of the e.m. interaction is an increase in the mass of the charged particles,
generated by the photon cloud that surrounds them. The self-energies of the neutral ones
are comparatively small, particularly for the Nambu-Goldstone bosons, which do not have a
magnetic moment. Dashen’s theorem [71] confirms this picture, as it states that, to leading
order (LO) of the chiral expansion, the self-energies of the neutral NGBs vanish, while the
charged ones obey ∆γ

K+ = ∆γ
π+ . It is convenient to express the self-energies of the neutral

particles as well as the mass difference between the charged and neutral pions within QCD
in units of the observed mass difference, ∆π ≡M2

π+ −M2
π0 :

∆γ
π0 ≡ ǫπ0 ∆π , ∆γ

K0 ≡ ǫK0 ∆π , M̂
2
π+ − M̂2

π0 ≡ ǫm∆π . (12)

In this notation, the self-energies of the charged particles are given by

∆γ
π+ = (1 + ǫπ0 − ǫm)∆π , ∆γ

K+ = (1 + ǫ+ ǫK0 − ǫm)∆π , (13)

where the dimensionless coefficient ǫ parametrizes the violation of Dashen’s theorem,

∆γ
K+ −∆γ

K0 −∆γ
π+ +∆γ

π0 ≡ ǫ∆π . (14)

Any determination of the light quark masses based on a calculation of the masses of π+,K+

and K0 within QCD requires an estimate for the coefficients ǫ, ǫπ0 , ǫK0 and ǫm.
The first determination of the self-energies on the lattice was carried out by Duncan,

Eichten and Thacker [72]. Using the quenched approximation, they arrived at Mγ
K+ −Mγ

K0 =
1.9MeV. Actually, the parametrization of the masses given in that paper yields an estimate for
all but one of the coefficients introduced above (since the mass splitting between the charged
and neutral pions in QCD is neglected, the parametrization amounts to setting ǫm = 0 ab
initio). Evaluating the differences between the masses obtained at the physical value of the
electromagnetic coupling constant and at e = 0, we obtain ǫ = 0.50(8), ǫπ0 = 0.034(5) and
ǫK0 = 0.23(3). The errors quoted are statistical only: an estimate of lattice systematic errors
is not possible from the limited results of [72]. The result for ǫ indicates that the violations of
Dashen’s theorem are sizable: according to this calculation, the non-leading contributions to
the self-energy difference of the kaons amount to 50% of the leading term. The result for the
self-energy of the neutral pion cannot be taken at face value, because it is small, comparable
with the neglected mass difference M̂π+ − M̂π0 . To illustrate this, we note that the numbers
quoted above are obtained by matching the parametrization with the physical masses for π0,
K+ and K0. This gives a mass for the charged pion that is too high by 0.32 MeV. Tuning
the parameters instead such that Mπ+ comes out correctly, the result for the self-energy of
the neutral pion becomes larger: ǫπ0 = 0.10(7). Also, the uncertainties due to the systematic
errors of the lattice calculation need to be taken into account.
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In an update of this calculation by the RBC collaboration [73] (RBC 07), the electromag-
netic interaction is still treated in the quenched approximation, but the strong interaction is
simulated withNf = 2 dynamical quark flavours. The quark masses are fixed with the physical
masses of π0, K+ and K0. The outcome for the difference in the electromagnetic self-energy
of the kaons reads Mγ

K+ −Mγ
K0 = 1.443(55)MeV. This corresponds to a remarkably small vi-

olation of Dashen’s theorem. Indeed, a recent extension of this work to Nf = 2+1 dynamical
flavours [74] leads to a significantly larger self-energy difference: Mγ

K+−Mγ
K0 = 1.87(10)MeV,

in good agreement with the estimate of Eichten et al. Expressed in terms of the coefficient ǫ
that measures the size of the violation of Dashen’s theorem, it corresponds to ǫ = 0.5(1).

More recently, the BMW collaboration has reported preliminary results for the electromag-
netic self-energies, based on simulations in which a U(1) degree of freedom is superimposed
on their Nf = 2 + 1 QCD configurations [75]. The result for the kaon self-energy difference
readsMγ

K+−Mγ
K0 = 2.2(2)MeV, that is ǫ = 0.66(14), where the error indicates the statistical

uncertainties.
The input for the electromagnetic corrections used by the MILC collaboration is specified

in [76]. In their analysis of the lattice data, ǫπ0 , ǫK0 and ǫm are set equal to zero. For the
remaining coefficient, which plays a crucial role in determinations of the ratiomu/md, the very
conservative range ǫ = 1±1 was used in MILC 04 [77], while in more recent work, in particular
in MILC 09 [6] and MILC 09A [59], this input is replaced by ǫ = 1.2 ± 0.5, as suggested by
phenomenological estimates for the corrections to Dashen’s theorem [78, 79]. First results
of an evaluation of the electromagnetic self-energies based on Nf = 2 + 1 dynamical quarks
in the QCD sector and on the quenched approximation in the QED sector are also reported
by the MILC collaboration [80]. Further calculations using staggered quarks and quenched
photons are underway [81].

The effective Lagrangian that governs the self-energies to next-to-leading order (NLO) of
the chiral expansion was set up in [82]. The estimates in [78, 79] are obtained by replacing
QCD with a model, matching this model with the effective theory and assuming that the
effective coupling constants obtained in this way represent a decent approximation to those
of QCD. For alternative model estimates and a detailed discussion of the problems encoun-
tered in models based on saturation by resonances, see [83–85]. In the present review of the
information obtained on the lattice, we avoid the use of models altogether.

There is an indirect phenomenological determination of ǫ, which is based on the decay
η → 3π and does not rely on models. The result for the quark mass ratio Q obtained from a
dispersive analysis of this decay implies ǫ = 0.70(28) (see section 3.4). While the values found
on the lattice [72–75] are lower, the phenomenological estimate used by MILC 09A [59] is on
the high side. In the following, we take the central value from η-decay, but stretch the error,
so that the numbers given in [59, 72–75] are all within one standard deviation: ǫ = 0.7(5).

We add a few comments concerning the physics of the self-energies and then specify the
estimates used as an input in our analysis of the data. The Cottingham formula [86] represents
the self-energy of a particle as an integral over electron scattering cross sections; elastic as
well as inelastic reactions contribute. For the charged pion, the term due to elastic scattering,
which involves the square of the e.m. form factor, makes a substantial contribution. In
the case of the π0, this term is absent, because the form factor vanishes on account of charge
conjugation invariance. Indeed, the contribution from the form factor to the self-energy of the
π+ roughly reproduces the observed mass difference between the two particles. Furthermore,
the numbers given in [87–89] indicate that the inelastic contributions are significantly smaller
than the elastic contributions to the self-energy of the π+. The low energy theorem of Das,
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Guralnik, Mathur, Low and Young [90] ensures that, in the limit mu,md → 0, the e.m. self-
energy of the π0 vanishes, while the one of the π+ is given by an integral over the difference
between the vector and axial spectral functions. The estimates for ǫπ0 obtained in [72] are
consistent with the suppression of the self-energy of the π0 implied by chiral SU(2)×SU(2).
In our opinion, ǫπ0 = 0.07(7) is a conservative estimate for this coefficient. The self-energy
of the K0 is suppressed less strongly, because it remains different from zero if mu and md

are taken massless and only disappears if ms is turned off as well. Note also that, since
the e.m. form factor of the K0 is different from zero, the self-energy of the K0 does pick up
an elastic contribution. The lattice result for ǫK0 indicates that the violation of Dashen’s
theorem is smaller than in the case of ǫ. In the following, we use ǫK0 = 0.3(3).

Finally, we consider the mass splitting between the charged and neutral pions in QCD.
This effect is known to be very small, because it is of second order in mu − md. There
is a parameter-free prediction, which expresses the difference M̂2

π+ − M̂2
π0 in terms of the

physical masses of the pseudoscalar octet and is valid to NLO of the chiral perturbation
series. Numerically, the relation yields ǫm = 0.04 [91], indicating that this contribution does
not play a significant role at the present level of accuracy. We attach a conservative error also
to this coefficient: ǫm = 0.04(2). The lattice result for the self-energy difference of the pions,
reported in [74], Mγ

π+ −Mγ
π0 = 4.50(23)MeV, agrees with this estimate: expressed in terms

of the coefficient ǫm that measures the pion mass splitting in QCD, the result corresponds
to ǫm = 0.04(5). The corrections of next-to-next-to-leading order (NNLO) have been worked
out [92], but the numerical evaluation of the formulae again meets with the problem that the
relevant effective coupling constants are not reliably known.

In summary, we use the following estimates for the e.m. corrections:

ǫ = 0.7(5) , ǫπ0 = 0.07(7) , ǫK0 = 0.3(3) , ǫm = 0.04(2) . (15)

While the range used for the coefficient ǫ affects our analysis in a significant way, the numerical
values of the other coefficients only serve to set the scale of these contributions. The range
given for ǫπ0 and ǫK0 may be overly generous, but because of the exploratory nature of the
lattice determinations, we consider it advisable to use a conservative estimate.

Treating the uncertainties in the four coefficients as statistically independent and adding
errors in quadrature, the numbers in equation (15) yield the following estimates for the
e.m. self-energies,

Mγ
π+ = 4.7(3)MeV , Mγ

π0 = 0.3(3)MeV , Mγ
π+ −Mγ

π0 = 4.4(1)MeV , (16)

Mγ
K+ = 2.5(7)MeV , Mγ

K0 = 0.4(4)MeV , Mγ
K+ −Mγ

K0 = 2.1(6)MeV ,

and for the pion and kaon masses occurring in the QCD sector of the Standard Model,

M̂π+ = 134.8(3)MeV , M̂π0 = 134.6(3)MeV , M̂π+ − M̂π0 = 0.2(1)MeV , (17)

M̂K+ = 491.2(7)MeV , M̂K0 = 497.2(4)MeV , M̂K+ − M̂K0 = −6.1(6)MeV .

The self-energy difference between the charged and neutral pion involves the same coefficient
ǫm that describes the mass difference in QCD – this is why the estimate for Mγ

π+ −Mγ
π0 is so

sharp.

3.2 Pion and kaon masses in the isospin limit

As mentioned above, most of the lattice calculations concerning the properties of the light
mesons are performed in the isospin limit of QCD (mu − md → 0 at fixed mu + md). We
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denote the pion and kaon masses in that limit byMπ andMK , respectively. Their numerical
values can be estimated as follows. Since the operation u↔ d interchanges π+ with π− and
K+ with K0, the expansion of the quantities M̂2

π+ and 1
2(M̂

2
K+ + M̂2

K0) in powers of mu−md

only contains even powers. As shown in [93], the effects generated by mu −md in the mass

of the charged pion are strongly suppressed: the difference M̂2
π+ −M 2

π represents a quantity

of O[(mu −md)
2(mu +md)] and is therefore small compared to the difference M̂2

π+ − M̂2
π0 ,

for which an estimate was given above. In the case of 1
2(M̂

2
K+ + M̂2

K0)−M 2
K , the expansion

does contain a contribution at NLO, determined by the combination 2L8 − L5 of low energy
constants, but the lattice results for that combination show that this contribution is very
small, too. Numerically, the effects generated by mu−md in M̂2

π+ and in 1
2 (M̂

2
K+ + M̂2

K0) are
negligible compared to the uncertainties in the electromagnetic self-energies. The estimates
for these given in equation (15) thus imply

Mπ = 134.8(3)MeV , MK = 494.2(5)MeV . (18)

This shows that, for the convention used above to specify the QCD sector of the Standard
Model, and within the accuracy to which this convention can currently be implemented,
the mass of the pion in the isospin limit agrees with the physical mass of the neutral pion:
Mπ −Mπ0 = −0.2(3) MeV.

3.3 Lattice determination of ms and mud

We now turn to a review of the lattice calculations of the light quark masses and begin with
ms, the isospin averaged up and down quark mass, mud, and their ratio. Most groups quote
only mud, not the individual up and down quark masses. We then discuss the ratio mu/md

and the individual determination of mu and md.
Quark masses have been calculated on the lattice since the mid-nineties. However early

calculations were performed in the quenched approximation, leading to unquantifiable sys-
tematics. Thus in the following, we only review modern, unquenched calculations, which
include the effects of light sea quarks.

Tables 1 and 2 list the results of Nf = 2 and Nf = 2+1 lattice calculations of ms and mud.
These results are given in the MS scheme at 2GeV, which is standard nowadays. The tables
also show the colour coding of the calculations leading to these results. The corresponding
results for ms/mud are given in Table 3. As indicated in the Introduction, we treat Nf = 2
and Nf = 2 + 1 calculations separately. The latter include the effects of a strange sea quark,
but the former do not.

3.3.1 Nf = 2 lattice calculations

We begin with Nf = 2 calculations. A quick inspection of Table 1 indicates that only the
most recent calculation, ETM 10B [94], controls all systematic effects. Only ETM 10B [94]
and ETM 07 [49] really enter the chiral regime, with pion masses down to about 300 MeV.
All the others have significantly more massive pions, the lightest being about 430 MeV, in
the calculation by CP-PACS 01 [101]. Moreover, the latter calculation is performed on very
coarse lattices, with lattice spacings a ≥ 0.11 fm and only one loop perturbation theory is
used to renormalize the results.

One calculation of ms which performs quite well in terms of colour coding is that of AL-
PHA 05 [98]. This is due to the fact that both non-perturbative running and non-perturbative
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mud ms

ETM 10B [94] A • ⋆ • ⋆ a 3.6(1)(2) 95(2)(6)
JLQCD/TWQCD 08A [95] A • � � ⋆ − 4.452(81)(38)

(

+0

−227

)

–

RBC 07† [73] A � � ⋆ ⋆ − 4.25(23)(26) 119.5(5.6)(7.4)
ETM 07 [49] A • � • ⋆ − 3.85(12)(40) 105(3)(9)
QCDSF/
UKQCD 06

[96] A � ⋆ � ⋆ − 4.08(23)(19)(23) 111(6)(4)(6)

SPQcdR 05 [97] A � • • ⋆ − 4.3(4)(+1.1
−0.0) 101(8)(+25

−0 )

ALPHA 05 [98] A � • ⋆ ⋆ b 97(4)(18)§

QCDSF/
UKQCD 04

[99] A � ⋆ � ⋆ − 4.7(2)(3) 119(5)(8)

JLQCD 02 [100] A � � • � − 3.223(+46
−69) 84.5(+12.0

−1.7 )
CP-PACS 01 [101] A � � ⋆ � − 3.45(10)(+11

−18) 89(2)(+2
−6)

⋆

† The calculation includes quenched e.m. effects.
§ The data used to obtain the bare value of ms are from RBC/UKQCD 04 [99]
⋆ This value of ms was obtained using the kaon mass as input. If the φ meson mass is used instead, the
authors find ms = 90+5

−11.

a The masses are renormalized non-perturbatively at scales 1/a ∼ 2÷ 3GeV in the Nf = 2 RI/MOM
scheme. In this scheme, non-perturbative and N3LO running for the quark masses are shown to agree
from 4 GeV down 2 GeV to better than 3% [102].

b The masses are renormalized and run non-perturbatively up to a scale of 100GeV in the Nf = 2 SF
scheme. In this scheme, non-perturbative and NLO running for the quark masses are shown to agree
well from 100 GeV all the way down to 2 GeV [98].

Table 1: Nf = 2 lattice results for the masses mud and ms, together with the colour coding
of the calculation used to obtain these. If information about non-perturbative running is
available, this is indicated in the column ”running”, with details given at the bottom of the
table.

renormalization are performed in a controlled fashion, using Schrödinger functional methods.
However, the lightest sea pion in the calculation is 600 MeV, significantly above our thresholds
for a controlled chiral extrapolation. In that sense, this calculation should be viewed more
as a means of giving a first estimate of possible sea quark corrections to the equally precise
quenched calculation ALPHA 99 [112], than a full fledged dynamical fermion calculation.

The conclusion of our analysis of Nf = 2 calculations is that the results of ETM 10B [94]
(which updates and extends ETM 07 [49]), is the only one to date which satisfies our selection
criteria. Thus we do not offer an average of Nf = 2 results for the strange and isospin averaged
quark masses and their ratios, but simply quote the results of ETM 10B [94]:

Nf = 2 : ms = 95(2)(6)MeV , mud = 3.6(1)(2)MeV ,
ms

mud
= 27.3(5)(7) . (19)

The combined statistical and systematic errors on these results are 7%, 6% and 3% respec-
tively. The errors are smaller in the ratio because many systematics cancel, most notably
those associated with renormalization and the setting of the scale. Moreover, because of
statistical correlations between ms and mud, those errors are also reduced in the ratio.
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mud ms

PACS-CS 10 [64] P ⋆ � � ⋆ a 2.78(27) 86.7(2.3)
MILC 10A [103] C • ⋆ ⋆ • − 3.19(4)(5)(16) –
HPQCD 10 [104] A • ⋆ ⋆ ⋆ − 3.39(6)∗ 92.2(1.3)
BMW 10A, 10B+ [65, 105] P ⋆ ⋆ ⋆ ⋆ b 3.469(47)(48) 95.5(1.1)(1.5)
RBC/UKQCD 10A [106] P • • ⋆ ⋆ c 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)

Blum 10† [74] P • � • ⋆ − 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [42] A ⋆ � � ⋆ a 2.97(28)(3) 92.75(58)(95)
HPQCD 09 [107] A • ⋆ ⋆ ⋆ − 3.40(7) 92.4(1.5)
MILC 09A [59] C • ⋆ ⋆ • − 3.25 (1)(7)(16)(0) 89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [6] A • ⋆ ⋆ • − 3.2(0)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 [63] A ⋆ � � � − 2.527(47) 72.72(78)
RBC/UKQCD 08 [108] A • � ⋆ ⋆ − 3.72(16)(33)(18) 107.3(4.4)(9.7)(4.9)
CP-PACS/
JLQCD 07

[109] A � ⋆ ⋆ � − 3.55(19)(+56
−20) 90.1(4.3)(+16.7

−4.3 )

HPQCD 05 [110] A • • • • − 3.2(0)(2)(2)(0)‡ 87(0)(4)(4)(0)‡

MILC 04, HPQCD/
MILC/UKQCD 04

[77, 111] A • • • � − 2.8(0)(1)(3)(0) 76(0)(3)(7)(0)

∗ Value obtained by combining the HPQCD 10 result for ms with the MILC 09 result for ms/mud.
+ The fermion action used is tree-level improved.
† The calculation includes quenched e.m. effects.
‡ The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop to
1-loop renormalization factors.

a The masses are renormalized and run non-perturbatively up to a scale of 40GeV in the Nf = 3 SF
scheme. In this scheme, non-perturbative and NLO running for the quark masses are shown to agree well
from 40 GeV all the way down to 3 GeV[64].

b The masses are renormalized and run non-perturbatively up to a scale of 4 GeV in the Nf = 3 RI/MOM
scheme. In this scheme, non-perturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [105].

c The masses are renormalized non-perturbatively at a scale of 2 GeV in a couple of Nf = 3 RI/SMOM
schemes. A careful study of perturbative matching uncertainties has been performed by comparing results
in the two schemes in the region of 2 GeV to 3 GeV [106].

Table 2: Nf = 2 + 1 lattice results for the masses mud and ms, together with the colour
coding of the calculation used to obtain these. If information about non-perturbative running
is available, this is indicated in the column ”running”, with details given at the bottom of
the table.

3.3.2 Nf = 2 + 1 lattice calculations

We turn now to Nf = 2+1 calculations. These and the corresponding results are summarized
in Table 2 and 3. Somewhat paradoxically, these calculations are more mature than those with
Nf = 2. This is thanks, in large part, to the head start and sustained effort of MILC, which
has been performing Nf = 2 + 1 rooted staggered fermion calculations for the past ten or so
years. They have covered an impressive range of parameter space, with lattice spacings which,
today, go down to 0.045 fm and valence pion masses down to approximately 180 MeV [59].
The most recent updates, MILC 10A [103] and MILC 09A [59], include significantly more
data and use two loop renormalization. Since these data sets subsume those of their previous
calculations, these latest results are the only ones that must be kept in any world average.

We recall that valence and sea quarks are treated differently in the rooted staggered
approach, as discussed in section 2, and that the lightest effective sea-pion mass of all of
their ensembles is about 260 MeV rather than 180 MeV. Regarding the specific subject of
light quark masses, a weak point of present day staggered fermion calculations is the use
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ms/mud

BMW 10A, 10B+ [65, 105] P ⋆ ⋆ ⋆ 27.53(20)(8)
RBC/UKQCD 10A [106] P • • ⋆ 26.8(0.8)(1.1)
Blum 10† [74] P • � • 28.31(0.29)(1.77)
PACS-CS 09 [42] A ⋆ � � 31.2(2.7)
MILC 09A [59] C • ⋆ ⋆ 27.41(5)(22)(0)(4)
MILC 09 [6] A • ⋆ ⋆ 27.2(1)(3)(0)(0)
PACS-CS 08 [63] A ⋆ � � 28.8(4)
RBC/UKQCD 08 [108] A • � ⋆ 28.8(0.4)(1.6)
MILC 04, HPQCD/
MILC/UKQCD 04

[77, 111] A • • • 27.4(1)(4)(0)(1)

ETM 10B [94] A • ⋆ • 27.3(5)(7)
RBC 07† [73] A � � ⋆ 28.10(38)
ETM 07 [49] A • � • 27.3(0.3)(1.2)
QCDSF/UKQCD 06 [96] A � ⋆ � 27.2(3.2)

+ The fermion action used is tree-level improved.
† The calculation includes quenched e.m. effects.

Table 3: Lattice results for ms/mud, together with the colour coding of the calculation used
to obtain them. The upper half of the table corresponds to Nf = 2+1 calculations, the lower
half to Nf = 2 results.

of perturbative renormalization. As already noted, it is preferable, a priori, to renormal-
ize non-perturbatively, to avoid introducing uncontrolled systematic errors from neglected,
higher order contributions. That this is a problem, in practice, for the staggered calculations
can be seen from the following observation. In MILC 04 [77] and HPQCD/MILC/UKQCD
04 [111], only one loop perturbation theory was used. O(α2

s) corrections were included in the
HPQCD 05 [110] update. The only difference between this update and the earlier calculation
is the inclusion of these corrections: the bare lattice results are the same in both. Yet, the
O(α2

s) correction increased the renormalized value of ms by 11 MeV, i.e. 14%. In light of this,
one may question whether the perturbative expansion is under control. Moreover, prelimi-
nary results including non-perturbative renormalization suggest that the omitted terms may
contribute an additional increase of ∼ 20% in ms [113].

Of all the entries in Tables 2 and 3, Blum 10 [74] is the only one which provides an
improved determination of the electromagnetic self-energies on the lattice and points the way
for future promising developments: still, at present, these data do not pass the selection
criteria formulated in section 2.2 as the authors did not investigate all sources of systematic
error. There are four other calculations with Nf = 2+1, however, that do and that we discuss
now.

The most recent one is BMW 10A, 10B [65, 105] which, as shown by the color coding in
Tables 2 and 3 has addressed all sources of systematic effects. One of the most impressive
aspects of this calculation is that they have reached the physical up and down quark mass
by interpolation and did not need any chiral extrapolation. Moreover, their calculation was
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performed at five lattice spacings ranging from 0.054 to 0.116 fm, with full non-perturbative
renormalization and running and in volumes of up to (6 fm)3 guaranteeing that all sources of
systematic error are controlled. However, according to the rules set forth in section 2.2, these
results will have to be published before they can be included in our averages.

The second calculation that we discuss is PACS-CS 10 [64], which updates 09 [42]: these
calculations have been performed with O(a)-improved Wilson fermions on lattices with a ≃
0.09 fm. The important aspect of this calculation is that it also probes pion masses down
to Mπ ≃ 135MeV, i.e. down to the physical mass point. This is achieved by reweighting
the simulations performed in PACS-CS 08 [63] at Mπ ≃ 160MeV. If adequately controlled,
this procedure eliminates the need to extrapolate to the physical mass point and, hence, the
corresponding systematic error. Moreover, renormalization of quark masses is implemented
non-perturbatively, through the Schrödinger functional method [114]. As it stands, the main
drawback of the calculation, which makes the inclusion of its results in a world average of
lattice results inappropriate at this stage, is that for the lightest quark mass the volume is
very small, corresponding to LMπ ≃ 2.0, a value for which finite volume effects will be difficult
to control. Another problem is that the calculation was performed at a single lattice spacing,
forbidding a continuum extrapolation. Furthermore, it is unclear at this point what might be
the systematic errors associated with the reweighting procedure. The PACS-CS collaboration
plans to perform physical point simulations with larger and finer lattices.

The third calculation of particular interest is RBC/UKQCD 10A [106] (which updates
RBC/UKQCD 08 [108]). This calculation uses the theoretically appealing domain wall
fermions. It reaches down to 330 MeV pion masses in the sea and to 242 MeV valence pions.
Moreover, it makes use of non-perturbative renormalization à la Rome-Southampton [115].
The latest update removes the main drawback of the previous calculation by adding a second,
finer lattice spacing of about 0.09 fm to the first rather coarse lattice spacing of 0.11 fm, and
allows a first estimate of the systematic error from the continuum extrapolation.

Finally we come to the fourth calculation which satisfies our selection criteria, HPQCD 10 [104]
(which updates HPQCD 09 [107]). The strange quark mass is computed using a precise de-
termination of the charm quark mass, mc(mc) = 1.273(6) GeV [104, 116], whose accuracy is
better than 0.5%, and a calculation of the quark mass ratio mc/ms = 11.85(16) [107], which
achieves a precision slightly above 1%. The determination of ms via the ratio mc/ms circum-
vents the problem of running by calculating a scale-invariant ratio non-perturbatively. The
MILC 09 determination of the quark mass ratio ms/mud [6] is also used in HPQCD 10 [104]
to calculate mud.

The high precision quoted by HPQCD 10 on the strange quark mass relies in large part
on the precision reached in the determination of the charm quark mass [104, 116]. This
calculation uses a novel approach based on the lattice determination of moments of charm-
quark pseudoscalar, vector and axial-vector correlators. These moments are then combined
with four-loop results from continuum perturbation theory to obtain a determination of the
charm quark mass in the MS scheme. In the preferred case, in which pseudoscalar correlators
are used for the analysis, there are no renormalization factors required, since the corresponding
axial-vector current is partially conserved in the staggered lattice formalism. Overall, the
0.5% accuracy claimed in the calculation of mc is certainly impressive, since it implies that
all sources of uncertainty, coming from the scale determination, discretization effects (the
bare charm mass in lattice units is as large as amc ≃ 0.85), perturbation theory as well as
non-perturbative effects in the estimate of moments, are all controlled at the per mille level.

This discussion leaves us with three results to average for ms, those of MILC 09A [59],
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Figure 1: Mass of the strange quark (MS scheme, running scale 2 GeV). The upper part shows
the lattice results listed in Tables 1 and 2. Full and empty symbols correspond to simulations
with Nf = 2+ 1 and Nf = 2, respectively. Diamonds represent results based on perturbative
renormalization, while squares indicate that, in the relation between the lattice-regularized
and renormalized MS masses, non-perturbative effects are accounted for. The vertical bands
indicate our estimates (19) and (20). The lower part shows recent determinations obtained
from the evaluation of sum rules, together with the earliest result based on this method, as
well as the most recent estimate of the Particle Data Group.

RBC/UKQCD 10A [106] and HPQCD 10 [104]. Treating them as independent measurements
and simply adding the statistical and systematic errors in quadrature, we obtain a good fit,
with χ2 = 2.5 for 3 data points and 1 free parameter. With the prescription specified in
section 2.2, the average becomes ms = 92.8(1.3)MeV. When repeating the exercise for mud,
we replace MILC 09A by the more recent analysis reported in MILC 10A [103] and again
obtain a good fit: χ2 = 2.3 for 2 degrees of freedom and mud = 3.38(6)MeV for the average.
The outcome of the averaging procedure thus amounts to a determination of ms and mud of
1.4%. and 1.8%, respectively.

The results in BMW 10A, 10B [65, 105], which are not included in the averaging procedure
on account of our criteria concerning the publication status, offer an independent, remarkably
sharp determination of mud and ms. These data are perfectly consistent with the averages
quoted above.

The heavy sea quarks affect the determination of the light quark masses only through
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Figure 2: Mean mass of the two lightest quarks, mud = 1
2 (mu + md). The meaning of the

various symbols is explained in the caption of Fig. 1.

contributions of order 1/m2
c , which moreover are suppressed by the Zweig-rule. We expect

these contributions to be small, but do not know of a reliable quantitative evaluation. The
problem originates in the fact that the relation between the parameters of QCD3 and those of
full QCD can currently be analyzed only in the framework of perturbation theory. The β- and
γ-functions, which control the renormalization of the coupling constants and quark masses,
respectively, are known to four loops [124–127]. The precision achieved in this framework for
the decoupling of the t- and b-quarks is excellent, but the c-quark is not heavy enough: at the
percent level, the corrections of order 1/m2

c cannot be neglected and the decoupling formulae of
perturbation theory do not provide a reliable evaluation, because the scalemc(mc) ≃ 1.27GeV
is too low for these formulae to be taken at face value. Consequently, the accuracy to which
it is possible to identify the running masses of the light quarks of full QCD in terms of those
occurring in QCD3 is limited. For this reason, it is preferable to characterize the masses mu,
md, ms in terms of QCD4, where the connection with full QCD is under good control. The
role of the c-quarks in the determination of the light quark masses will soon be studied in
detail – some simulations with 2+1+1 dynamical quarks have already been carried out [60].

A crude upper bound on the size of the effects due to the neglected heavy quarks can
be established within the Nf = 2 + 1 simulations themselves, without invoking perturbation
theory. In [17] it is found that when the scale is set by MΞ, the result for MΛ agrees well
with experiment within the 2.3% accuracy of the calculation. Because of the very strong
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correlations between the statistical and systematic errors of these two masses, we expect the
uncertainty in the difference MΞ −MΛ to also be of order 2%. To leading order in the chiral
expansion, this mass difference is proportional to ms−mud. We conclude that the agreement
of Nf = 2+1 calculations with experiment yields an upper bound on the sensitivity of ms to
heavy sea quarks of order 2%.

In order to stay on the conservative side in this rapidly developing field, our final estimates
for mud and ms come with sizable uncertainties:

Nf = 2 + 1 : mud = 3.43(11) MeV , ms = 94(3) MeV . (20)

As discussed in section 2.2, these numbers are not obtained from a mathematical prescription,
but are chosen so as to cover all of the high quality data discussed in the present section (note
also that the central values are slightly higher than those of the averages discussed above).

The estimates (20) represent the conclusions we draw from the information gathered on
the lattice until now. They are shown as vertical bands in Figures 1 and 2, together with the
Nf = 2 results (19) and a few estimates from other sources. The values quoted in the 2010
edition of the Review of Particle Properties [122] are mud = 3.9(9), ms = 101(+29

−21) MeV. The
errors attached to our estimates are smaller by an order of magnitude. In our opinion, the
remarkable recent progress achieved with the simulation of light dynamical quarks and the
fact that all of the data that pass our quality criteria are consistent with one another fully
justify this reduction of the uncertainties.

The lower half of Figure 1 shows that the sum rule results forms agree with the Nf = 2+1
data, but Figure 2 indicates that in the case of mud, the sum rule estimates are on the high
side. For the most recent sum rule evaluation [121], the origin of this apparent discrepancy
is readily identified. In that work, the sum rules are used to estimate the value of ms +mud.
In order to disentangle the two terms, the authors take the ratio ms/mud from the early
literature on χPT. If the numerical value of this ratio is updated to the range given in (24),
the value of ms practically stays put, but the outcome for mud is lowered substantially, so
that the difference shrinks to about 1 σ. In other words, there is no discrepancy to speak of
between the lattice and sum rule results for the masses of the light quarks – the size of ms

and mud is well understood.
In the ratio ms/mud, one of the sources of systematic error – the uncertainties in the

renormalization factors – drops out. Also, we can compare the lattice results with the leading
order formula of χPT,

ms

mud

LO

=
M̂2

K+ + M̂2
K0 − M̂2

π+

M̂2
π+

, (21)

which relates the quantity ms/mud to a ratio of meson masses in QCD. Expressing these in
terms of the physical masses and the four coefficients introduced in (12)-(14), linearizing the
result with respect to the corrections and inserting the observed mass values, we obtain

ms

mud

LO

= 25.9 − 0.1 ǫ+ 1.9 ǫπ0 − 0.1 ǫK0 − 1.8 ǫm . (22)

If the coefficients ǫ, ǫπ0 , ǫK0 and ǫm are set equal to zero, the right hand side reduces to the
value ms/mud = 25.9 that follows from Weinberg’s leading order formulae for mu/md and
ms/md [128], in accordance with the fact that these do account for the e.m. interaction at
leading order, but neglect the mass difference between the charged and neutral pions in QCD.
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Figure 3: Results for the ratio ms/mud, in which the renormalization factors cancel. The
upper part of the figure shows the lattice results listed in Table 3 (full and empty symbols
correspond to Nf = 2 + 1 and Nf = 2). The vertical bands indicate our estimates (19) and
(24). The lower part shows results obtained on the basis of χPT or from QCD sum rules, as
well as the most recent estimate of the Particle Data Group.

Inserting the estimates (15), the LO prediction becomes

ms

mud

LO

= 25.9(1) . (23)

The quoted uncertainty does not include an estimate for the higher order contributions,
but only accounts for the error bars in the coefficients, which is dominated by the one in the
estimate given for ǫπ0 . The result shows that, at the accuracy reached in lattice determinations
of the ratio ms/mud, the uncertainties due to the electromagnetic corrections is smaller than
the systematic errors from other sources.

The lattice results in Table 3 indicate that the corrections generated by the non-leading
terms of the chiral perturbation series are remarkably small, in the range 5–11%. Despite
the fact that the SU(3) flavour symmetry breaking effects in the Nambu-Goldstone boson
masses are very large (M2

K ≃ 13M2
π), the mass spectrum of the pseudoscalar octet obeys the

SU(3)×SU(3) formula (21) very well.
Our average for ms/mud is based on the results of MILC 09A and RBC/UKQCD 10A –

the value quoted by HPQCD 10 does not represent independent information as it relies on the
result for ms/mud obtained by the MILC collaboration. Adding the statistical and systematic
errors in quadrature, we obtain a good fit with ms/mud = 27.39(23) and χ2 = 0.2 for 2 data
points and one free parameter. The fit is dominated by MILC 09A. Since the errors associated
with renormalization drop out in the ratio, the uncertainties are even smaller than in the case
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of the quark masses themselves: the above number for ms/mud amounts to an accuracy of
0.8%. Again, the results of the BMW collaboration are not included in the fit because they are
not yet published. The result reported in BMW 10A, 10B, ms/mud = 27.53(22), is perfectly
consistent with the above average and reaches comparable accuracy.

At this level of precision, the uncertainties in the electromagnetic and strong isospin
breaking corrections are not completely negligible. The error estimate in the LO result (23)
indicates the expected order of magnitude. The uncertainties in ms and mud associated with
the heavy sea quarks cancel at least partly. In view of this, we are convinced that our final
estimate,

Nf = 2 + 1 :
ms

mud
= 27.4(4) , (24)

is on the conservative side – it corresponds to an accuracy of 1.5%.
The lattice results show that the LO prediction of χPT in (23) receives only small cor-

rections from higher orders of the chiral expansion: according to (24), these generate a shift
of 5.8 ± 1.5%. Our estimate does therefore not represent a very sharp determination of the
higher order contributions. Note however, that in comparison with the value ms/mud = 26(4)
quoted by the Particle Data Group [122], the uncertainty is reduced by a factor of 10.

The ratio ms/mud can also be extracted from the masses of the neutral Nambu-Goldstone
bosons: neglecting effects of order (mu − md)

2 also here, the leading order formula reads

ms/mud
LO

= 3
2M̂

2
η/M̂

2
π − 1

2 . Numerically, this gives ms/mud
LO

= 24.2. The relation has the
advantage that the e.m. corrections are expected to be much smaller here, but it is more
difficult to calculate the η-mass on the lattice. The comparison with (24) shows that, in this
case, the contributions of NLO are somewhat larger: 13± 2%.

3.4 Lattice determination of mu and md

The determination ofmu andmd separately requires additional input. MILC 09A [59] uses the
mass difference between K0 and K+, from which they subtract electromagnetic effects, using
Dashen’s theorem with corrections, as discussed in section 3.1. The up and down sea quarks
remain degenerate in their calculation, fixed to the value of mud obtained from Mπ0 . Instead
of subtracting electromagnetic effects using phenomenology, RBC 07 [73] and Blum 10 [74]
actually include a quenched electromagnetic field in their calculation. This means that their
results include corrections to Dashen’s theorem, albeit only in the presence of quenched
electromagnetism. Since the up and down quarks in the sea are treated as degenerate, very
small isospin corrections are neglected, as in MILC’s calculation. The results are summarized
in Table 4.

In order to discuss these results, we consider the LO formula

mu

md

LO

=
M̂2

K+ − M̂2
K0 + M̂2

π+

M̂2
K0 − M̂2

K+ + M̂2
π+

. (25)

Using equations (12)–(14) to express the meson masses in QCD in terms of the physical ones
and linearizing in the corrections, this relation takes the form

mu

md

LO

= 0.558 − 0.084 ǫ − 0.02 ǫπ0 + 0.11 ǫm . (26)

Inserting the estimates (15) and adding errors in quadrature, the LO prediction becomes

mu

md

LO

= 0.50(4) . (27)
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mu md mu/md

HPQCD 10‡ [104] P • ⋆ ⋆ ⋆ − 2.01(14) 4.77(15)
BMW 10A, 10B+ [65, 105] P ⋆ ⋆ ⋆ ⋆ a 2.15(03)(10) 4.79(07)(12) 0.448(06)(29)

Blum 10† [74] P • � • ⋆ − 2.24(10)(34) 4.65(15)(32) 0.4818(96)(860)
MILC 09A [59] C • ⋆ ⋆ • − 1.96(0)(6)(10)(12) 4.53(1)(8)(23)(12) 0.432(1)(9)(0)(39)
MILC 09 [6] A • ⋆ ⋆ • − 1.9(0)(1)(1)(1) 4.6(0)(2)(2)(1) 0.42(0)(1)(0)(4)
MILC 04, HPQCD/
MILC/UKQCD 04

[77, 111] A • • • � − 1.7(0)(1)(2)(2) 3.9(0)(1)(4)(2) 0.43(0)(1)(0)(8)

RBC 07† [73] A � � ⋆ ⋆ − 3.02(27)(19) 5.49(20)(34) 0.550(31)

‡ Values obtained by combining the HPQCD 10 result for ms with the MILC 09 results for ms/mud and
mu/md.

+ The fermion action used is tree-level improved.
† The calculation includes quenched e.m. effects.
a The masses are renormalized and run non-perturbatively up to a scale of 4 GeV in the Nf = 3 RI/MOM
scheme. In this scheme, non-perturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [105].

Table 4: Lattice results for mu, md and mu/md, together with the colour coding of the
calculation used to obtain them. The upper part of the table lists results obtained with
Nf = 2 + 1, while the lowest row represents a calculation with Nf = 2.

Again, the quoted error exclusively accounts for the errors attached to the estimates (12) -
contributions of non-leading order are ignored. The uncertainty in the leading order prediction
is dominated by the one in the coefficient ǫ, which specifies the difference between the mass
splittings generated by the e.m. interaction in the kaon and pion multiplets. Since the input
ǫ = 1.2(5) used in MILC 09A [59] differs from the results ǫ = 0.13(4) and ǫ = 0.5(1) obtained
by RBC 07 [73] and Blum 10 [74], respectively, it does not come as a surprise that the values
for mu/md are different. Evaluating the relation (26) for these values of ǫ and neglecting the
self-energies of the neutral particles, we obtain mu/md = 0.46(4), 0.547(3) and 0.52(1) for
MILC 09A, RBC 07 and Blum 10, respectively. Within errors, these numbers agree with the
values for mu/md quoted in the last column of Table 4. This indicates that, as in the case of
ms/mud, the corrections to the leading order prediction are small.

The uncertainties in the lattice results discussed so far for the ratio mu/md are dominated
by those in the e.m. contributions to the meson masses. Given the exploratory nature of the
RBC 07 calculation, we do not draw a conclusion concerning the values ofmu andmd obtained
with Nf = 2. As discussed in section 3.3.2, the results of Blum 10 do not pass our selection
criteria either. We therefore resort to the phenomenological estimates of the electromagnetic
self-energies discussed in section 3.1 and use the MILC data for Nf = 2 + 1 to assess the
size of the corrections from higher orders of the chiral expansion. With this input, we can
calculate the mass ratio of the two lightest quarks, with the result mu/md = 0.47(4). The
two individual masses can then be worked out from the estimate (20) for their mean. The
result reads

Nf = 2 + 1 : mu = 2.19(15)MeV , md = 4.67(20)MeV ,
mu

md
= 0.47(4) . (28)
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These estimates have uncertainties of order 7%, 4% and 9%, respectively.
In contrast to the situation with the ratio ms/mud, the error in the result for mu/md is

totally dominated by the uncertainties in the input used for the electromagnetic corrections.
In fact, the comparison of equations (27) and (28) indicates that more than half of the
difference between the prediction mu/md = 0.558 obtained from Weinberg’s mass formulae
[128] and the result for mu/md obtained on the lattice stems from electromagnetism – the
higher orders in the chiral perturbation series only generate a small correction.

To determine mu/md, BMW 10A, 10B [65, 105] follow a slightly different strategy. They
obtain this ratio from their result for ms/mud combined with a phenomenological determina-
tion of the isospin breaking quark mass ratio Q = 22.3(8) from η → 3π decays [70]. In fact,
as discussed in section 3.5, the central value of the e.m. parameter ǫ in (15) is taken from the
same source. Their results for mu/md, mu and md are thus correlated with our estimates in
(28) and are compatible with them, but are more precise.

In view of the fact that a massless up quark would solve the strong CP-problem, many
authors have considered this an attractive possibility, but the results presented above exclude
this possibility: the value of mu in (28) differs from zero by 15 standard deviations. We
conclude that nature solves the strong CP-problem differently. This conclusion relies on
lattice calculations of kaon masses and on the phenomenological estimates of the e.m. self-
energies discussed in section 3.1. The uncertainties therein currently represent the limiting
factor in determinations of mu and md. As demonstrated in [72–74], lattice methods can be
used to calculate the e.m. self-energies. Further progress on the determination of the light
quark masses hinges on an improved understanding of the e.m. effects.

3.5 Estimates for R and Q

The quark mass ratios

R ≡ ms −mud

md −mu
and Q2 ≡ m2

s −m2
ud

m2
d −m2

u

(29)

compare SU(3) breaking with isospin breaking. The quantity Q is of particular interest
because of a low energy theorem [132], which relates it to a ratio of meson masses,

Q2
M ≡ M̂2

K

M̂2
π

· M̂2
K − M̂2

π

M̂2
K0 − M̂2

K+

, M̂2
π ≡ 1

2(M̂
2
π+ + M̂2

π0) , M̂2
K ≡ 1

2(M̂
2
K+ + M̂2

K0) . (30)

Chiral symmetry implies that the expansion of Q2
M in powers of the quark masses (i) starts

with Q2 and (ii) does not receive any contributions at NLO:

QM
NLO

= Q . (31)

Inserting the estimates for the mass ratios ms/mud, and mu/md given in equations (24)
and (28), respectively, we obtain

R = 36.6(3.8) , Q = 22.8(1.2) . (32)

As is the case with the ratio mu/md, the errors are dominated by the uncertainties in the
electromagnetic corrections. To investigate the sensitivity to the latter, we use χPT to ex-
press the quark mass ratios in terms of the pion and kaon masses in QCD and then again
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use equations (12)–(14) to relate the QCD masses to the physical ones. Linearizing in the
corrections, this leads to

R
LO

= 43.9 − 10.8 ǫ + 0.2 ǫπ0 − 0.2 ǫK0 − 10.6 ǫm , (33)

Q
NLO

= 24.3 − 3.0 ǫ+ 0.9 ǫπ0 − 0.1 ǫK0 + 2.1 ǫm .

While the first relation only holds to LO of the chiral perturbation series, the second remains
valid at NLO, on account of the low energy theorem mentioned above. The first terms on
the right hand side represent the values of R and Q obtained with the Weinberg leading
order formulae for the quark mass ratios [128]. Inserting the estimates (15), we find that the

e.m. corrections lower the Weinberg values to R
LO

= 36.7(7.6) and Q
NLO

= 22.3(2.1), respectively.
The comparison with the full results quoted above shows that there is little room for the higher
order terms in the chiral expansion.

As mentioned in section 3.1, there is a phenomenological determination of Q based on
the decay η → 3π [133, 134]. The key point is that the transition η → 3π violates isospin
conservation. The dominating contribution to the transition amplitude stems from the mass
difference mu −md. At NLO of χPT, the QCD part of the amplitude can be expressed in a
parameter free manner in terms of Q. It is well-known that the electromagnetic contributions
to the transition amplitude are suppressed (a thorough recent analysis is given in [135]). This
implies that the result for Q is less sensitive to the electromagnetic uncertainties than the
value obtained from the masses of the Nambu-Goldstone bosons. For a recent update of this
determination and for further references to the literature, we refer to [136]. Using dispersion
theory to pin down the momentum dependence of the amplitude, the observed decay rate
implies Q = 22.3(8) (since the uncertainty quoted in [136] does not include an estimate for
all sources of error, we have retained the error estimate given in [129], which is twice as
large). The formulae for the corrections of NNLO are available also in this case [137] – the
poor knowledge of the effective coupling constants, particularly of those that are relevant
for the dependence on the quark masses, is currently the limiting factor encountered in the
application of these formulae.

As was to be expected, the central value of Q obtained from η-decay agrees exactly with
the central value obtained from the low energy theorem: we have used that theorem to
estimate the coefficient ǫ, which dominates the e.m. corrections. Using the numbers for ǫm,
ǫπ0 and ǫK0 in (15) and adding the corresponding uncertainties in quadrature to those in the
phenomenological result for Q, we obtain

ǫ
NLO

= 0.70(28) . (34)

The estimate (15) for the size of the coefficient ǫ is taken from here, except that the error
bar is stretched, to account for the fact that the above relation is valid only up to NNLO
contributions.

The MILC data offer a welcome check on the size of the neglected higher orders: with the
input ǫ = 1.2(5) and ǫπ0 = ǫK0 = ǫm = 0 used in the MILC analysis, equation (34) implies
QM = 21.3(1.0). On the other hand, inserting the MILC results for the quark mass ratios
ms/mud and mu/md (see Tables 3 and 4) in the definition of Q, equation (29), and ignoring
a possible correlation between the results for the two ratios, we get Q = 21.7(1.1). For MILC
09A, the central values of QM and Q thus agree to an accuracy of 2%, indicating that the
corrections of NNLO or higher are smaller than the uncertainty of the result.
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In contrast to this, the picture which follows from the numbers obtained with the Nf = 2
simulation of RBC 07 [73] is difficult to understand. Repeating the above calculation with
the estimate ǫ = 0.13(4) that corresponds to the kaon self-energy difference obtained in this
reference and again neglecting the other terms in equation (34), we get QM = 23.9(1), while
the value of Q that follows from the quark mass ratios ms/mud and mu/md given in the
same reference, implies Q = 26.1(1.2). A difference of this size calls for large contributions
of NNLO, in conflict with the data analysis, which assumes that it is meaningful to truncate
the chiral series at NLO.

The recent extension of this calculation to Nf = 2+1 dynamical flavours described in [74]
appears to solve the puzzle. The values obtained for the kaon and pion self-energies obtained
in this reference imply ǫ = 0.5(1), ǫm = 0.04(5). Inserting this in equation (34) and neglecting
the self-energies of the neutral particles, we obtain QM = 22.8(3), to be compared with the
value Q = 23.9(3.4) that follows from the quark mass ratios given in the same reference. This
implies that the NNLO corrections to the low energy theorem (31) are too small to be seen
at the accuracy of this calculation: QM/Q = 0.96(12).

The determination of R and Q in BMW 10A, 10B [65, 105] relies on the phenomenological
value of Q discussed above [70] – their results do not bring new information on Q. The
value of R which follows from their result for the ratio ms/mud and the input used for Q is
R = 34.9(2.5), slightly different from our estimate in (32), but perfectly compatible with it.7

Our final results for the masses mu, md, ms and the mass ratios mu/md, ms/mud, R, Q
are collected in the table below.

Nf mu md ms mud mu/md ms/mud R Q

2+1 2.19(15) 4.67(20) 94(3) 3.43(11) 0.47(4) 27.4(4) 36.6(3.8) 22.8(1.2)

2 – – 95(6) 3.6(2) – 27.3(9) – –

Table 5: Our estimates for the masses of the three lightest quarks, and related ratios (the
masses refer to the MS scheme at running scale µ = 2GeV for Nf = 3, the numerical values
are given in MeV units).

7Repeating the calculation with the same input for Q, but replacing the BMW result for ms/mud by our
estimate in equation (24), we obtain R = 35.0(2.6).
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4 |Vud| and |Vus|
4.1 Experimental information concerning |Vud|, |Vus|, f+(0) and fK/fπ

The following review relies on the fact that precision data on kaon decays very accurately
determine the product |Vus|f+(0) and the ratio |VusfK |/|Vudfπ| [138]:

|Vus|f+(0) = 0.2163(5) ,
VusfK
Vudfπ

= 0.2758(5) . (35)

Vud and Vus are elements of the Cabibbo-Kobayashi-Maskawa matrix and f+(t) represents
one of the form factors relevant for the semileptonic decay K0 → π−ℓ ν, which depends on
the momentum transfer t between the two mesons. What matters here is the value at t = 0:
f+(0) ≡ fK

0π−

+ (t)
t→0

. The pion and kaon decay constants are defined by8

〈0|dγµγ5 u|π+(p)〉 = i pµfπ , 〈0| sγµγ5 u|K+(p)〉 = i pµfK .

In this normalization, fπ ≃ 130 MeV, fK ≃ 155 MeV.
The measurement of |Vud| based on superallowed nuclear β transitions has now become

remarkably precise. The result of the recent update of Hardy and Towner [50], which is based
on 20 different superallowed transitions, reads9

|Vud| = 0.97425(22) . (36)

The matrix element |Vus| can be measured in τ decays [148–151]. Separating the inclusive
decay τ → hadrons + ν into non-strange and strange final states, Gamiz et al. [152] obtain

|Vus| = 0.2165(26)exp(5)th . (37)

Maltman et al. [153] arrive at very similar values.
As recently pointed out by Maltman [150], the theoretical uncertainties of the analysis

which underlies the result (37) can be reduced by invoking the experimental information about
the spectral function of the electromagnetic current, but the experimental uncertainties then
play a more important role. Applying this method, the outcome for |Vus| reads [154]

|Vus| = 0.2208(39) . (38)

In principle, τ decay offers a clean measurement of |Vus|, but a number of open issues
yet remain to be clarified. In particular, the measured exclusive decay rates for τ → πν and
τ → Kν are below the Standard Model predictions, which determine these rates in terms

8The pion decay constant represents a QCD-matrix-element – in the full Standard Model, the one-pion
state is not a meaningful notion: the correlation function of the charged axial current does not have a pole at
p2 = M2

π+ , but a branch cut extending from M2
π+ to ∞. The analytic properties of the correlation function and

the problems encountered in the determination of fπ are thoroughly discussed in [139]. The ”experimental”
value of fπ depends on the convention used when splitting the sum LQCD + LQED into two parts (compare
section 3.1). The lattice determinations of fπ do not yet reach the accuracy where this is of significance, but
at the precision claimed by the Particle Data Group [140], the numerical value does depend on the convention
used [67–69, 139]. A recent analysis of the electromagnetic and strong isospin breaking effects in the leptonic
decays of the pseudoscalar mesons is given in [141].

9It is not a trivial matter to perform the data analysis at this precision. In particular, isospin-breaking
effects need to be properly accounted for [142–146]. For a review of recent work on this issue, we refer to [147].
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f+(0)

RBC/UKQCD 10 [158] 2+1 A • � ⋆ 0.9599(34)(+31
−47)(14)

RBC/UKQCD 07 [159] 2+1 A • � ⋆ 0.9644(33)(34)(14)

ETM 10D [160] 2 C • ⋆ • 0.9544(68)stat
ETM 09A [161] 2 A • • • 0.9560(57)(62)
QCDSF 07 [162] 2 C � � ⋆ 0.9647(15)stat
RBC 06 [163] 2 A � � ⋆ 0.968(9)(6)
JLQCD 05 [164] 2 C � � ⋆ 0.967(6), 0.952(6)

Table 6: Colour code for the data on f+(0).

of the same matrix elements |Vudfπ| and |VusfK | that govern the leptonic decays π → µν
and K → µν (violation of τ/µ universality). On the other hand, the value obtained for
|VusfK |/|Vudfπ| from the ratio of the tau decay rates is perfectly consistent with the one
from the leptonic π and K-decays quoted in (35), but this does not shed any light on the
value of |Vus|. It is important to pursue the measurement of modes that have previously been
studied only with low statistics (especially the large mode K0π0π−), as well as those of higher
multiplicity (final states with more than two pions, for instance). The recent developments
on the theoretical side [155–157] also need to be pursued. The most interesting possibility
is that τ decay involves new physics, but more work is required before τ decay becomes a
competitive source of information about the CKM matrix elements.

4.2 Lattice results for f+(0) and fK/fπ

The traditional way of determining |Vus| relies on using theory for the value of f+(0), invoking
the Ademollo-Gatto theorem [165]. Since this theorem only holds to leading order of the
expansion in powers ofmu,md andms, theoretical models are used to estimate the corrections.
Lattice methods have now reached the stage where quantities like f+(0) or fK/fπ can be
determined to good accuracy. As a consequence, the uncertainties inherent in the theoretical
estimates for the higher order effects in the value of f+(0) do not represent a limiting factor
any more and we shall therefore not invoke those estimates. Also, we will use the experimental
results based on nuclear β decay and τ decay exclusively for comparison – the main aim of
the present review is to assess the information gathered with lattice methods and to use it for
testing the consistency of the SM and its potential to provide constraints for its extensions.

The database underlying the present review of f+(0) and fK/fπ is listed in Tables 6 and
7. The properties of the lattice data play a crucial role for the conclusions to be drawn from
these results: range of Mπ, size of LMπ, continuum extrapolation, extrapolation in the quark
masses, finite size effects, etc. The key features of the various data sets are characterized by
means of the colour code specified in section 2.
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The quantity f+(0) represents a matrix element of a strangeness changing null plane
charge, f+(0) = (K|Qus|π). The vector charges obey the commutation relations of the Lie
algebra of SU(3), in particular [Qus, Qsu] = Quu−ss. This relation implies the sum rule∑

n |(K|Qus|n)|2−∑n |(K|Qsu|n)|2 = 1. Since the contribution from the one-pion intermedi-
ate state to the first sum is given by f+(0)

2, the relation amounts to an exact representation
for this quantity [166]:

f+(0)
2 = 1−

∑

n 6=π

|(K|Qus|n)|2 +
∑

n

|(K|Qsu|n)|2 . (39)

While the first sum on the right extends over non-strange intermediate states, the second runs
over exotic states with strangeness ±2 and is expected to be small compared to the first.

The expansion of f+(0) in powers of mu, md and ms starts with f+(0) = 1+ f2+ f4+ . . .
[91]. Since all of the low energy constants occurring in f2 can be expressed in terms of Mπ,
MK , Mη and fπ [167], the correction of NLO is known. In the language of the sum rule (39),
f2 stems from non-strange intermediate states with three mesons. Like all other non-exotic
intermediate states, it lowers the value of f+(0): f2 = −0.023. The corresponding expressions
have also been derived in quenched or partially quenched chiral perturbation theory [168].
At the same order in the SU(2) expansion [169], f+(0) is parametrized in terms of Mπ and
two a priori unknown parameters. The latter can be determined from the dependence of the
lattice results on the masses of the quarks. Note that any calculation that relies on the χPT
formula for f2 is subject to the uncertainties inherent in NLO results: instead of using the
physical value of the pion decay constant fπ, one may, for instance, work with the constant
f0 that occurs in the effective Lagrangian and represents the value of fπ in the chiral limit.
Although trading fπ for f0 in the expression for the NLO term affects the result only at
NNLO, it may make a significant numerical difference in calculations where the latter are
not explicitly accounted for (the lattice results concerning the value of the ratio fπ/f0 are
reviewed in section 5.2).

The lattice results shown in the left panel of Figure 4 indicate that the higher order
contributions ∆f ≡ f+(0) − 1− f2 are negative and thus amplify the effect generated by f2.
This confirms the expectation that the exotic contributions are small. The entries in the lower
part of the left panel represent various model estimates for f4. In [179] the symmetry breaking
effects are estimated in the framework of the quark model. The more recent calculations are
more sophisticated, as they make use of the known explicit expression for the Kℓ3 form
factors to NNLO of χPT [180, 181]. The corresponding formula for f4 accounts for the chiral
logarithms occurring at NNLO and is not subject to the ambiguity mentioned above. The
numerical result, however, depends on the model used to estimate the low energy constants
occurring in f4 [181–184]. The figure indicates that the most recent numbers obtained in this
way correspond to a positive rather than a negative value for ∆f .

A lattice determination of the low energy constants that occur in f4 would be very useful
to identify the origin of the problem. Lattice results concerning the dependence of the scalar
form factor on the momentum transfer would also very useful, in particular they might help
sorting out the discrepancies in the experimental results for the slope of this form factor
[185–188]. Note that when analyzing lattice data on the basis of the χPT formulae, the loop
integrals occurring therein need to be evaluated for the masses at which the Nambu-Goldstone
bosons propagate in a given lattice simulation.10

10Fortran programs for the numerical evaluation of the form factor representation in [181] are available on
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fK/fπ

ETM 10E [170] 2+1+1 C • • • 1.224(13)stat

MILC 10 [171] 2+1 C • ⋆ ⋆ 1.197(2)(+3
−7)

RBC/UKQCD 10A [106] 2+1 P • • ⋆ 1.204(7)(25)
BMW 10 [41] 2+1 A ⋆ ⋆ ⋆ 1.192(7)(6)
JLQCD/TWQCD 09A [172] 2+1 C • � � 1.210(12)stat
MILC 09A [59] 2+1 C • ⋆ ⋆ 1.198(2)(+6

−8)
MILC 09 [6] 2+1 A • ⋆ ⋆ 1.197(3)( +6

−13)
Aubin 08 [173] 2+1 C • • • 1.191(16)(17)
PACS-CS 08, 08A [63, 174] 2+1 A ⋆ � � 1.189(20)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ 1.205(18)(62)
HPQCD/UKQCD 07 [175] 2+1 A • ⋆ • 1.189(2)(7)
NPLQCD 06 [176] 2+1 A • � � 1.218(2)(+11

−24)
MILC 04 [77] 2+1 A ⋆ • • 1.210(4)(13)

ETM 10D [160] 2 C • ⋆ • 1.190(8)stat
ETM 09 [177] 2 A • ⋆ • 1.210(6)(15)(9)
QCDSF/UKQCD 07 [178] 2 C • • ⋆ 1.21(3)

Table 7: Colour code for the data on fK/fπ.

4.3 Direct determination of f+(0) and fK/fπ

Figure 4 shows that the lattice results for f+(0) and fK/fπ obtained by the various collab-
orations which do a comprehensive error analysis are consistent with each other. We now
proceed to form the corresponding averages, separately for the data with Nf = 2 + 1 and
Nf = 2 dynamical flavours. As will be discussed in detail in section 4.5, CKM unitarity and
experiment correlate f+(0) with fK/fπ. Indeed, the lattice data are consistent also with this
correlation. First, however, we analyze the lattice information available separately for f+(0)
and for fK/fπ. We refer to results obtained in this way as ”direct” determinations.

The colour code in Table 5 shows that for f+(0), presently only the results of the ETM
collaboration with Nf = 2 dynamical flavours of fermions are without a red tag. In the
following, we rely on the published work ETM 09A [161]. The table contains two data
sets with Nf = 2 + 1, but since one represents an update of the other, we only discuss
RBC/UKQCD 10. These data carry a red tag, because a systematic study of cut-off effects
is missing. These two computations of f+(0) are the most advanced ones and we quote their
results:

f+(0) = 0.9599(34)(+31
−47)(14) , (direct, Nf = 2 + 1), (40)

f+(0) = 0.9560(57)(62) , (direct, Nf = 2).

The first error in the result quoted for Nf = 2 + 1 is statistical, the second is due to the
uncertainties in the chiral extrapolation of the lattice data and the third is an estimate of

request from Johan Bijnens.
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Figure 4: Comparison of lattice results (red squares) for f+(0) and fK/fπ with various model
estimates based on χPT (blue triangles). Full and empty squares represent simulations with
Nf = 2 + 1 and Nf = 2, respectively. The vertical bands indicate our estimates.⋆

potential discretization effects. Flavour symmetry implies that if mud is set equal to ms, the
lattice data yield f+(0) = 1, irrespective of the lattice spacing or the size of the box and for
any value of ms. Cut-off effects can therefore only affect the difference 1− f+(0), which turns
out to be about 0.04. Indeed, the estimate provided by RBC/UKQCD 10 for the uncertainties
due to discretization effects shows that these are sub-dominant: inflating the corresponding
error by a factor of up to 2 barely affects the net systematic uncertainty.

In the result quoted for Nf = 2, the brackets indicate the statistical and systematic errors,
respectively. The ETM collaboration provides a more comprehensive study of the systematics
by presenting results for three lattice spacings [189] and simulating at lighter pion masses
(down toMπ = 260 MeV). This allows to better constrain the chiral extrapolation, using both
SU(3) [167] and SU(2) [169] chiral perturbation theory. Moreover, a rough estimate for the
size of the effects due to quenching the strange quark is given, based on the comparison of the
result for Nf = 2 dynamical quark flavours [177] with the one in the quenched approximation,
obtained earlier by the SPQcdR collaboration [190].

The quality criteria laid out in section 2 require a systematic study of lattice artifacts.
As indicated by the colour code in Table 6, the errors due to the continuum extrapolation
yet need to be investigated in more detail for the data with Nf = 2 + 1, while for Nf = 2,
where the quoted uncertainties are larger, these errors are under somewhat better control.
The value

f+(0) = 0.956(8) (our estimate, direct) (41)

covers both results in equation (40). In our opinion, it represents a conservative estimate for
the range permitted by the presently available direct determinations of f+(0) in lattice QCD,
not only for Nf = 2, but also for Nf = 2 + 1.

For fK/fπ, Table 7 contains several simulations with Nf = 2+1 dynamical quark flavours.
The latest update of the MILC program is reported in MILC 10 [171]. We use the results
quoted there when forming averages. Three further data sets meet the criteria formulated in
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Figure 5: The plot compares the information for |Vud|, |Vus| obtained on the lattice with
the experimental result extracted from nuclear β transitions. The dotted arc indicates the
correlation between |Vud| and |Vus| that follows if the three-flavour CKM-matrix is unitary.

the introduction: BMW 10 [41] and HPQCD/UKQCD 07 [175] with Nf = 2 + 1 and ETM
09 [177] with Nf = 2 dynamical flavours. We ignore possible correlations due to the fact that
MILC 10 and HPQCD/UKQCD 07 have partly used the same set of gauge configurations and
apply the procedure outlined in section 2.2 to the three sets with Nf = 2+1. The resulting fit
is of good quality, with fK/fπ = 1.193(4) and χ2 = 0.4 for 3 data points and 1 free parameter.
The systematic errors of the individual data sets are larger: 0.005, 0.007 and 0.006 for MILC
10, HPQCD/UKQCD 07 and BMW 10, respectively. Following the prescription of section
2.2, we replace the error by the smallest one of these numbers. Together with the ETM 09
result for Nf = 2, our estimates thus read

fK/fπ = 1.193(5) , (direct, Nf = 2 + 1) , (42)

fK/fπ = 1.210(6)(17) , (direct, Nf = 2) .

It is instructive to convert the above results for f+(0) and fK/fπ into a corresponding range
for the CKM matrix elements Vud and Vus, using the relations (35). Consider first the results
for Nf = 2 + 1. The range for f+(0) in (40) is mapped into the interval Vus = 0.2255(14),
depicted as a horizontal gray band in Figure 5, while the one for fK/fπ in (42) is converted
into Vus/Vud = 0.2312(11), shown as a green band. The red curve is the intersection of these
two bands. More precisely, it represents the 68% likelihood contour, obtained by treating
the above two results as independent measurements. A Gaussian in f+(0) corresponds to a
Gaussian in the variable 1/Vus. Since the width is small, the distribution in the variable Vus is
also approximately Gaussian. The corresponding likelihood function is given by χ2

a = (Vus −
0.2255)2/0.00142 . Likewise, a Gaussian in fK/fπ is mapped into an approximately Gaussian
distribution of the variable Vus/Vud, with χ2

b = (Vus/Vud − 0.2312)2/0.00112. Expressed
in terms of the CKM matrix elements, the Nf = 2 + 1 results for f+(0) and fK/fπ are
thus characterized by the likelihood function χ2 = χ2

a + χ2
b . The minimum occurs at the

intersection of the centers of the two bands, where χ2 vanishes. The contour shown is the line
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Collaboration Ref. Nf from |Vus|

MILC 10 [171] 2 + 1 fK/fπ 0.2245(5)(+12
−5 )

RBC/UKQCD 10A [106] 2 + 1 fK/fπ 0.2233(13)(44)

RBC/UKQCD 10 [158] 2 + 1 f+(0) 0.2253(10)(+12
−8 )

BMW 10 [41] 2 + 1 fK/fπ 0.2254(13)(11)

HPQCD/UKQCD 07 [175] 2 + 1 fK/fπ 0.2260(5)(13)

ETM 09 [177] 2 fK/fπ 0.2222(11)(31)

ETM 09A [161] 2 f+(0) 0.2263(14)(15)

Table 8: Values of |Vus| obtained from lattice determinations of f+(0) or fK/fπ with CKM
unitarity. The first (second) number in brackets represents the statistical (systematic) error.

where χ2 differs from the minimum by unity. Values of Vus, Vud in the region enclosed by this
contour are consistent with the lattice data for Nf = 2+1, within one standard deviation. In
particular, the plot shows that the nuclear β decay result for Vud is perfectly consistent with
these data.

Repeating the exercise with the Nf = 2 results leads to the dashed ellipse. The figure
thus indicates that the data are consistent within errors. We conclude that, at the accuracy
reached up to now for the quantities f+(0), fK/fπ, Vus and Vud, the distortions generated by
the quenching of the strange quark are too small to be visible.

4.4 Testing the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the first
row obey

|Vu|2 ≡ |Vud|2 + |Vus|2 + |Vub|2 = 1 . (43)

The tiny contribution from |Vub| is known much better than needed in the present context:
|Vub| = 3.89(44) · 10−3 [191]. In the following, we first discuss the evidence for the validity of
the relation (43) and only then use it to analyze the lattice data within the Standard Model.

In Figure 5, the correlation between Vud and Vus imposed by the unitarity of the CKM
matrix is indicated by a dotted arc (more precisely, in view of the uncertainty in Vub, the
correlation corresponds to a band of finite width, but the effect is too small to be seen here).
The plot shows that the data for Nf = 2 + 1 are perfectly consistent with this constraint.
Numerically, the outcome for the sum of the squares of the first row of the CKM matrix reads
|Vu|2 = 1.002(15). The Standard Model thus passes a nontrivial test that exclusively involves
lattice data and well-established kaon decay branching ratios. Combining the lattice results
for f+(0) and fK/fπ in (40) and (42) with the β-decay value of |Vud| quoted in (36), the test
sharpens considerably: the lattice result for f+(0) leads to |Vu|2 = 1.0000(7), while the one
for fK/fπ implies |Vu|2 = 0.9999(6), thus confirming CKM unitarity at the permille level.

Repeating the analysis for Nf = 2, we find |Vu|2 = 1.037(36) with the lattice data
alone. The number is somewhat larger than 1, in accordance with the fact that the dot-
ted curve passes just outside the blue contour, but the difference barely exceeds one stan-
dard deviation. Moreover, it only concerns the comparison of the Nf = 2 results for f+(0)
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Figure 6: Results for |Vus| and |Vud| that follow from the lattice data for f+(0) (red triangles)
and fK/fπ (red squares), on the basis of the assumption that the CKM matrix is unitary.
The black squares and the bands represent our estimates, obtained by combining these two
different ways of measuring |Vus| and |Vud| on a lattice. For comparison, the figure also
indicates the results obtained if the data on nuclear β decay and τ decay are analyzed within
the Standard Model.

with those for fK/fπ. Taken by themselves, these results are perfectly consistent with the
value of |Vud| found in nuclear β decay: combining this value with the data on f+(0) yields
|Vu|2 = 1.0004(10), combining it with the data on fK/fπ gives |Vu|2 = 0.9985(16).

Note that the above tests also offer a check of the basic hypothesis that underlies our
analysis: we are assuming that the weak interaction between the quarks and the leptons
is governed by the same Fermi constant as the one that determines the strength of the
weak interaction among the leptons and determines the lifetime of the muon. In certain
modifications of the Standard Model, this is not the case. In those models it need not be true
that the rates of the decays π → ℓν, K → ℓν and K → πℓν can be used to determine the
matrix elements |Vudfπ|, |VusfK | and |Vusf+(0)|, respectively and that |Vud| can be measured
in nuclear β decay. The fact that the lattice data are consistent with unitarity and with
the value of |Vud| found in nuclear β decay indirectly also checks the equality of the Fermi
constants.
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4.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental
constraints quoted in (35) and the unitarity condition (43) then reduce the four quantities
|Vud|, |Vus|, f+(0), fK/fπ to a single unknown: any one of these determines the other three
within narrow uncertainties.

Figure 6 shows that the results obtained for |Vus| and |Vud| from the data on fK/fπ (red
squares) are quite consistent with the determinations via f+(0) (red triangles). In order to
calculate the corresponding average values, we restrict ourselves to those determinations that
we have considered best in section 4.3. The corresponding results for |Vus| are listed in Table
8 (the noise in the experimental numbers used to convert the values of f+(0) and fK/fπ into
values for |Vus| is included in the statistical error).

We consider the fact that the results from the four Nf = 2 + 1 data sets RBC/UKQCD
10 [158], BMW 10 [41], MILC 10 [171] and HPQCD/UKQCD 07 [175] are consistent with
each other to be an important reliability test of the lattice work. Treating the four sets as
independent measurements, and applying the standard averaging procedure, we obtain a fit
of good quality, with |Vus| = 0.2253(6) and χ2 = 0.6 for 4 data points and 1 free parameter.
The results listed in the upper half of Table 8 show, however, that the standard procedure
underestimates the systematic uncertainties also in this case. Applying the prescription of
section 2.2, we arrive at a somewhat larger error: |Vus| = 0.2253(9). This result is indicated
on the left hand side of Fig. 6 by the narrow vertical band. The broader band shows the
corresponding value for Nf = 2 (standard error analysis, |Vus| = 0.2253(17), with χ2 = 1.2
for 2 data points and 1 free parameter, S = 1.09). The figure shows that the result obtained
for the data with Nf = 2 is perfectly consistent with the one found for Nf = 2 + 1.

Alternatively, we can solve the relations for |Vud| instead of |Vus|. Again, the result
|Vud| = 0.97428(21) which follows from the lattice data with Nf = 2+1 is perfectly consistent
with the value |Vud| = 0.97433(42) obtained from those with Nf = 2. The reduction of the
uncertainties in the result for |Vud| due to CKM unitarity is to be expected from Figure 5:
the unitarity condition reduces the region allowed by the lattice results to a nearly vertical
interval.

Next, we determine the value of f+(0) that follows from the lattice data within the Stan-
dard Model. Using CKM unitarity to convert the lattice determinations of fK/fπ into corre-
sponding values for f+(0) and then combining these with the direct determinations of f+(0),
we find f+(0) = 0.9599(38) from the data with Nf = 2+1 and f+(0) = 0.9604(75) for Nf = 2.
The results are shown in the left panel of Fig. 4.

Finally, we work out the analogous Standard Model fits for fK/fπ, converting the direct
determinations of f+(0) into corresponding values for fK/fπ and combining the outcome
with the direct determinations of that quantity. The results read fK/fπ = 1.1927(50) for
Nf = 2+1 and fK/fπ = 1.194(10) for Nf = 2, respectively; they are shown in the right panel
of Fig. 4.

The results obtained by analyzing the lattice data in the framework of the Standard Model
are collected in the upper half of Table 9. In the lower half of this table, we list the analogous
results, found by working out the consequences of CKM-unitarity for the experimental values
of |Vud| and |Vus| obtained from nuclear β-decay and τ -decay, respectively. The comparison
shows that the lattice result for |Vud| not only agrees very well with the totally independent
determination based on nuclear β transitions, but is also remarkably precise. On the other
hand, the values of |Vud|, f+(0) and fK/fπ which follow from the τ -decay data if the Standard
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Ref. |Vus| |Vud| f+(0) fK/fπ

Nf = 2 + 1 0.2253(9) 0.97428(21) 0.9599(38) 1.1927(50)

Nf = 2 0.2251(18) 0.97433(42) 0.9604(75) 1.194(10)

β-decay [50] 0.22544(95) 0.97425(22) 0.9595(46) 1.1919(57)

τ -decay [152] 0.2165(26) 0.9763(6) 0.999(12) 1.244(16)

τ -decay [154] 0.2208(39) 0.9753(9) 0.980(18) 1.218(23)

Table 9: The upper half of the table shows our final results for |Vus|, |Vud|, f+(0) and fK/fπ,
which are obtained by analyzing the lattice data within the Standard Model. For comparison,
the lower half lists the values that follow if the lattice results are replaced by the experimental
results on nuclear β decay and τ decay, respectively.

Model is assumed to be valid, are not in good agreement with the lattice results for these
quantities. The disagreement is reduced considerably if the analysis of the τ data is supple-
mented with experimental results on electroproduction [154]: the discrepancy then amounts
to little more than one standard deviation.

5 Low-energy constants

In studying the quark mass dependence of QCD observables calculated on the lattice it is good
practice to invoke χPT. For a given quantity this framework predicts the nonanalytic quark
mass dependence and it provides symmetry relations among different observables. These
symmetry relations are best expressed with the help of a set of universal and independent
low-energy constants (LECs), which appear as coefficients of the polynomial terms in different
observables. If one expands around the SU(2) chiral limit, in the Chiral Effective Lagrangian
there are 2 LECs at order p2

F ≡ Fπ
mu,md→0

, B ≡ −〈0| ūu |0〉
F 2
π mu,md→0

, (44)

and seven at order p4, indicated by ℓ̄i, i = 1, . . . , 7. In the analysis of the SU(3) chiral limit,
at order p2 there are also only two LECs

F0 ≡ Fπ
mu,md,ms→0

, B0 ≡ −〈0| ūu |0〉
F 2
π mu,md,ms→0

, (45)

but ten at order p4 indicated by the capital letter Li(µ), i = 1, . . . , 10. These constants are
independent of the quark masses,11 but they become scale dependent after renormalization
(sometimes a superscript r is added). The SU(2) constants are scale independent, since they
are defined at µ =Mπ (as indicated by the bar). For the precise definition of these constants,
their scale dependence etc, we refer the reader to [91, 93].

11More precisely, they are independent of the 2 or 3 light quark masses which are explicitly considered in
the respective framework. However, all low-energy constants depend on the masses of the remaining quarks
s, c, b, t or c, b, t in the SU(2) and SU(3) framework, respectively.
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First of all, lattice calculations can be used to test if chiral symmetry is indeed broken
as SU(Nf )L×SU(Nf )R →SU(Nf )L+R by measuring non-zero chiral condensates and by veri-
fying, for instance, the validity of the GMOR relation M2

π ∝ m close to the chiral limit. If
the chiral extrapolation of quantities calculated on the lattice is made with the help of χPT,
not only does one get the observable at the physical value of the quark masses, but one also
determines the relevant LECs. This is a very important by-product for two reasons:

1. All the LECs up to order p4 (with the exception of B and B0, since only the product
of these times the quark masses can be estimated from phenomenology) have been
either determined by comparison to experiments or estimated theoretically. A lattice
determination of the better known ones provides therefore a stringent test of the χPT
approach.

2. The less well known LECs are those which describe the quark mass dependence of
observables – these cannot be determined from experiments, and therefore the lattice
provides for these unique quantitative information. This information is essential for
improving those χPT predictions in which these LECs play a role.

We stress that this program is based on the non-obvious assumption that χPT is valid in the
region of masses used in the lattice simulation under consideration.

The fact that, at large volume, the finite-size effects, which occur if a system undergoes
spontaneous symmetry breakdown, are controlled by the Nambu-Goldstone modes, was first
noted in solid state physics, in connection with magnetic systems [192, 193]. As pointed out
in [194], in the context of QCD, the thermal properties of such systems can be studied in
a systematic and model independent manner by means of the corresponding effective field
theory, provided only the temperature is low enough. While finite volumes are not of physical
interest in particle physics, lattice simulations are necessarily carried out in a box. As shown
in [195–197], the ensuing finite size effects can also be studied on the basis of the effective
theory – χPT in the case of QCD – provided the simulation is close enough to the continuum
limit, the volume is sufficiently large and the explicit breaking of chiral symmetry generated
by the quark masses is sufficiently small. Indeed, χPT represents a useful tool also for the
analysis of the finite size effects in lattice simulations.

In the following two sections we will summarize the lattice results for the SU(2) and SU(3)
LECs at order p2 and p4. The O(p2) constants are determined from the chiral extrapolation
of masses and decay constants or, alternatively, from a finite-size study of correlators in the
ǫ-regime or from spectral observables. At order p4 some LECs influence two-point functions
while others appear only in three- or four-point functions; the latter need to be determined
via a chiral extrapolation of form factors or scattering amplitudes. The χPT analysis of the
phenomenology is nowadays based on O(p6) formulae.12 At this level the number of LECs
explodes and we will not discuss any of these here. We will, however, discuss how comparing
different orders and different expansions (x versus ξ, see below) can help to reliably assess
the theoretical uncertainties of the LECs determined on the lattice.

12Some of the O(p6) formulae presented below have been derived in an unpublished note by three of us (GC,
SD and HL) and Jürg Gasser. We thank him for allowing us to publish them here.
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5.1 SU(2) Low-Energy Constants

5.1.1 Quark-mass dependence of pseudoscalar masses and decay constants

The expansions of M2
π and Fπ in powers of the quark mass are known to next-to-next-to-

leading order in the SU(2) chiral effective theory.13 In the isospin limit, mu = md = m, the
explicit expressions may be written in the form [198]

M2
π = M2

{
1− 1

2
x ln

Λ2
3

M2
+

17

8
x2
(
ln

Λ2
M

M2

)2

+ x2kM +O(x3)

}
, (46)

Fπ = F

{
1 + x ln

Λ2
4

M2
− 5

4
x2
(
ln

Λ2
F

M2

)2

+ x2kF +O(x3)

}
.

The expansion parameter is given by

x =
M2

(4πF )2
, M2 = 2Bm =

2mΣ

F 2
. (47)

The logarithmic scales Λ3,Λ4 are related to the effective coupling constants ℓ̄3, ℓ̄4 of the chiral
Lagrangian at running scale Mπ:

ℓ̄n = ln
Λ2
n

M2
π

, n = 1, ..., 7. (48)

Note that in Eq. (46), the logarithms are evaluated at M2, and not at M2
π . The coupling

constants ki in Eq. (46) are mass-independent. The scales of the quadratic logarithms can be
expressed in terms of the coupling constants:
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)
.

By analyzing the quark mass dependence of Mπ and Fπ with Eq. (46), possibly truncated
at NLO, one can therefore determine14 the O(p2) LECs B and F , as well as the O(p4) LECs
ℓ̄3 and ℓ̄4. The quark condensate in the chiral limit is determined by Σ = F 2B. With precise
enough data at several low pion masses, one could in principle also determine ΛM , ΛF and
kM , kF . This is not yet the case. The results for the LO and NLO constants will be presented
in Sec. 5.1.6.

Alternatively, one can invert Eq. (46) and express M and F as an expansion in

ξ ≡ M2
π

16π2F 2
π

. (50)

13Here and in the following, we stick to the notation used in the papers where the χPT formulae were
established, i.e. we work with Fπ ≡ fπ/

√
2 = 92.2(1)MeV and FK ≡ fK/

√
2. The occurrence of different

normalization conventions is not convenient, but avoiding it by reformulating the formulae in terms of fπ , fK
is not a good way out. Since we are using different symbols, confusion cannot arise.

14Notice that one could analyze the quark mass dependence entirely in terms of the parameter M defined
in Eq. (47) and determine equally well all other LECs. Using the determination of the quark masses described
in Sec. 3 one can then extract B or Σ.
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The corresponding expressions read

M2 = M2
π

{
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F = Fπ
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The scales of the quadratic logarithms are determined by Λ1, . . . ,Λ4:
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− 12 ln
Λ2
4

M2
π

+ 52

)
, (52)

ln
Ω2
F

M2
π

=
1

3

(
−7 ln

Λ2
1

M2
π

− 8 ln
Λ2
2

M2
π

+ 18 ln
Λ2
4

M2
π

− 29

2

)
.

5.1.2 Two-point correlation functions in the ǫ-regime

The finite-size effects encountered in lattice calculations can be used to determine some of
the Low-Energy Constants of QCD. In order to illustrate the method, we focus on the two
lightest quarks, take the isospin limit mu = md = m and consider a box of size Ls in the three
space directions and size Lt in the time direction. If m is sent to zero at fixed box size, chiral
symmetry is restored. The behaviour of the various observables in the symmetry restoration
region is controlled by the parameter µ = mΣV , where V = L3

sLt is the volume of the box.
Up to a sign and a factor of two, the parameter µ represents the minimum of the classical
action that belongs to the leading order effective Lagrangian of QCD.

For µ ≫ 1, the system behaves qualitatively as if the box was infinitely large. In that
region, the p-expansion, which counts 1/Ls, 1/Lt and M as quantities of the same order, is
adequate. In view of µ = 1

2F
2M2V , this region includes configurations with ML>∼ 1, where

the finite-size effects due to pion loop diagrams are suppressed by the factor e−ML.
If µ is comparable to or smaller than 1, however, the chiral perturbation series must be

reordered. The ǫ-expansion achieves this by counting 1/Ls, 1/Lt as quantities of O(ǫ), while
the quark mass m is booked as a term of O(ǫ4). This ensures that the symmetry restoration
parameter µ represents a term of order O(ǫ0), so that the manner in which chiral symmetry
is restored can be worked out.

As an example, we consider the correlator of the axial charge carried by the two lightest
quarks, q(x) = {u(x), d(x)}. The axial current and the pseudoscalar density are given by

Ai
µ(x) = q̄(x)12τ

i γµγ5 q(x) , P i(x) = q̄(x)12τ
i iγ5 q(x) , (53)

where τ1, τ2, τ3, are the Pauli matrices. In euclidean space, the correlators of the axial charge
and of the space integral over the pseudoscalar density are given by

δikCAA(t) = L3
s

∫
d3~x 〈Ai

4(~x, t)A
k
4(0)〉 , (54)

δikCPP (t) = L3
s

∫
d3~x 〈P i(~x, t)P k(0)〉 .

χPT yields explicit finite-size scaling formulae for these quantities [197, 199, 200]. In the
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ǫ-regime, the expansion starts with

CAA(t) =
F 2L3

s

Lt

[
aA +

Lt

F 2L3
s

bA h1

(
t

Lt

)
+O(ǫ4)

]
, (55)

CPP (t) = Σ2L6
s

[
aP +

Lt

F 2L3
s

bP h1

(
t

Lt

)
+O(ǫ4)

]
,

where the coefficients aA, bA, aP , bP stand for quantities of O(ǫ0). They can be expressed
in terms of the variables Ls, Lt and m and exclusively involve the two leading low-energy
constants F and Σ. In fact, at leading order, only the combination µ = mΣL3

sLt matters, the
correlators are independent of t and the dependence on µ is fully determined by the structure
of the groups involved in the spontaneous symmetry breakdown. In the case of SU(2)×SU(2)
→ SU(2), relevant for QCD in the symmetry restoration region of the two lightest quarks, the
coefficients can be expressed in terms of Bessel functions. The t-dependence of the correlators

starts showing up at O(ǫ2), in the form of a parabola: h1(τ) =
1
2

[(
τ − 1

2

)2 − 1
12

]
. Explicit

expressions for aA, bA, aP , bP can be found in [197, 199, 200], where some of the correlation
functions are worked out to NNLO. By matching the finite-size scaling of correlators computed
on the lattice with these predictions one can extract F and Σ.

The fact that the representation of the correlators to NLO is not “contaminated” by higher
order unknown LECs, makes the ǫ-regime potentially convenient for a clean extraction of the
LO couplings. The determination of the LECs is then affected by different systematic un-
certainties with respect to the standard case; simulations in this regime yield complementary
information which can serve as a valuable cross-check to get a comprehensive picture of the
low-energy properties of QCD.

The effective theory can also be used to study the distribution of the topological charge in
QCD [201] and the various quantities of interest may be defined for a fixed value of this charge.
The expectation values and correlation functions then not only depend on the symmetry
restoration parameter µ, but also on the topological charge ν. The dependence on these two
variables can explicitly be calculated. It turns out that the two-point correlation functions
considered above retain the form (55), but the coefficients aA, bA, aP , bP now depend on
the topological charge as well as on the symmetry restoration parameter (see [202–204] for
explicit expressions).

A specific issue with ǫ-regime calculations is the scale setting. Ideally one would perform
a p-regime study with the same bare parameters to measure a hadronic scale (e.g. the proton
mass). In the literature, sometimes a gluonic scale (e.g. r0) is used instead; this introduces
an extra uncertainty of the order of 5%.

It is important to stress that in the ǫ-expansion higher order finite-volume corrections
might be significant, and the physical box size (in fm) should still be large in order to keep
them under control. The criteria for the chiral extrapolation and finite volume effects are
obviously different with respect to the p-regime. For these reasons we have to adjust the
colour coding defined in Sect. 2 (see 5.1.6 for more details).

Recently, the chiral effective theory has been extended also to the so-called mixed regime,
where some quarks are in the p-regime and others in the ǫ-regime [205]. In [206] a technique
is proposed to smoothly connect p- and ǫ-regimes. These theoretical advances can be adopted
for future extraction of the Low Energy Couplings from lattice simulations.
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5.1.3 Energy levels of the QCD Hamiltonian in a box, δ-regime

At low temperature, the properties of the partition function are governed by the lowest
eigenvalues of the Hamiltonian. In the case of QCD, the lowest levels are due to the Nambu-
Goldstone bosons and can be worked out with χPT [207]. In the chiral limit, the level
pattern follows the one of a quantum-mechanical rotator: Eℓ = ℓ(ℓ+ 2)/(2Θ), ℓ = 0, 1, 2, . . .
For a cubic spatial box and to leading order in the expansion in inverse powers of the box
size Ls, the moment of inertia is fixed by the value of the pion decay constant in the chiral
limit: Θ = F 2L3

s. In order to analyze the dependence of the levels on the quark masses
and on the parameters that specify the size of the box, a reordering of the chiral series
is required, the so-called δ-expansion; the region where the properties of the system are
controlled by this expansion is referred to as the δ-regime. Evaluating the chiral perturbation
series in this regime, one finds that the expansion of the partition function goes in even
inverse powers of FLs, that the rotator formula for the energy levels holds up to NNLO and
the expression for the moment of inertia is now also known up to and including order (FLs)

−4

[208–210]. Since the level spectrum is governed by the value of the pion decay constant in
the chiral limit, an evaluation of this spectrum on the lattice can be used to measure F .
More generally, the evaluation of various observables in the δ-regime offers an alternative
method for a determination of some of the low energy constants occurring in the effective
Lagrangian. At present, however, the numerical results obtained in this way [211, 212] are
not yet competitive with those found in the p- or ǫ-regimes.

5.1.4 Other methods for the extraction of the Low-Energy Constants

An observable that can be used to extract the LECs is the topological susceptibility, which
is defined as

χt =

∫
d4x 〈ω(x)ω(0)〉, (56)

where ω(x) is the topological charge density,

ω(x) =
1

32π2
ǫµνρσTr [Fµν(x)Fρσ(x)] . (57)

At infinite volume, the expansion of the topological susceptibility in powers of the quark
masses starts with [213]

χt = mΣ {1 +O(m)} , m ≡
(

1

mu
+

1

md
+

1

ms
+ . . .

)−1

. (58)

The quark condensate Σ can thus be extracted from the properties of the topological sus-
ceptibility close to the chiral limit. The behaviour at finite volume, in particular also in the
region where the symmetry is restored, are discussed in [200]. The dependence on the vacuum
angle θ and the projection on sectors of given topological charge have also been investigated
[201]. For a discussion of the finite-size effects to NLO, including the dependence on θ, we
refer to [204, 214].

Another method to compute directly the quark condensate has been proposed in [215],
where it is shown that starting from the Banks-Casher relation [216], it is possible to extract
the condensate from suitable (renormalizable) spectral observables, for instance the number
of Dirac operator modes contained in a given interval. For those spectral observables higher
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order corrections can be systematically computed in terms of the chiral effective theory.

An alternative strategy is based on the fact that at LO in the ǫ-expansion, the partition
function in a given topological sector ν is equivalent to the one of a chiral Random Matrix
Theory (RMT) [217–220]. In RMT it is possible to extract the probability distributions
of individual eigenvalues [221–223] in terms of two dimensionless variables ζ = λΣV and
µ = mΣV , where λ represents the eigenvalue of the massless Dirac operator and m is the sea
quark mass. Hence it is possible to match the QCD low-lying spectrum of the Dirac operator
with the RMT predictions in order to extract15 the chiral condensate Σ. The main issue
concerning this method is that for the distributions of individual eigenvalues higher order
corrections are still not known by means of the chiral effective theory, and this may introduce
systematic effects which are not under control.16Another open question is that, while it is
clear how the spectral density is renormalized [227], this is not the case for the individual
eigenvalues, and one has to rely on assumptions. There have been many lattice studies [228–
232] where the matching of the low-lying Dirac spectrum with RMT has been investigated.
In this review we don’t include the results of the LECs obtained in this way.17

5.1.5 Pion form factors

The scalar and vector form factors of the pion are defined by the matrix elements

〈πi(p2)| q̄ q |πj(p1)〉 = δijF π
S (t) , (59)

〈πi(p2)| q̄ 1
2τ

kγµq |πj(p1)〉 = i ǫikj(pµ1 + pµ2 )F
π
V (t) ,

where the operators only contain the lightest two quark flavours, τ1, τ2, τ3 are the Pauli
matrices and t ≡ (p1 − p2)

2 denotes the momentum transfer.
The vector form factor has been measured by several experiments for timelike as well

as for spacelike values of t. The scalar form factor is not measurable but can be evaluated
theoretically from data on the ππ and πK phase shifts [233] on the basis of analyticity and
unitarity, i.e. in a model-independent way. Lattice calculations can be compared with data
or model-independent theoretical evaluations at different values of t. At present, however,
most lattice calculations concentrate on the region close to t = 0 and on the evaluation of the
slope and curvature, defined as:

F π
V (t) = 1 + 1

6 〈r
2〉πV t+ cV t

2 + . . . , (60)

F π
S (t) = F π

S (0)
[
1 + 1

6〈r
2〉πSt+ cS t

2 + . . .
]
.

The slopes are related to the mean quadratic vector and scalar radii which are the quantities
on which most experiments and lattice calculations concentrate.

In chiral perturbation theory, the form factors are known at NNLO [234]. The corre-
sponding formulae are available in fully analytical form and are compact enough that they
can be used for the chiral extrapolation of the data (as done, for example in [235, 236]). The

15By introducing an imaginary isospin chemical potential, this framework can be extended such that the low
spectrum of the Dirac operator is sensitive also to the pseudoscalar decay constant F at LO [224].

16Higher order systematic effects in the matching with RMT have been recently investigated in [225, 226].
17The results obtained for Σ and F lie in the same range as the determinations reported in Tables 10 and

11.
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expressions for the scalar and vector radii and for the cS,V coefficients at two-loop level reads

〈r2〉πS = ξ



6 ln
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M2
π

− 13

2
− 29

3
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(
ln

Ω2
rS

M2
π

)2
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 ,

〈r2〉πV = ξ



ln
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(
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M2
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where

ln
Ω2
rS

M2
π

=
1

29

(
31 ln

Λ2
1

M2
π

+ 34 ln
Λ2
2

M2
π

− 36 ln
Λ2
4

M2
π

+
145

24

)
,

ln
Ω2
rV

M2
π

=
1

2

(
ln

Λ2
1

M2
π

− ln
Λ2
2

M2
π

+ ln
Λ2
4

M2
π

+ ln
Λ2
6

M2
π

− 31

12

)
, (62)

ln
Ω2
cS

M2
π

=
43

63

(
11 ln

Λ2
1

M2
π

+ 14 ln
Λ2
2

M2
π

+ 18 ln
Λ2
4

M2
π

− 6041

120

)
,

ln
Ω2
cV

M2
π

=
1

72

(
2 ln

Λ2
1

M2
π

− 2 ln
Λ2
2

M2
π

− ln
Λ2
6

M2
π

− 26

30

)
,

and krS,V and kcS,V are four constants independent of the quark masses. Their expression in
terms of the ℓi and of the O(p6) constants ci is known but will not be reproduced here.

5.1.6 Results

In this section we summarize the lattice results for the SU(2) couplings in a set of tables
(10–13) and figures (7–9). The tables present our usual colour coding which summarizes the
main aspects related to the treatment of the systematic errors of the various calculations.

A delicate issue in the lattice determination of chiral LECs (in particular at NLO) which
cannot be reflected by our colour coding is a reliable assessment of the theoretical error. We
add a few remarks on this point:

1. Using both the x and the ξ expansion is a good way to test how the ambiguity of the
chiral expansion (at a given order) affects the numerical values of the LECs that are
determined from a particular set of data. For instance, to determine ℓ̄4 (or Λ4) from
lattice data for Fπ as a function of the quark mass, one may compare the fits based
on the parametrization Fπ = F{1 + x ln(Λ2

4/M
2)} [see Eq. (46)] with those obtained

from Fπ = F/{1 − ξ ln(Λ2
4/M

2
π)} [see Eq. (51)]. The difference between the two results

provides an estimate of the uncertainty due to the truncation of the chiral series.18

18Notice however that this difference could be accidentally small and then lead to an underestimate of the
true systematic error.
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Which central value one chooses is in principle arbitrary, but we find it advisable to use
the one obtained with the ξ expansion,19 in particular because it makes the comparison
with phenomenological determinations (where it is an established practice to use the ξ
expansion) more meaningful. The fact that there is an apparent discrepancy in Tab. 13
between the lattice and the phenomenological determination of ℓ̄1−ℓ̄2, but not for 〈r2〉πS
(on which it is based), calls for a re-assessment of the theoretical error which includes
an x versus ξ expansion analysis.

2. As an alternative one could try to estimate the influence of higher chiral orders by
reshuffling irrelevant higher-order terms. For instance, in the example mentioned above
one might use Fπ = F/{1−x ln(Λ2

4/M
2)} as a different functional form at NLO. Another

way to make this estimate is through introducing by hand “analytic” higher-order terms
(e.g. “analytic NNLO”), as done, in the past, by MILC [6]. In principle it would be
preferable to include all NNLO terms or none, such that the structure of the chiral
expansion is preserved at any order; this is what ETM [237] and JLQCD/TWQCD [95]
are doing now for SU(2) χPT and MILC for SU(3) χPT [59]. In any case it is not
advisable to include terms to which the data are not sensitive. The use of priors in fits
has not yet found general consensus in the lattice community.

3. Another issue concerns the s-quark mass dependence of the LECs ℓ̄i or Λi in the SU(2)
framework. This has been studied analytically in a series of papers [91, 238, 239]. An
analysis of the difference of the LECs determinations done in Nf = 2 or Nf = 2 + 1
lattice simulations provides a unique means to analyze quantitatively this dependence.

4. Finally, the determination of the LECs is in general affected by discretization effects,
and it is important that these are corrected for with the help of the appropriate effective
chiral Lagrangian (as done, e.g. by MILC). For actions which respect chiral symmetry
at finite lattice spacing (like the overlap formulation adopted by JLQCD/TWQCD or
domain wall fermions used by RBC/UKQCD in the limit of large lattice size in the fifth
dimension), this step is unnecessary.

In the tables and figures we summarize the results of various lattice collaborations for the
SU(2) LECs at leading order (F or F/Fπ, B or Σ) and at NLO (ℓ̄1 − ℓ̄2, ℓ̄3, ℓ̄4, ℓ̄5, ℓ̄6). The
tables group the results into those which stem from Nf = 2+ 1 calculations and those which
stem from Nf = 2 calculations. Furthermore, we make a distinction whether the results are
obtained from simulations in the p-regime or whether alternative methods (ǫ-regime, spectral
quantities, topological susceptibility, etc.) have been used. For comparison we add, in each
case, a few phenomenological determinations with high standing.

There is only one set of Nf = 2 lattice results for the SU(2) LECs which does not have any
red tag, the one by the ETM collaboration [235, 237]. These results are at present the lattice
determinations of these quantities with the best control of systematic effects (for Nf = 2 and
in some cases even overall) and the only ones which qualify for making an average according
to our criteria. We therefore offer no Nf = 2 averages, and the dashed bands in the plots
coincide with the lattice points of the ETM collaboration.

19There are theoretical arguments suggesting that the ξ expansion is preferable to the x expansion, based
on the observation that the coefficients in front of the squared logs in (46) are somewhat larger than in (51).
This can be traced to the fact that a part of every formula in the x expansion is concerned with locating the
position of the pion pole (at the previous order) while in the ξ expansion the knowledge of this position is built
in exactly. Numerical evidence supporting this view is presented in [95].
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Σ1/3 [MeV]

MILC 10A [103] 2+1 C • ⋆ ⋆ • 281.5(3.4)
(

+2.0
−5.9

)

(4.0)

JLQCD/TWQCD 10 [240] 2+1 A ⋆ � • ⋆ 234(4)(17)
RBC/UKQCD 10A [106] 2+1 P • • ⋆ ⋆ 256(5)(2)(2)
JLQCD 09 [241] 2+1 A ⋆ � • ⋆ 242(4)

(

+19

−18

)

MILC 09A [59] 2+1 C • ⋆ ⋆ • 279(1)(2)(4)
MILC 09A [59] 2+1 C • ⋆ ⋆ • 280(2)

(

+4

−8

)

(4)

MILC 09 [6] 2+1 A • ⋆ ⋆ • 278(1)
(

+2

−3

)

(5)

TWQCD 08 [242] 2+1 A • � � ⋆ 259(6)(9)
JLQCD/TWQCD 08B [243] 2+1 C • � � ⋆ 253(4)(6)
PACS-CS 08 [63] 2+1 A ⋆ � � � 312(10)
PACS-CS 08 [63] 2+1 A ⋆ � � � 309(7)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ ⋆ 255(8)(8)(13)

Bernardoni 10 [244] 2 A • � � ⋆ 262
(

+33

−34

)(

+4

−5

)

JLQCD/TWQCD 10 [240] 2 A ⋆ � � ⋆ 242(5)(20)
ETM 09C [237] 2 A • ⋆ • ⋆ 270(5)

(

+3

−4

)

ETM 08 [235] 2 A • • • ⋆ 264(3)(5)
CERN 08 [215] 2 A • � • ⋆ 276(3)(4)(5)
JLQCD/TWQCD 08A [95] 2 A • � � ⋆ 235.7(5.0)(2.0)

(

+12.7
−0.0

)

JLQCD/TWQCD 07A [245] 2 A • � � ⋆ 252(5)(10)

ETM 09B [246] 2 C ⋆ • � ⋆ 239.6(4.8)
HHS 08 [247] 2 A ⋆ � • ⋆ 248(6)
JLQCD/TWQCD 07 [248] 2 A ⋆ � � ⋆ 239.8(4.0)

Table 10: Lattice results for the quark condensate Σ, in the MS scheme at scale µ = 2 GeV.
We separate Nf = 2 + 1 from Nf = 2 results and, in the latter case, results obtained in
the p-regime (middle) from those obtained in the ǫ-regime (bottom). For MILC 09A and
PACS-CS 08, converted values from SU(3) fits and values from direct SU(2) fits are included.

The determination of the SU(2) LECs in Nf = 2 + 1 lattice calculations requires more
discussion: MILC has published values for Σ, F and Fπ/F in their summary paper [6], but
not for the ℓ̄i, which were instead extracted from a SU(2) fit only in conference proceedings
[59, 103]. As discussed in the previous sections, these results have no red tag and those
presented in a regular article fully qualify for entering our averages. The RBC/UKQCD
collaboration has calculated all the SU(2) LECs discussed here. After a first study with a
single lattice spacing [108], a more recent publication with 2 lattice spacings appeared [106].
Those results have no red tag and are included in our averages. PACS-CS [63] has also
performed a comprehensive analysis of SU(2) LECs, and at remarkably small quark masses –
their calculation has two red tags related to the continuum extrapolation and finite-size effects
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Figure 7: Summary of lattice results for the quark condensate Σ (in the MS scheme at scale
µ = 2 GeV). The filled symbols represent lattice simulations with Nf = 2 + 1 dynamical
flavours, while the empty ones refer to Nf = 2 computations. Squares and left triangles
indicate determinations from correlators in the p- and ǫ-regimes, respectively. Up triangles
refer to extractions from the topological susceptibility, diamonds to determinations from the
pion form factor. The gray (dashed) band indicates our estimate for Nf = 2 + 1(Nf = 2).

and should also not be considered in averages. Finally JLQCD [240, 241] has performed a
calculation of Σ (but no other SU(2) LECs) with Nf = 2 + 1 overlap dynamical quarks, but
at a single lattice spacings and has also a red tag.

The ETM collaboration has recently started performing calculations with Nf = 2+ 1+ 1
dynamical quarks and a first paper [60] on the SU(2) LECs has appeared (a more recent
paper [249] gives a progress report but not yet an update of the LECs). Assigning a color
code to this calculation is not straightforward because of the even larger splitting between
the neutral and charged pion than observed in Nf = 2 calculations, but as explained in the
footnote in Table 11 we did not assign it any red tag. We also refer to the careful analysis
by Bär [40] on the effect of this splitting on the LEC determination. All this considered, we
compare and take into account their numbers when drawing our conclusions on Nf = 2 + 1
calculations of the SU(2) LECs.

A generic comment applies to the issue of the scale setting. Since none of the lattice
studies involves simulations in the p-regime at the physical value of mud, the setting of the
scale a−1 via an experimentally measurable quantity involves a chiral extrapolation. As a
result, dimensionful quantities are particularly sensitive to this scale-setting ambiguity, while
in dimensionless ratios such as Fπ/F , F/F0, B/B0, Σ/Σ0, the problem is much reduced, and
often finite lattice-to-continuum renormalization factors drop out. In those cases where the
collaboration offers separate results for numerator and denominator but not for the ratio,
we have calculated the quotient ourselves. Since the systematic errors are dominated by
those due to the renormalization of the scale and these cancel in Fπ/F , we have dropped the
systematic errors altogether – a lattice determination of the ratio that properly accounts for
the correlations would of course be preferable. In the tables, results obtained in this way are
shown in slanted fonts. Since the difference between Fπ and F manifests itself only at NNLO
of the ǫ-expansion, the data taken in the ǫ-regime do not by themselves allow a determination
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Figure 8: Summary of lattice results for the ratio Fπ/F , which compares the physical value of
the pion decay constant with the value in the limit mu,md → 0. The meaning of the symbols
is the same as in Fig. 7. The gray band here represents our estimate, whereas the dashed one
the current Nf = 2 value.

of the ratio Fπ/F . The corresponding entries in Tab. 11 and Fig. 8 are obtained by dividing
the physical value of Fπ (cf. footnote 13) through the lattice result for F .

It is worth repeating here that the standard colour coding scheme of our tables is nec-
essarily schematic and cannot do justice to every calculation. For instance, in the ǫ-regime
we routinely assign20 a green star in the “chiral extrapolation” column (since the pertinent
expressions directly involve F and B, even if the calculation is done at finite quark mass),
while the “infinite volume” assessment is exclusively based on the number of different volumes
with L > 1.5 fm have been used (the MπL criterion does not make sense here). Similarly, in
the calculation of form factors and charge radii the tables do not reflect whether an interpola-
tion to the desired q2 has been performed or whether the evaluation has taken place directly
at the relevant q2, or very close to it, by means of “partially twisted boundary conditions”
[250]. Nevertheless, we feel that these tables give an adequate overview of the qualities of the
various calculations.

For most quantities our tables and figures show an overall reasonable consistency among
the various lattice determinations. One notable exception is the case of Σ. The PACS-CS 08
determination [63] of this quantity is in flat disagreement with all other calculations. A
glimpse at Tab. 10 reveals that this calculation is the only one which received three red boxes.
In particular, as was pointed out by the authors, for this quantity perturbative renormalization
may lead to theoretical errors which are hard to quantify. But even among the two Nf = 2+1
calculations without red tags, MILC 10A and RBC/UKQCD 10A there is some tension, at
the level of 2.6 sigmas. As pointed out above, the origin of the problem may lie in the scale
setting issue: the ratio Σ/Σ0 would be a much more stringent test. In any case, since it is not
meaningful to average these two calculations, the estimate shown in Figure 7, Σ = 269(18) is
constructed so as to cover both of them.

As far as Fπ/F is concerned, there is some tension among the MILC and the RBC/UKQCD
results, with the latest ETM Nf = 2 + 1 + 1 agreeing with the latter. The tension is at the

20Also for [241] and for [240] (for Nf = 2+1, 3) the colour-coding criteria for the ǫ-regime have been applied.
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F [MeV] Fπ/F

ETM 10 [60] 2+1+1 A • • •† ⋆ 85.66(6)(13) 1.076(2)(2)

MILC 10A [103] 2+1 C • ⋆ ⋆ • 87.5(1.0)(+0.7
−2.6) 1.05(1)

MILC 10 [171] 2+1 C • ⋆ ⋆ • 87.0(4)(5) 1.06(5)
MILC 09A [59] 2+1 C • ⋆ ⋆ • 86.8(2)(4) 1.062(1)(3)
MILC 09 [6] 2+1 A • ⋆ ⋆ • 1.052(2)(+6

−3)
PACS-CS 08 [63] 2+1 A ⋆ � � � 89.4(3.3) 1.060(7)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ ⋆ 81.2(2.9)(5.7) 1.080(8)

ETM 09C [237] 2 A • ⋆ • ⋆ 1.0755(6)(+8
−94)

ETM 08 [235] 2 A • • • ⋆ 86.6(7)(7) 1.067(9)(9)
JLQCD/TWQCD 08A [95] 2 A • � � ⋆ 79.0(2.5)(0.7)(+4.2

−0.0) 1.17(4)

ETM 09B [246] 2 C ⋆ • � ⋆ 90.2(4.8)§ 1.02(5)
HHS 08 [247] 2 A ⋆ � • ⋆ 90(4) 1.02(5)
JLQCD/TWQCD 07 [248] 2 A ⋆ � � ⋆ 87.3(5.6) 1.06(7)

CD 03 [251] 86.2(5) 1.0719(52)

† The values of Mπ+L correspond to a green tag, while those of Mπ0L imply a red one – since both masses
play a role in finite-volume effects, we opt for orange.
§ Result for r0F converted into a value for F with r0 = 0.49 fm.

Table 11: Results for the leading order SU(2) low energy constant F and for the ratio Fπ/F .
Numbers in slanted fonts have been calculated by us (see text for details). Horizontal lines
establish the same grouping as in Tab. 10. The table shows that the precision reached on the
lattice is now comparable to the accuracy of the prediction, which is indicated in the last row.

level of about two sigmas, but it is worth stressing that the quoted lattice uncertainties are
all below one percent. We believe it is fair and useful to quote an estimate which covers all
three lattice determinations and has an uncertainty of about 1.5%,

Fπ

F
= 1.073(15) our estimate. (63)

The ETM result [237] shows that the value obtained with Nf = 2 dynamical flavours is the
same within errors. 21 The crucial point here is that the lattice results confirm the theoretical
prediction [251]: the breaking of chiral symmetry generated by the small masses of the two
lightest quarks is significantly larger than what dimensional reasoning would indicate, because
it is amplified by a chiral logarithm with a large coefficient. The amplification is generated by
the propagation of Nambu-Goldstone boson pairs that necessarily accompany the spontaneous
breakdown of the symmetry.

At NLO, the ratio Fπ/F is determined by the effective coupling ℓ̄4. As we are dealing with
an expansion in powers of the two lightest quark masses here, the corrections of higher order

21On the other hand, the result of JLQCD/TWQCD [95] shows a 2-sigma deviation from the other results
obtained with Nf = 2. Since the quoted value for Fπ/F has been obtained by dividing the physical value of Fπ

by the lattice result, we can’t exclude that systematic errors are properly taken into account in this estimate.
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are expected to be very small (not necessarily at the quark masses used in the simulations,
but at their physical values). Unfortunately, however, some of the collaborations appear to
underestimate the uncertainties in the determination of this coupling: in view of the small
errors quoted, the results are not coherent (see the middle panel in Fig. 9). The dust needs
to settle before a meaningful estimate can be given for ℓ̄4.

The leading term in the chiral expansion of the scalar radius 〈r2〉πS is also determined by
the coupling ℓ̄4. The bottom panel of Table 13 shows that the result for the scalar radius
obtained from a lattice calculation of the scalar form factor by JLQCD/TWQCD 09 [252] is
in good agreement with the result of CGL 01 [198], which is based on dispersion theory, but
the red tags indicate that some of the systematic uncertainties in that calculation yet need
to be studied.

The current situation with ℓ̄3 is better than the one with ℓ̄4: the Nf = 2+1 determinations
agree well with one another and the two ETM calculations for Nf = 2 and Nf = 2 + 1 + 1
corroborate the result further. There is some discrepancy between two among the most recent
determinations which have rather small error bars, namely ETM 10 [60] and RBC/UKQCD
10A [106]. We stress, however, that the value:

ℓ̄3 = 3.2(8) our estimate , (64)

comfortably covers all available calculations and represents a substantial progress with respect
to earlier estimates. The uncertainty is three times smaller than the one attached to the old
estimate in [93], which was based on analysis of the mass formulae for the pseudoscalar octet.

Table 13 collects the results obtained for the electromagnetic form factor of the pion:
charge radius, curvature and the coupling constant ℓ̄6, that determines the charge radius to
leading order of the chiral expansion. The experimental information concerning the charge
radius is excellent and the curvature is also known very precisely, on the basis of e+e− data
and dispersion theory. The form factor calculations thus present an excellent testing ground
for the lattice calculations. The table shows that most of the available lattice results pass
the test. Concerning the value of ℓ̄6, the situation is worse than for the charge radius also
because the extraction of this constant is done differently by different groups (in particular
some use the x rather than the ξ expansion and NLO rather than NNLO formulae): here the
dust yet needs to settle.

Perhaps the most important physics result of this section is that the lattice simulations
confirm the approximate validity of the Gell-Mann-Oakes-Renner formula and show that the
square of the pion mass indeed grows in proportion to mud. The formula represents the
leading term of the chiral perturbation series and necessarily receives corrections from higher
orders. At first non-leading order, the correction is determined by the effective coupling
constant ℓ̄3. The results collected in Tab. 12 and in the top panel of Fig. 9 show that ℓ̄3 is now
known quite well. They corroborate the conclusion drawn in the pioneering work of reference
[253]: the lattice confirms the early estimate of ℓ̄3 derived in [93]. In the graph of M2

π versus
mud, the values found on the lattice for ℓ̄3 correspond to remarkably little curvature: the
Gell-Mann-Oakes-Renner formula represents a crude first approximation out to values of mud

that exceed the physical value by an order of magnitude.
As emphasized by Stern and collaborators [255–257], the analysis in the framework of

χPT is coherent only if (i) the leading term in the chiral expansion of M2
π dominates over

the remainder and (ii) the ratio ms/mud is close to the value 25.6 that follows from Wein-
berg’s leading order formulae. In order to investigate the possibility that one or both of
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ℓ̄3 ℓ̄4

ETM 10 [60] 2+1+1 A • • • 3.70(7)(26) 4.67(3)(10)

MILC 10A [103] 2+1 C • ⋆ ⋆ 2.85(81)
(

+37

−92

)

3.98(32)
(

+51

−28

)

MILC 10 [171] 2+1 C • ⋆ ⋆ 3.18(50)(89) 4.29(21)(82)
RBC/UKQCD 10A [106] 2+1 P • • ⋆ 2.57(18) 3.83(9)
MILC 09A [59] 2+1 C • ⋆ ⋆ 3.32(64)(45) 4.03(16)(17)
MILC 09A [59] 2+1 C • ⋆ ⋆ 3.0(6)

(

+9

−6

)

3.9(2)(3)

PACS-CS 08 [63] 2+1 A ⋆ � � 3.47(11) 4.21(11)
PACS-CS 08 [63] 2+1 A ⋆ � � 3.14(23) 4.04(19)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ 3.13(33)(24) 4.43(14)(77)

ETM 09C [237] 2 A • ⋆ • 3.50(9)
(

+9

−30

)

4.66(4)
(

+4

−33

)

JLQCD/TWQCD 09 [252] 2 A • � � 4.09(50)(52)
ETM 08 [235] 2 A • • • 3.2(8)(2) 4.4(2)(1)
JLQCD/TWQCD 08A [95] 2 A • � � 3.38(40)(24)

(

+31

−0

)

4.12(35)(30)
(

+31

−0

)

CERN-TOV 06 [254] 2 A • • � 3.0(5)(1)

CGL 01 [198] 4.4(2)
GL 84 [93] 2.9(2.4) 4.3(9)

Table 12: Results for the coupling constants ℓ̄3 and ℓ̄4 of the effective SU(2) Lagrangian. For
MILC 09A and PACS-CS 08, converted values from SU(3) fits and values from direct SU(2)
fits are included. The MILC 10 results are obtained by converting the SU(3) LECs, while the
MILC 10A results are obtained with a direct SU(2) fit. For comparison, the last two lines
show the results obtained from a phenomenological analysis.
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〈r2〉πV [fm2] cV (GeV−4) ℓ̄6

RBC/UKQCD 08A [250] 2+1 A • � ⋆ 0.418(31) — 12.2(9)
LHP 04 [259] 2+1 A • � • 0.310(46) — —

JLQCD/TWQCD 09 [252] 2 A • � � 0.409(23)(37) 3.22(17)(36) 11.9(0.7)(1.0)
ETM 08 [235] 2 A • • • 0.456(30)(24) 3.37(31)(27) 14.9(1.2)(0.7)
QCDSF/UKQCD 06A[260] 2 A ⋆ • • 0.441(19)(56)(29) — —

BCT 98 [234] 0.437(16) 3.85(60) 16.0(0.5)(0.7)
NA7 86 [261] 0.439(8)
GL 84 [93] 16.5(1.1)
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〈r2〉πS [fm2] ℓ̄1 − ℓ̄2

JLQCD/TWQCD 09 [252] 2 A • � � 0.617(79)(66) -2.9(0.9)(1.3)

CGL 01 [198] 0.61(4) -4.7(6)

Table 13: Top panel: vector form factor of the pion. Lattice results for the charge radius
〈r2〉πV , the curvature cV and the effective coupling constant ℓ̄6 are compared with the ex-
perimental value obtained by NA7 and some phenomenological estimates (ℓ̄6 determines the
leading contribution in the chiral expansion of the charge radius). Bottom panel: scalar form
factor of the pion. Lattice results for the scalar radius 〈r2〉πS and the combination ℓ̄1 − ℓ̄2 of
effective coupling constants are compared with the outcome of a dispersive calculation of these
quantities [198] (the leading term in the chiral expansion of the scalar radius is determined
by the coupling constant ℓ̄4, for which the available information is collected in Tab. 12; the
lattice estimate for ℓ̄1− ℓ̄2 stems from an analysis of the momentum dependence of the vector
and scalar form factors, based on the two-loop formulae of χPT [234]).

these conditions might fail, the authors proposed a more general framework, referred to as
”Generalized χPT”, which includes χPT as a special case. The results found on the lattice
demonstrate that QCD does satisfy both of the above conditions – in the context of QCD,
the proposed generalization of the effective theory does not appear to be needed. There is a
modified version, however, referred to as ”Resummed χPT” [258], which is motivated by the
possibility that the Zweig rule violating couplings L4 and L6 might be larger than expected.
The available lattice data do not exclude this possibility (see section 5.2.4).
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Figure 9: Summary of lattice results for the effective coupling constants ℓ̄3, ℓ̄4 and ℓ̄6. The
filled symbols refer to lattice calculations with Nf = 2 + 1, while the empty ones represent
simulations with Nf = 2. Squares indicate determinations from correlators in the p-regime,
diamonds refer to determinations from the pion form factor. The gray band represents our
estimate of ℓ̄3, whereas the dashed ones indicate the current Nf = 2 values of ℓ̄3 and ℓ̄4.
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5.2 SU(3) Low-Energy Constants

5.2.1 Quark-mass dependence of pseudoscalar masses and decay constants

In the isospin limit, the relevant SU(3) formulae take the form [91]

M2
π

NLO

= 2B0mud

{
1 + µπ − 1

3
µη +

B0

F 2
0

[
16mud(2L8−L5) + 16(ms+2mud)(2L6−L4)

]}
,

M2
K

NLO

= B0(ms+mud)
{
1+

2

3
µη+

B0

F 2
0

[
8(ms+mud)(2L8−L5)+16(ms+2mud)(2L6−L4)

]}
,

Fπ
NLO

= F0

{
1− 2µπ − µK +

B0

F 2
0

[
8mudL5 + 8(ms+2mud)L4

]}
, (65)

FK
NLO

= F0

{
1− 3

4
µπ − 3

2
µK − 3

4
µη +

B0

F 2
0

[
4(ms+mud)L5 + 8(ms+2mud)L4

]}
,

where B0 = Σ0/F
2
0 and F0 denote the condensate parameter and the pseudoscalar decay

constant in the SU(3) chiral limit, respectively, and

µP =
M2

P

32π2F 2
0

ln
(M2

P

µ2

)
. (66)

At the accuracy of these formulae, the quantities µπ, µK , µη can equally well be evaluated
with the leading order expressions for the masses,

M2
π

LO

= 2B0mud , M2
K

LO

= B0(ms+mud) , M2
η

LO

= 2
3B0(2ms+mud) . (67)

Throughout, Li denotes the renormalized low-energy constant/coupling (LEC) at scale µ.
The normalization used for the decay constants is specified in footnote 13.

5.2.2 Charge radius

The SU(3) formula for the slope of the pion vector form factor reads [167]

〈r2〉V,ππ
LO

= − 1

32π2F 2
0

{
3 + 2 ln(

M2
π

µ2
) + ln(

M2
K

µ2
)
}
+

12L9

F 2
0

, (68)

while the expression 〈r2〉S,oct for the octet part of the scalar radius does not contain any NLO
low-energy constant at the 1-loop order [167].

5.2.3 Partially quenched formulae

The term “partially quenched QCD” is used in two ways. For heavy quarks (c, b and sometimes
s) it usually means that these flavors are included in the valence sector, but not to the
functional determinant. For the light quarks (u, d and sometimes s) it means that they are
present in both the valence and the sea sector of the theory, but with different masses (e.g. a
series of valence quark masses is evaluated on an ensemble with a fixed sea quark mass).

The program of extending the standard (unitary) SU(3) theory to the (second version
of) “partially quenched QCD” has been completed at the 2-loop (NNLO) level for masses
and decay constants [262]. These formulae tend to be complicated, with the consequence
that a state-of-the-art analysis with O(2000) bootstrap samples on O(20) ensembles with
O(5) masses each [and hence O(200′000) different fits] will require significant computational
resources for the global fits. For an up-to-date summary of recent developments in Chiral
Perturbation Theory relevant to lattice QCD we refer to [263].
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F0 [MeV] F/F0 B/B0

JLQCD/TWQCD 10[240] 3 A � � � ⋆ 71(3)(8)

MILC 10 [171] 2+1 C • ⋆ ⋆ • 80.3(2.5)(5.4)
MILC 09A22 [59] 2+1 C • ⋆ ⋆ • 78.3(1.4)(2.9) 1.104(3)(41) 1.21(4)

(

+5

−6

)

MILC 09 22 [6] 2+1 A • ⋆ ⋆ • 1.15(5)(+13
−3 ) 1.15(16)

(

+39

−13

)

PACS-CS 08 [63] 2+1 A ⋆ � � � 83.8(6.4) 1.078(44) 1.089(15)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ ⋆ 66.1(5.2) 1.229(59) 1.03(05)
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Σ
1/3
0 [GeV] Σ/Σ0

JLQCD/TWQCD 10 [240] 3 A � � � ⋆ 0.214(6)(24) 1.31(13)(52)

MILC 09A22 [59] 2+1 C • ⋆ ⋆ • 0.245(5)(4)(4) 1.48(9)(8)(10)
MILC 09 22 [6] 2+1 A • ⋆ ⋆ • 0.242(9)( +5

−17)(4) 1.52(17)(+38
−15)

PACS-CS 08 [63] 2+1 A ⋆ � � � 0.290(15) 1.245(10)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ ⋆ 1.55(21)

Table 14: Summary of lattice results for the low-energy constants F0, B0 and Σ0 ≡ F 2
0B0,

which specify the effective SU(3) Lagrangian at leading order. The ratios F/F0, B/B0, Σ/Σ0,
which compare these with their SU(2) counterparts, indicate the strength of the Zweig-rule
violations in these quantities: in the large-Nc limit, they tend to unity. Numbers in slanted
fonts are calculated by us, from the information given in the quoted references.

5.2.4 Recent lattice determinations

To date, there are three comprehensive papers with results based on lattice QCD withNf =2+1

dynamical flavors [6, 63, 108]. It is an open issue whether the data collected at ms≃mphys
s

allow for an unambiguous determination of SU(3) low-energy constants (cf. the discussion in
[108]). So far only MILC has some data at considerably smaller ms [6]. Furthermore, we are
aware of a few papers with a result on one SU(3) low-energy constant each [176, 250, 264].
Some particulars of the comprehensive papers are shown in Tab. 14.

Results for the SU(3) low-energy constants of leading order are found in Tab. 14 and
analogous results for some of the effective coupling constants that enter the chiral SU(3)
Lagrangian at NLO are collected in Tab. 15. From PACS-CS [63] only those results are
quoted which have been corrected for finite-size effects (misleadingly labeled “w/FSE” in
their tables). For staggered data our “chiral” colour coding criterion is slightly ambiguous;
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103L4 103L6 103(2L6−L4)

JLQCD/TWQCD 10[240] 3 A � � � 0.03(7)(17)

MILC 10 [171] 2+1 C • ⋆ ⋆ -0.08(22)(+57
−33) -0.02(16)(+33

−21) 0.03(24) (+32
−27)

MILC 09A22 [59] 2+1 C • ⋆ ⋆ 0.04(13)(4) 0.07(10)(3) 0.10(12)(2)
MILC 09 22 [6] 2+1 A • ⋆ ⋆ 0.1(3)(+3

−1) 0.2(2)(+2
−1) 0.3(1)(+2

−3)
PACS-CS 08 [63] 2+1 A ⋆ � � -0.06(10)(-) 0.02(5)(-) 0.10(2)(-)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ 0.14(8)(-) 0.07(6)(-) 0.00(4)(-)

Bijnens 09 [263] 0.0(-)(5) 0.0(-)(1) 0.0(-)(5)
GL85 [91] -0.3(5) -0.2(3) -0.1(8)
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103L5 103L8 103(2L8−L5)

MILC 10 [171] 2+1 C • ⋆ ⋆ 0.98(16)(+28
−41) 0.42(10)(+27

−23) -0.15(11)(+45
−19)

MILC 09A22 [59] 2+1 C • ⋆ ⋆ 0.84(12)(36) 0.36(5)(7) -0.12(8)(21)
MILC 09 22 [6] 2+1 A • ⋆ ⋆ 1.4(2)(+2

−1) 0.8(1)(1) 0.3(1)(1)
PACS-CS 08 [63] 2+1 A ⋆ � � 1.45(7)(-) 0.62(4)(-) -0.21(3)(-)
RBC/UKQCD 08 [108] 2+1 A • � ⋆ 0.87(10)(-) 0.56(4)(-) 0.24(4)(-)

Bijnens 09 [263] 0.97(11)(-) 0.60(18)(-) 0.23(38)(-)
GL85 [91] 1.4(5) 0.9(3) 0.4(8)
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103L5 103L9 103L10

JLQCD 08A [264] 2 A • � � -5.2(2)(+5
−3)

RBC/UKQCD 08A [250] 2+1 A • � ⋆ 3.08(23)(51)
NPLQCD 06 [176] 2+1 A • � � 1.42(2)(+18

−54)

Bijnens 09 [263] 0.97(11)(-) 5.93(43)(-)
GL 85 [91] 1.4(5) 6.9(7) -5.5(7)

Table 15: Summary of lattice results for some of the coupling constants that enter the effective
SU(3) Lagrangian at NLO (running scale µ = 770MeV – the values in [6, 59, 91, 171] are
evolved accordingly). The PACS-CS entry for L6 is obtained from their results for 2L6−L4

and L4 (and similarly for other entries in slanted fonts).
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Figure 10: Summary of various lattice determinations of SU(3) low-energy constants.

we solve this issue pragmatically.22

A graphical summary of the lattice results for the coupling constants L4, L5, L6 and

22 The “chiral extrapolation” rating of [6] is based on the information on the RMS masses given in [59].

62



L8, which determine the masses and the decay constants of the pions and kaons at NLO
of the chiral SU(3) expansion, is displayed in Fig. 10, along with the two phenomenological
determinations quoted in the above tables. In general, there is a rather convincing overall
consistency, although some of the lattice results possibly underestimate the theoretical error.
Since only the calculation by the MILC collaboration is free of red tags, the gray bands in
Fig. 10 mark their results.

In spite of this apparent consistency, there is a point which needs to be clarified as soon
as possible. Some collaborations (RBC/UKQCD and PACS-CS) find that they are having
difficulties in fitting their partially quenched data to the respective formulas for pion masses
above ≃ 400 MeV. Evidently, this indicates that the data are stretching the regime of validity
of these formulas. To date it is, however, not clear which subset of the data causes the
troubles, whether it is the unitary part extending to too large values of the quark masses or
whether it is due to mval/msea differing too much from one. In fact, little is known, in the
framework of partially quenched χPT, about the shape of the region of applicability in the
mval versus msea plane for fixed Nf .

In the large-Nc limit, the Zweig-rule becomes exact, but the quarks have Nc = 3. The
work done on the lattice is ideally suited to disprove or confirm the approximate validity
of this rule. Two of the coupling constants entering the effective SU(3) Lagrangian at NLO
disappear when Nc is sent to infinity: L4 and L6. The upper part of Tab. 15 and the left panels
of Fig. 10 show that the lattice results for these are quite coherent. At the scale µ = Mρ,
L4 and L6 are consistent with zero, indicating that these constants do approximately obey
the Zweig-rule. As mentioned above, the ratios F/F0, B/B0 and Σ/Σ0 also test the validity
of this rule. Their expansion in powers of ms starts with unity and the contributions of first
order in ms are determined by the constants L4 and L6, but they also contain terms of higher
order. Quite apart from measuring the Zweig-rule violations, an accurate determination will
thus also allow us to determine the range of ms where the first few terms of the expansion
represent an adequate approximation. Unfortunately, at present, the uncertainties in the
lattice data on the ratios are too large to draw conclusions, both concerning the relative size
of the subsequent terms in the chiral perturbation series and concerning the magnitude of
the Zweig-rule violations. The data do appear to confirm the paramagnetic inequalities [257],
which require F/F0 > 1, Σ/Σ0 > 1 and it appears that the ratio B/B0 is also larger than
unity, but the numerical results need to be improved before further conclusions can be drawn.

In principle, the matching formulae in [91] can be used to calculate the SU(2) couplings
l̄i from the SU(3) couplings Li.

23 This procedure, however, yields less accurate results than
a direct determination within SU(2), as it relies on the expansion in powers of ms, where
the omitted higher order contributions generate comparatively large uncertainties. We plead
with every collaboration performing Nf = 2 + 1 simulations to directly analyze their data in
the SU(2) framework. In practice, lattice simulations are performed at values of ms close to
the physical value and the results are then corrected for the difference of ms from its physical
value. If simulations with more than one value of ms have been performed, then this can be
done by interpolation. Alternatively one can use the technique of reweighting (for a review
see [5]), which applies an a posteriori correction to shift ms into its physical value.

23For instance, for the MILC data this yields l̄3=3.32(64)(45) and l̄4 = 4.03(16)(17) [59].
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6 Kaon B-parameter BK

6.1 Indirect CP-violation and ǫK

The mixing of neutral pseudoscalar mesons plays an important role in the understanding of
the physics of CP-violation. In this section we will only focus on K0 − K̄0 oscillations, which
probe the physics of indirect CP-violation. We collect and comment the basic formulae; for
extended reviews on the subject see, among others, refs. [265–267]. Indirect CP-violation
arises in KL → ππ transitions through the decay of the CP = +1 component of KL into two
pions (which are also in a CP = +1 state). Its measure is defined as

ǫK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
, (69)

with the final state having total isospin zero. The parameter ǫK may also be expressed in
terms of K0 − K̄0 oscillations. In particular, to lowest order in the electroweak theory, the
contribution to these oscillations arises from so-called box diagrams, in which two W -bosons
and two “up-type” quarks (i.e. up, charm, top) are exchanged between the constituent down
and strange quarks of the K-mesons. The loop integration of the box diagrams can be
performed exactly. In the limit of vanishing external momenta and external quark masses,
the result can be identified with an effective four-fermion interaction, expressed in terms of
the “effective Hamiltonian”

H∆S=2
eff =

G2
FM

2
W

16π2
F0Q∆S=2 + h.c. . (70)

In this expression, GF is the Fermi coupling, MW the W -boson mass, and

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (71)

is a dimension-six, four-fermion operator. The function F0 is given by

F0 = λ2cS0(xc) + λ2tS0(xt) + 2λcλtS0(xc, xt) , (72)

where λa = V ∗
asVad, and a = c , t denotes a flavour index. The quantities S0(xc), S0(xt) and

S0(xc, xt) with xc = m2
c/M

2
W, xt = m2

t/M
2
W are the Inami-Lim functions [268], which express

the basic electroweak loop contributions without QCD corrections. The contribution of the
up quark, which is taken to be massless in this approach, has been taken into account by
imposing the unitarity constraint λu + λc + λt = 0.

When strong interactions are included, ∆S = 2 transitions can no longer be discussed
at the quark level. Instead, the effective Hamiltonian must be considered between mesonic
initial and final states. Since the strong coupling constant is large at typical hadronic scales,
the resulting weak matrix element cannot be calculated in perturbation theory. The operator
product expansion (OPE) does, however, factorize long- and short- distance effects. For
energy scales below the charm threshold, the K0 − K̄0 transition amplitude of the effective
Hamiltonian can be expressed as

〈K̄0|H∆S=2
eff |K0〉 =

G2
FM

2
W

16π2

[
λ2cS0(xc)η1 + λ2tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]

×
(
ḡ(µ)2

4π

)−γ0/(2β0){
1 +

ḡ(µ)2

(4π)2

[
β1γ0 − β0γ1

2β20

]}
〈K̄0|Q∆S=2

R (µ)|K0〉 + h.c. , (73)
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where ḡ(µ) and Q∆S=2
R (µ) are the renormalized gauge coupling and four-fermion operator in

some renormalization scheme. The factors η1, η2 and η3 depend on the renormalized coupling
ḡ, evaluated at the various flavour thresholdsmt,mb,mc andMW, as required by the OPE and
RG-running procedure that separates high- and low-energy contributions. Explicit expressions
can be found in [266] and references therein. We follow the same conventions for the RG-
equations as in ref. [266]. Thus the Callan-Symanzik function and the anomalous dimension
γ(ḡ) of Q∆S=2 are defined by

dḡ

d lnµ
= β(ḡ) ,

dQ∆S=2
R

d lnµ
= −γ(ḡ)Q∆S=2

R , (74)

with perturbative expansions

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · (75)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · · .

We stress that β0, β1 and γ0 are universal, i.e. scheme-independent. K0 − K̄0 mixing is
usually considered in the naive dimensional regularization (NDR) scheme of MS, and below
we specify the perturbative coefficient γ1 in that scheme:

β0 =

{
11

3
N − 2

3
Nf

}
, β1 =

{
34

3
N2 −Nf

(
13

3
N − 1

N

)}
, (76)

γ0 =
6(N − 1)

N
, γ1 =

N − 1

2N

{
−21 +

57

N
− 19

3
N +

4

3
Nf

}
.

Note that for QCD the above expressions must be evaluated for N = 3 colours, while Nf

denotes the number of active quark flavours. As already stated, eq. (73) is valid at scales
below the charm threshold, after all heavier flavours have been integrated out, i.e. Nf = 3.

In eq. (73), the terms proportional to η1, η2 and η3, multiplied by the contributions
containing ḡ(µ)2, correspond to the Wilson coefficient of the OPE, estimated at NLO in
perturbation theory. Its dependence on the renormalization scheme and scale µ is cancelled
by that of the weak matrix element 〈K̄0|Q∆S=2

R (µ)|K0〉. The latter corresponds to the long-
distance effects of the effective Hamiltonian and must be computed non-perturbatively. For
historical, as well as technical reasons, it is convenient to express it in terms of theB-parameter
BK , defined as

BK(µ) =

〈
K̄0
∣∣Q∆S=2

R (µ)
∣∣K0

〉

8
3f

2
Km

2
K

. (77)

The four-quark operator Q∆S=2(µ) is renormalized at scale µ in some regularization scheme,
usually taken to be NDR. The renormalization group independent (RGI) B-parameter B̂K is
related to BK(µ) by the exact formula

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0
dg

(
γ(g)

β(g)
+

γ0
β0g

)}
BK(µ) . (78)

At NLO in perturbation theory, the above reduces to

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0){
1 +

ḡ(µ)2

(4π)2

[
β1γ0 − β0γ1

2β20

]}
BK(µ) , (79)
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which, to this order, is the scale-independent product of all µ-dependent quantities in eq. (73).
The implementation of non-perturbative renormalization in lattice calculations is based on

the numerical evaluation of a non-perturbative matching condition between the bare operator
matrix element and its counterpart in some intermediate renormalization scheme, where the
latter has a controlled perturbative relation to continuum schemes such as MS. Examples of
intermediate schemes are the RI/MOM scheme [115] (also dubbed the “Rome-Southampton
method”) and the Schrödinger functional (SF) scheme [114]. Typical scales for the transition
between lattice regularization and intermediate scheme are µ = O(1GeV). When applied
to the case at hand, this implies that BK(µ ≈ 1GeV) in the intermediate scheme must
then be matched to the RGI B-parameter via eq. (79). Obviously, due to asymptotic free-
dom, the NLO relation provides a more reliable link if it is applied at scales far greater than
µ = O(1GeV). Therefore, in order to remove any doubts about the use of perturbation theory
at NLO when determining B̂K, it is advantageous to run non-perturbatively to larger values
of µ, where eq. (79) provides an accurate matching relation. Indeed, neglecting higher orders
in perturbation theory has been identified by the authors of [269] as one of the dominant sys-
tematic uncertainties in their result for B̂K. We note that the short-distance QCD corrections
in eq. (73) are known in perturbation theory, to NLO for η1, η2 and to NNLO for η3 [270].
This implies that an uncertainty of O(αs(mc)) pertains to the K0 − K̄0 transition amplitude
and ǫK , even if the computation of the kaon B-parameter is essentially free from perturbative
effects. However, since η1 and η2 are currently being determined beyond NLO as well [271],
the issue of eliminating systematic uncertainties arising from the use of perturbation theory
in the matching procedure becomes more acute.

The “master formula”, for ǫK , which connects the experimentally observable quantity ǫK
to the matrix element of H∆S=2

eff , is [267, 272, 273]

ǫK = exp(iφǫ) sin(φǫ)
[ Im[〈K̄0|H∆S=2

eff |K0〉]
∆MK

+
Im(A0)

Re(A0)

]
, (80)

for λu real and positive; the phase of ǫK is given by

φǫ = arctan
∆MK

∆ΓK/2
. (81)

The quantities ∆MK and ∆ΓK are the mass- and decay width-differences between long- and
short-lived neutral Kaons, while A0 is the amplitude of the Kaon decay into an isospin-0 two
pion state. Experimentally known values of the above quantities are:

|ǫK | = 2.280(13) × 10−3 ,

φǫ = 43.51(5)◦ , (82)

∆MK = 3.491(9) × 10−12 MeV ,

∆ΓK = 7.335(4) × 10−15 GeV ,

while the last term in the square brackets of eq. (80) has been estimated in ref. [274]. Long
distance contributions, omitted from the first term in the square brackets of eq. (80) have
been recently discussed in ref.[275].

6.2 Lattice computation of BK

The lattice calculation of BK is affected by the same systematic effects, discussed in pre-
vious sections. However, the issue of renormalization merits special attention. The reason
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is that the multiplicative renormalizability of the relevant operator Q∆S=2 is lost, once the
regularized QCD action ceases to be invariant under chiral transformations. With Wilson
fermions, Q∆S=2 mixes with four additional dimension-six operators which belong to differ-
ent representations of the chiral group, with mixing coefficients that are finite functions of the
gauge coupling. This complicated renormalization pattern is the main source of systematic
error in computations of BK with Wilson quarks. It can be bypassed via the implementation
of specifically designed methods, which are either based on Ward identities [276] or on a
modification of the Wilson quark action, known as twisted mass QCD [52, 277]. An advan-
tage of staggered fermions is the presence of a remnant U(1) chiral symmetry. However, at
non-vanishing lattice spacing, the symmetry among the extra unphysical degrees of freedom
(tastes) is broken. As a result, mixing with other dimension-six operators cannot be avoided
in the staggered formulation, which complicates the determination of the B-parameter.

Fermionic lattice actions based on the Ginsparg-Wilson relation [278] are invariant under
the chiral group, and hence four-quark operators such as Q∆S=2 renormalize multiplicatively.
However, depending on the particular formulation of Ginsparg-Wilson fermions, residual chi-
ral symmetry breaking effects may be present in actual calculations. For instance, in the case
of domain wall fermions, the finiteness of the extra 5th dimension implies that the decou-
pling of modes with different chirality is not exact, which produces a residual non-zero quark
mass in the chiral limit. Whether or not a significant mixing with dimension-six operators is
induced as well must be investigated on a case-by-case basis.

In this section we focus on recent results for BK, obtained for Nf = 2 and 2+1 flavours of
dynamical quarks. A compilation of results is shown in Table 16 and Fig. 11. An overview of
the quality of systematic error studies is represented by the colour coded entries in Table 16.
In Appendix B.4 we gather the simulation details and results from different collaborations, the
values of the most relevant lattice parameters, and comparative tables on the various estimates
of systematic errors. Note that some references do not quote results for both BK and B̂K . In
this case we have performed the conversion ourselves by evaluating the proportionality factor
in eq. (79) for µ = 2GeV. This requires fixing the value of αs(2GeV) in the two- and three-
flavour cases. For Nf = 2 we have inserted the non-perturbative result for the Λ-parameter
by the ALPHA Collaboration [279], i.e. Λ(2) = 245(16)(16)MeV, into the NLO expression for
αs, neglecting the quoted error. This gives B̂K/BK = 1.412, in accordance with ref. [280].
For Nf = 3 we use the value αs(MZ) = 0.1184 [122] and run it across the quark thresholds

down to µ = 2GeV, using the four-loop RG β-function. We then obtain B̂K/BK = 1.368 in
the three-flavour theory.

At present four collaborations have reported estimates of BK for Nf = 2 + 1. The
RBC/UKQCD collaboration uses domain wall fermions, while the results by HPQCD/UKQCD
are based on the configurations generated by MILC, using Asqtad improved, rooted staggered
fermions. In Aubin 09 a mixed-action approach is adopted in which staggered sea quarks24

are combined with HYP-smeared [289] domain wall fermions. The SWME result reported
in [281] is also based on the Asqtad MILC ensembles, but uses HYP-smeared staggered quarks
in the valence sector.

In view of our quality criteria we note that one main shortcoming of the results by
HPQCD/UKQCD 06 [285] is that they are based on data obtained at a single lattice spac-
ing. This is also true for the results of RBC/UKQCD 07A, 08 [108, 284], which, however,
have recently been updated by including data at a second value of a (see RBC/UKQCD 10B

24Aubin 09 also use configurations generated by MILC.
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BK B̂K

SWME 11 [281] 2+1 P ⋆ • • � − 0.523(7)(26) 0.716(10)(35)

RBC/UKQCD 10B [282] 2+1 P • • ⋆ ⋆ a 0.549(5)(26) 0.749(7)(26)

SWME 10 [283] 2+1 A ⋆ • • � − 0.529(9)(32) 0.724(12)(43)

Aubin 09 [269] 2+1 A • ⋆2 • ⋆ − 0.527(6)(21) 0.724(8)(29)

RBC/UKQCD 07A, 08 [108, 284] 2+1 A � • ⋆ ⋆ − 0.524(10)(28) 0.720(13)(37)

HPQCD/UKQCD 06 [285] 2+1 A � •∗ ⋆ � − 0.618(18)(135) 0.83(18)

ETM 10A [286] 2 A ⋆ • • ⋆ b 0.516(18)(12) 0.729(25)(17)

JLQCD 08 [280] 2 A � • � ⋆ − 0.537(4)(40) 0.758(6)(71)

RBC 04 [287] 2 A � � �† ⋆ − 0.495(18) 0.699(25)

UKQCD 04 [288] 2 A � � �† � − 0.49(13) 0.69(18)

∗ This result has been obtained with only two “light” sea quark masses.
† These results have been obtained at (MπL)min > 4 in a lattice box with a spatial extension L < 2 fm.
2 In this mixed action computation, the lightest valence pion weighs ∼ 230 MeV, while the lightest sea
taste-pseudoscalar, used in the chiral fits, weighs ∼ 370 MeV.

a BK is renormalized non-perturbatively at a scale of 2 GeV in a couple of Nf = 3 RI/SMOM schemes. A
careful study of perturbative matching uncertainties has been performed by comparing results in the two
schemes in the region of 2 GeV to 3 GeV [282].

b BK is renormalized non-perturbatively at scales 1/a ∼ 2÷ 3GeV in the Nf = 2 RI/MOM scheme. In this
scheme, non-perturbative and NLO running for the are shown to agree from 4 GeV down 2 GeV to better
than 3% [102, 286].

Table 16: Results for the kaon B-parameter together with a summary of systematic errors.
If information about non-perturbative running is available, this is indicated in the column
”running”, with details given at the bottom of the table.

[282]). The good agreement between the earlier results and the latest update indicates that
discretization effects for BK , computed using domain wall fermions appear to be small at the
present level of accuracy. Aubin 09 have also data at two values of the lattice spacing, simi-
lar to those of RBC/UKQCD10B, while the SWME10 [283] and SWME11 [281] results are
obtained at three and four lattice spacings, respectively. Having two smaller lattice spacings
at their disposal compared to other collaborations, SWME 10, 11 have performed the most
complete study of discretization effects for this quantity so far.

The determination of the renormalization factors merits special attention, owing to the
fact that the renormalization and mixing patterns of four-quark operators such as Q∆S=2

are typically much more complicated than for quark bilinears. The renormalization factors
used by HPQCD/UKQCD 06 are based on perturbation theory at one loop, which is by far
the biggest source of systematic uncertainty quoted by these authors. The same is true for
the SWME 10, 11 results [281, 283]: Here the estimated uncertainty in their latest estimate
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Figure 11: Recent unquenched lattice results for BK (MS-scheme, scale µ = 2GeV) and for
the corresponding RGI parameter B̂K . The gray band indicates our estimate.

for BK [281] arising from neglecting higher orders in perturbation theory amounts to 4.4%,
which accounts for about 95% of the entire systematic error reported by this collaboration.
The two other groups, RBC/UKQCD 07A, 08, 10B and Aubin 09, have both implemented
a non-perturbative renormalization procedure based on the RI/MOM scheme. Nonetheless,
Aubin 09 state that their biggest single systematic uncertainty of 3.2% in BK (or 85% of
the total systematic error) is still associated with the uncertainty in the renormalization
factor which links the B-parameter of the bare operator to that in the MS-scheme at 2GeV.
RBC/UKQCD 10B [282] have investigated several different RI/MOM schemes, including so-
called non-exceptional momenta. The resulting spread of results in different schemes is then
included in the uncertainty for the renormalization factor. As observed in [282], this error can
be significantly reduced if the conversion to the MS-scheme is performed at 3GeV instead
of the conventional choice, µ = 2GeV. For this reason, the RBC/UKQCD collaboration

prefers to quote BMS
K (3 GeV), but also gives the value obtained at the conventional scale, for

comparison with other results. All of the numbers listed in the first column of Table 16 refer
to the conventional scale. In ref. [290] the RBC/UKQCD collaboration also investigated the
effects of residual chiral symmetry breaking induced by the finite extent of the 5th dimension
in the domain wall fermion formulation and found that the mixing of Q∆S=2 with operators
of opposite chirality was negligibly small.

The rules of section 2 stipulate that our averages only involve results which are free of red
tags and are published in a refereed journal. Papers which, at the time of writing, are still
unpublished but are obvious updates of earlier published results should also be taken into
account. In view of the above, we combine the results of Aubin 09 and RBC/UKQCD 10B,
by applying the following procedure: in a first step statistical and systematic errors are added
in quadrature, in order to have an overall error for the result of a particular collaboration.
In a second step the results from the two groups are combined in a weighted average. This
yields

Nf = 2 + 1 : BMS
K (2GeV) = 0.536(17) B̂K = 0.738(20) . (83)

Here we have used the RBC/UKQCD10B result at the scale of 2GeV, in spite of the bigger
uncertainty reported for the associated renormalization factor.
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Due to the use of one-loop perturbation theory for the renormalization factor, the SWME
results are assigned a red tag and are thus not included in the average. However it must be
stressed that they are in excellent agreement with eq. (83). Also the earlier HPQCD/UKQCD
estimate, albeit with bigger statistical and systematic errors, agrees with our average. The
observation that independent calculations produce compatible results – despite the fact that
according to the colour coding in Table 16 some systematic effects are not fully controlled –
lends further confidence to the result quoted in eq. (83).

We now pass over to the results computed for Nf = 2 flavours of dynamical quarks. The
UKQCD 04 result [288], computed with O(a) improved Wilson fermions, is afflicted by many
systematic errors and has a rather large overall error. Results by the JLQCD collaboration
[280] are computed using overlap fermions in both the sea and valence quark sectors. Besides
the usual systematic uncertainties listed in Table 16, they quote a 5% systematic error due
to the uncertainty in the physical value of r0, which sets the scale in their simulation. They
also quote a 1.4% systematic error, owing to the fact that they determine BK on gauge
configurations with a fixed value of the topological charge. In view of the high numerical
cost of simulations with dynamical overlap quarks, it is not surprising that the lattice sizes of
ref. [280] are smaller than those in present simulations with Nf = 2+ 1 flavours of dynamical
staggered or domain wall fermions. Consequently, finite-volume effects are less well controlled
in ref. [280]. The RBC 04 result [287] has been obtained using domain wall fermions at rather
heavy pseudoscalar (pion) masses; otherwise it has similar systematics as the JLQCD 08 run.
The result by ETM 09D [291] is based on a set of ensembles which allows for an extensive
investigation of systematic uncertainties. In particular, it is so far the only Nf = 2 calculation
involving data computed at three values of the lattice spacing. Being the only result without
red tags, it is quoted as the currently best overall estimate for Nf = 2:

Nf = 2 : BMS
K (2GeV) = 0.516(18)(12) B̂K = 0.729(25)(17) . (84)

It is clear that with the present level of accuracy, any dependence of BK on the number of
dynamical quark flavours, Nf , is not visible.

It is interesting to compare these results to the best available quenched data, computed
for large (valence) quark masses and with degenerate down and strange quarks. Avoiding a
detailed discussion about the systematics, we show an (incomplete) compilation of indicative
results in Tab. 17. We see that they agree with the ones obtained with Nf = 2 and Nf = 2+1
at the level of two standard deviations.

Collaboration Ref. Nf BK B̂K

ALPHA 09 [292] 0 0.532(25) 0.73(3)

CP-PACS 08 [293] 0 0.565(6) 0.782(9)

ALPHA 07 [294] 0 0.534(52) 0.74(7)

JLQCD 97 [295] 0 0.628(42) 0.86(6)

Table 17: Quenched results for the B-parameter BK from various collaborations. Errors have
been combined in quadrature.
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A Glossary

A.1 Lattice actions

In this appendix we give brief descriptions of the lattice actions used in the simulations and
summarize their main features.

A.1.1 Gauge actions

The simplest and most widely used discretization of the Yang-Mills part of the QCD action
is the Wilson plaquette action [296]:

SG = β
∑

x

∑

µ<ν

(
1− 1

3
Re TrW 1×1

µν (x)
)
, (85)

where the plaquette, W 1×1
µν (x), is the product of link variables around an elementary square

of the lattice, i.e.

W 1×1
µν (x) ≡ Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)−1Uν(x)

−1. (86)

This expression reproduces the Euclidean Yang-Mills action in the continuum up to cor-
rections of order a2. There is a general formalism, known as the “Symanzik improvement
programme” [18, 19], which is designed to cancel the leading lattice artifacts, such that ob-
servables have an accelerated rate of convergence to the continuum limit. The improvement
programme is implemented by adding higher-dimensional operators, whose coefficients must
be tuned appropriately in order to cancel the leading lattice artifacts. The effectiveness of
this procedure depends largely on the method with which the coefficients are determined.
The most widely applied methods (in ascending order of effectiveness) include perturbation
theory, tadpole-improved (partially resummed) perturbation theory, renormalization group
methods, and the non-perturbative evaluation of improvement conditions.

In the case of Yang-Mills theory, the simplest version of an improved lattice action is
obtained by adding rectangular 1× 2 loops to the plaquette action, i.e.

Simp
G = β

∑

x

{
c0
∑

µ<ν

(
1− 1

3
Re TrW 1×1

µν (x)
)
+ c1

∑

µ,ν

(
1− 1

3
Re TrW 1×2

µν (x)
)}

, (87)
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where the coefficients c0, c1 satisfy the normalization condition c0 + 8c1 = 1. The Symanzik-
improved [297], Iwasaki [298], and DBW2 [299, 300] actions are all defined through eq. (87)
via particular choices for c0, c1. Details are listed in Table 18 together with the abbreviations
used in the summary tables.

Abbrev. c1 Description

Wilson 0 Wilson plaquette action

tlSym −1/12 tree-level Symanzik-improved gauge action

tadSym variable tadpole Symanzik-improved gauge action

Iwasaki −0.331 Renormalization group improved (“Iwasaki”) action

DBW2 −1.4088 Renormalization group improved (“DBW2”) action

Table 18: Summary of lattice gauge actions. The leading lattice artifacts are O(a2) or better
for all discretizations.
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A.1.2 Quark actions

If one attempts to discretize the quark action, one is faced with the fermion doubling problem:
the naive lattice transcription produces a 16-fold degeneracy of the fermion spectrum.

Wilson fermions
Wilson’s solution to the doubling problem is based on adding a dimension-5 operator which
removes the doublers from the low-energy spectrum. The Wilson-Dirac operator for the
massless case reads [296]

Dw =
1

2
γµ(∇µ +∇∗

µ) + a∇∗
µ∇µ, (88)

where ∇µ, ∇∗
µ denote lattice versions of the covariant derivative. Adding the Wilson term,

a∇∗
µ∇µ, results in an explicit breaking of chiral symmetry even in the massless theory. Fur-

thermore, the leading order lattice artifacts are of order a. With the help of the Symanzik im-
provement programme, the leading artifacts can be cancelled by adding the so-called “Clover”
or Sheikholeslami-Wohlert (SW) term. The resulting expression in the massless case reads

Dsw = Dw +
ia

4
cswσµν F̂µν , (89)

where σµν = i
2 [γµ, γν ], and F̂µν is a lattice transcription of the gluon field strength tensor

Fµν . Provided that the coefficient csw is suitably tuned, observables computed using Dsw

will approach the continuum limit with a rate proportional to a2. Chiral symmetry remains
broken, though. The coefficient csw can be determined perturbatively at tree-level (tree-level
impr., csw = 1 or tlSW in short), via a mean field approach [301] (mean-field impr. or mfSW)
or via a non-perturbative approach [302] (non-perturbativley impr. or npSW).

Finally, we mention “twisted mass QCD” as a method which was originally designed to ad-
dress another problem of Wilson’s discretization: the Wilson-Dirac operator is not protected
against the occurrence of unphysical zero modes, which manifest themselves as “exceptional”
configurations. They occur with a certain frequency in numerical simulations with Wilson
quarks and can lead to strong statistical fluctuations. The problem can be cured by intro-
ducing a so-called “chirally twisted” mass term, after which the fermionic part of the QCD
action in the continuum assumes the form [52]

Stm;cont
F =

∫
d4x ψ̄(x)(γµDµ +m+ iµqγ5τ

3)ψ(x). (90)

Here, µq is the twisted mass parameter, and τ3 is a Pauli matrix. The standard action in
the continuum can be recovered via a global chiral field rotation.The lattice action of twisted
mass QCD (tmWil) for Nf = 2 flavours is defined as

Stm
F [U, ψ̄, ψ] = a4

∑

x∈ΛE

ψ̄(x)(Dw +m0 + iµqγ5τ
3)ψ(x). (91)

Although this formulation breaks physical parity and flavour symmetries, is has a number of
advantages over standard Wilson fermions. In particular, the presence of the twisted mass pa-
rameter µq protects the discretized theory against unphysical zero modes. Another attractive
feature of twisted mass lattice QCD is the fact that the leading lattice artifacts are of order
a2 without the need to add the Sheikholeslami-Wohlert term [53]. Although the problem of
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explicit chiral symmetry breaking remains, the twisted formulation is particularly useful to
circumvent some of the problems that are encountered in connection with the renormalization
of local operators on the lattice, such as those required to determine BK.

Staggered fermions
An alternative procedure to deal with the doubling problem is based on so-called “staggered”
or Kogut-Susskind (KS) fermions [303]. Here the degeneracy is only lifted partially, from
16 down to 4. It has become customary to refer to these residual doublers as “tastes” in
order to distinguish them from physical flavours. At order a2 different tastes can interact via
gluon exchange, thereby generating large lattice artifacts. The improvement programme can
be used to suppress taste-changing interactions, leading to “improved staggered fermions”,
with the so-called “Asqtad” and “HISQ” actions as the most widely used versions [304, 305].
The standard procedure to remove the residual doubling of staggered quarks (“four tastes per
flavour”) is to take fractional powers of the quark determinant in the QCD functional integral.
This is usually referred to as the “fourth root trick”. The validity of this procedure has not
been rigorously proven so far. In fact, it has been questioned by several authors, and the is-
sue is still hotly debated (for both sides of the argument see the reviews in refs. [55–58, 306]).

Ginsparg-Wilson fermions
Fermionic lattice actions, which do not suffer from the doubling problem whilst preserving
chiral symmetry go under the name of “Ginsparg-Wilson fermions”. In the continuum the
massless Dirac operator anti-commutes with γ5. At non-zero lattice spacing chiral symmetry
can be realized even if this condition is relaxed according to [307, 308]

{D, γ5} = aDγ5D, (92)

which is now known as the Ginsparg-Wilson relation [278]. A lattice Dirac operator which
satisfies eq. (92) can be constructed in several ways. The “domain wall” construction proceeds
by introducing a fifth dimension of length N5 and coupling the fermions to a mass defect
(i.e. a negative mass term) [309]. The five-dimensional action can be constructed such that
modes of opposite chirality are trapped at the four-dimensional boundaries in the limit of
an infinite extent of the extra dimension [310]. In any real simulation, though, one has to
work with a finite value of N5, so that the decoupling of chiral modes is not exact. This
leads to a residual breaking of chiral symmetry, which, however, is exponentially suppressed.
A doubler-free, (approximately) chirally symmetric quark action can thus be realized at the
expense of simulating a five-dimensional theory.

The so-called “overlap” or Neuberger-Dirac operator can be derived from the domain wall
formulation [311]. It acts in four space-time dimensions and is, in its simplest form, defined
by

DN =
1

a

(
1− A√

A†A

)
, A = 1 + s− aDw, a =

a

1 + s
, (93)

where Dw is the massless Wilson-Dirac operator, and |s| < 1 is a tunable parameter. The
overlap operator DN removes all doublers from the spectrum, and can easily be shown to
satisfy the Ginsparg-Wilson relation. The occurrence of an inverse square root in DN ren-
ders the application of DN in a computer program potentially very costly, since it must be
implemented using, for instance, a polynomial approximation.

The third example of an operator which satisfies the Ginsparg-Wilson relation is the so-
called fixed-point action [312, 313]. This construction proceeds via a renormalization group
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approach. A related formalism are the so-called “chirally improved” fermions [314].

Smearing
A simple modification which can help improve the action as well as the computational perfor-
mance is the use of smeared gauge fields in the covariant derivatives of the fermionic action.
Any smearing procedure is acceptable as long as it consists of only adding irrelevant (local)
operators. Moreover, it can be combined with any discretization of the quark action. The
“Asqtad” staggered quark action mentioned above [304] is an example which makes use of
so-called “Asqtad” smeared (or “fat”) links. Another example is the use of n-HYP smeared
[289, 315], n-stout smeared [316, 317] or n-HEX (hypercubic stout) smeared [318] gauge links
in the tree-level clover improved discretization of the quark action, denoted by “n-HYP tlSW”,
“n-stout tlSW” and “n-HEX tlSW” in the following.

In Table 19 we summarize the most widely used discretizations of the quark action and their
main properties together with the abbreviations used in the summary tables. Note that
in order to maintain the leading lattice artifacts of the actions as given in the table in non-
spectral observables (like operator matrix elements) the corresponding non-spectral operators
need to be improved as well.

A.2 Setting the scale

In simulations of lattice QCD quantities such as hadron masses and decay constants are
obtained in “lattice units” i.e. as dimensionless numbers. In order to convert them into
physical units they must be expressed in terms of some experimentally known, dimensionful
reference quantity Q. This procedure is called “setting the scale”. It amounts to computing
the non-perturbative relation between the bare gauge coupling g0 (which is an input parameter
in any lattice simulation) and the lattice spacing a expressed in physical units. To this end
one chooses a value for g0 and computes the value of the reference quantity in a simulation:
This yields the dimensionless combination, (aQ)|g0 , at the chosen value of g0. The calibration
of the lattice spacing is then achieved via

a−1 [MeV] =
Q|exp [MeV]

(aQ)|g0
, (94)

where Q|exp denotes the experimentally known value of the reference quantity. Common
choices for Q are the mass of the nucleon, the Ω baryon or the decay constants of the pion
and the kaon. Vector mesons, such as the ρ or K∗-meson, are unstable and therefore their
masses are not very well suited for setting the scale, despite the fact that they have been used
over many years for that purpose.

Another widely used quantity to set the scale is the hadronic radius r0, which can be
determined from the force between static quarks via the relation [319]

F (r0)r
2
0 = 1.65. (95)

If the force is derived from potential models describing heavy quarkonia, the above relation
determines the value of r0 as r0 ≈ 0.5 fm. A variant of this procedure is obtained [320] by
using the definition F (r1)r

2
1 = 1.00, which yields r1 ≈ 0.32 fm. It is important to realize that

both r0 and r1 are not directly accessible in experiment, so that their values derived from phe-
nomenological potentials are necessarily model-dependent. Inspite of the inherent ambiguity
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Abbrev. Discretization Leading lattice
artifacts

Chiral symmetry Remarks

Wilson Wilson O(a) broken

tmWil Twisted Mass Wilson O(a2) at
maximal twist

broken flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2)

tlSW Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1

n-HYP
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
n-HYP smeared gauge links

n-stout
tlSW

Sheikholeslami-Wohlert O(g2a) broken tree-level impr., csw = 1,
n-stout smeared gauge links

mfSW Sheikholeslami-Wohlert O(g2a) broken mean-field impr.

npSW Sheikholeslami-Wohlert O(a2) broken non-perturbatively impr.

KS Staggered O(a2) U(1)⊗U(1) subgr.
unbroken

rooting for Nf < 4

Asqtad Staggered O(a2) U(1)⊗U(1) subgr.
unbroken

Asqtad smeared gauge links,
rooting for Nf < 4

HISQ Staggered O(a2) U(1)⊗U(1) subgr.
unbroken

HISQ smeared gauge links,
rooting for Nf < 4

DW Domain Wall asymptotically
O(a2)

remnant breaking
exponentially suppr.

exact chiral symmetry and
O(a) impr. only in the limit
Ls → ∞

overlap Neuberger O(a2) exact

Table 19: The most widely used discretizations of the quark action and some of their proper-
ties. Note that in order to maintain the leading lattice artifacts of the action in non-spectral
observables (like operator matrix elements) the corresponding non-spectral operators need to
be improved as well.
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whenever hadronic radii are used to calibrate the lattice spacing, they are very useful quanti-
ties for performing scaling tests and continuum extrapolations of lattice data. Furthermore,
they can be easily computed with good statistical accuracy in lattice simulations.

A.3 Matching and running

The lattice formulation of QCD amounts to introducing a particular regularization scheme.
Thus, in order to be useful for phenomenology, hadronic matrix elements computed in lattice
simulations must be related to some continuum reference scheme, such as the MS-scheme of
dimensional regularization. The matching to the continuum scheme usually involves running
to some reference scale using the renormalization group.

In principle, the matching factors which relate lattice matrix elements to the MS-scheme,
can be computed in perturbation theory formulated in terms of the bare coupling. It has been
known for a long time, though, that the perturbative expansion is not under good control.
Several techniques have been developed which allow for a non-perturbative matching between
lattice regularization and continuum schemes, and are briefly introduced here.

Regularization-independent Momentum Subtraction
In the Regularization-independent Momentum Subtraction (“RI/MOM” or “RI”) scheme
[115] a non-perturbative renormalization condition is formulated in terms of Green functions
involving quark states in a fixed gauge (usually Landau gauge) at non-zero virtuality. In this
way one relates operators in lattice regularization non-perturbatively to the RI scheme. In a
second step one matches the operator in the RI scheme to its counterpart in the MS-scheme.
The advantage of this procedure is that the latter relation involves perturbation theory for-
mulated in the continuum theory. The uncontrolled use of lattice perturbation theory can
thus be avoided. A technical complication is associated with the accessible momentum scales
(i.e. virtualities), which must be large enough (typically several GeV) in order for the per-
turbative relation to MS to be reliable. The momentum scales in simulations must stay well
below the cutoff scale (i.e. 2π over the lattice spacing), since otherwise large lattice artifacts
are incurred. Thus, the applicability of the RI scheme traditionally relies on the existence of
a “window” of momentum scales, which satisfy

ΛQCD . p . 2πa−1. (96)

However, solutions for mitigating this limitation, which involve continuum limit, non-perturbative
running to higher scales in the RI/MOM scheme, have recently been proposed and imple-
mented [65, 105, 282, 321].
Schrödinger functional
Another example of a non-perturbative matching procedure is provided by the Schrödinger
functional (SF) scheme [114]. It is based on the formulation of QCD in a finite volume. If
all quark masses are set to zero the box length remains the only scale in the theory, such
that observables like the coupling constant run with the box size L. The great advantage is
that the RG running of scale-dependent quantities can be computed non-perturbatively using
recursive finite-size scaling techniques. It is thus possible to run non-perturbatively up to
scales of, say, 100GeV, where one is sure that the perturbative relation between the SF and
MS-schemes is controlled.
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Perturbation theory
The third matching procedure is based on perturbation theory in which higher order are effec-
tively resummed [301]. Although this procedure is easier to implement, it is hard to estimate
the uncertainty associated with it.

In Table 20 we list the abbreviations used in the compilation of results together with a short
description.

Abbrev. Description

RI Regularization-independent momentum subtraction scheme

SF Schrödinger functional scheme

PT1ℓ matching/running computed in perturbation theory at one loop

PT2ℓ matching/running computed in perturbation theory at two loop

Table 20: The most widely used matching and running techniques.

A.4 Chiral extrapolation

As mentioned in section 1.1, Symanzik’s framework can be combined with Chiral Pertur-
bation Theory. The well-known terms occurring in the chiral effective Lagrangian are then
supplemented by contributions proportional to powers of the lattice spacing a. The additional
terms are constrained by the symmetries of the lattice action and therefore depend on the
specific choice of the discretization. The resulting effective theory can be used to analyze
the a-dependence of the various quantities of interest – provided the quark masses and the
momenta considered are in the range where the truncated chiral perturbation series yields an
adequate approximation. Understanding the dependence on the lattice spacing is of central
importance for a controlled extrapolation to the continuum limit.

For staggered fermions, this program has first been carried out for a single staggered flavor
(a single staggered field) [24] at O(a2). In the following, this effective theory is denoted by
SχPT. It was later generalized to an arbitrary number of flavours [28, 30], and to next-to-
leading order [33]. The corresponding theory is commonly called Rooted Staggered chiral
perturbation theory and is denoted by RSχPT.

For Wilson fermions, the effective theory has been developed in [23, 26, 31] and is called
WχPT, while the theory for Wilson twisted mass fermions [32, 34, 40] is termed tmWχPT.

Another important approach is to consider theories in which the valence and sea quark
masses are chosen to be different. These theories are called partially quenched. The acronym
for the corresponding chiral effective theory is PQχPT [20–22, 25].

Finally, one can also consider theories where the fermion discretizations used for the sea
and the valence quarks are different. The effective chiral theories for these “mixed action”
theories are referred to as MAχPT [27, 29, 35–39].
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A.5 Summary of simulated lattice actions

In the following two tables we summarize the gauge and quark actions used in the various
calculations. Abbreviations are explained in section A.1.1 and A.1.2, and summarized in
tables 18 and 19.
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Collab. Ref. Nf
gauge
action

quark
action

ALPHA 05 [98] 2 Wilson npSW

CERN-TOV 06 [254] 2 Wilson Wilson/npSW

CERN 08 [215] 2 Wilson npSW

Bernardoni 10 [244] 2 Wilson npSW †

CP-PACS 01 [101] 2 Iwasaki mfSW

ETM 07, 07A, 08, 09, 09A-D, 10B, D [49, 54, 94, 160,
161, 177, 235,
237, 246, 291]

2 tlSym tmWil

HHS 08 [247] 2 tadSym n-HYP tlSW

JLQCD 08 [280] 2 Iwasaki overlap

JLQCD 02, 05 [100, 164] 2 Wilson npSW

JLQCD/TWQCD 07, 08A, 10 [95, 240, 248] 2 Iwasaki overlap

QCDSF 07 [162] 2 Wilson npSW

QCDSF/UKQCD 04, 06, 06A, 07 [96, 99, 178, 260] 2 Wilson npSW

RBC 07 [73] 2 DBW2 DW

RBC 04, 06 [163, 287] 2 DBW2 DW

SPQcdR 05 [97] 2 Wilson Wilson

UKQCD 04, 07 [159, 288] 2 Wilson npSW

† The calculation uses overlap fermions in the valence quark sector.

Table 21: Summary of simulated lattice actions with Nf = 2 quark flavours.
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Collab. Ref. Nf
gauge
action

quark
action

Aubin 08, 09 [173, 269] 2 + 1 tadSym Asqtad †

SWME 10, 11 [281, 283] 2 + 1 tadSym Asqtad +

Blum 10 [74] 2 + 1 Iwasaki DW

BMW 10A-C [65, 75, 105] 2 + 1 tlSym 2-HEX tlSW

BMW 10 [41] 2 + 1 tlSym 6-stout tlSW

CP-PACS/JLQCD 07 [109] 2 + 1 Iwasaki npSW

ETM 10, 10E [60, 170] 2 + 1 + 1 Iwasaki tmWil

HPQCD 05 [110] 2 + 1 tadSym Asqtad

HPQCD/UKQCD 06 [285] 2 + 1 tadSym Asqtad

HPQCD/UKQCD 07 [175] 2 + 1 tadSym Asqtad ∗

HPQCD/MILC/UKQCD 04 [111] 2 + 1 tadSym Asqtad

JLQCD 09 [241] 2 + 1 Iwasaki overlap

JLQCD/TWQCD 08B, 09A [172, 243] 2 + 1 Iwasaki overlap

JLQCD/TWQCD 10 [240] 2 + 1, 3 Iwasaki overlap

LHP 04 [259] 2 + 1 tadSym Asqtad †

MILC 04, 07, 09, 09A, 10, 10A [6, 77, 103, 111, 171, 322] 2 + 1 tadSym Asqtad

NPLQCD 06 [176] 2 + 1 tadSym Asqtad †

PACS-CS 08, 08A, 09, 10 [42, 63, 64, 174] 2 + 1 Iwasaki npSW

RBC/UKQCD 07, 08, 08A, 10, 10A-B[106, 108, 158, 250, 282, 284] 2 + 1 Iwasaki DW

TWQCD 08 [242] 2 + 1 Iwasaki DW

† The calculation uses domain wall fermions in the valence quark sector.
∗ The calculation uses HISQ staggered fermions in the valence quark sector.
+ The calculation uses HYP smeared improved staggered fermions in the valence quark sector.

Table 22: Summary of simulated lattice actions with Nf = 2 + 1 or Nf = 2 + 1 + 1 quark
flavours.
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B Notes

B.1 Notes to section 3 on quark masses

Collab. Ref. Nf a [fm] Description

PACS-CS 10 [64] 2+1 0.09 cf. PACS-CS 08

MILC 10A [103] 2+1 cf. MILC 09, 09A

BMW 10A, 10B [65, 105] 2+1 0.116,0.093,0.077,
0.065,0.054

Scale setting via Mπ,MK ,MΩ.

RBC/UKQCD 10A [106] 2+1 0.114, 0.087 Scale set through MΩ.

Blum 10 [74] 2+1 0.11 Relies on RBC/UKQCD 08 scale setting.

PACS-CS 09 [42] 2+1 0.09 Scale setting via MΩ.

HPQCD 09, 10 [104, 107] 2+1

MILC 09A, 09 [6, 59] 2+1 0.045, 0.06, 0.09 Scale set through r1 and Υ and contin-
uum extrapolation based on RSχPT.

PACS-CS 08 [63] 2+1 0.09 Scale set through MΩ. Non-
perturbatively O(a)-improved.

RBC/UKQCD 08 [108] 2+1 0.11 Scale set through MΩ. Automatic
O(a)-improvement due to appoximate
chiral symmetry. (ΛQCDa)

2 ≈ 4% sys-
tematic error due to lattice artifacts
added.

CP-PACS/JLQCD 07 [109] 2+1 0.07,0.10,0.12 Scale set through MK or Mφ. Non-
perturbatively O(a)-improved.

HPQCD 05 [110] 2+1 0.09,0.12 Scale set through the Υ−Υ′ mass dif-
ference.

HPQCD/MILC/UKQCD 04,
MILC 04

[77, 111] 2+1 0.09,0.12 Scale set through r1 and Υ and contin-
uum extrapolation based on RSχPT.

Table 23: Continuum extrapolations/estimation of lattice artifacts in determinations of mud

and ms with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf a [fm] Description

ETM 10B [94] 2 0.098, 0.085,
0.067, 0.054

Scale set through Fπ.

JLQCD/TWQCD 08A [95] 2 0.12 Scale set through r0.

RBC 07 [73] 2 0.12 Scale set through Mρ.

ETM 07 [49] 2 0.09 Scale set through Fπ.

QCDSF/UKQCD 06 [96] 2 0.065–0.09 Scale set through r0.

SPQcdR 05 [97] 2 0.06,0.08 Scale set through MK∗ .

ALPHA 05 [98] 2 0.07-0.12 Scale set through r0.

QCDSF/UKQCD 04 [99] 2 0.07-0.12 Scale set through r0.

JLQCD 02 [100] 2 0.09 Scale set through Mρ.

CP-PACS 01 [101] 2 0.11,0.16,0.22 Scale set through Mρ.

Table 24: Continuum extrapolations/estimation of lattice artifacts in determinations of mud

and ms with Nf = 2 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

PACS-CS 10 [64] 2+1 cf. PACS-CS 08

MILC 10A [103] 2+1 NLO SU(2) SχPT. Cf. also MILC 09A,09.

BMW 10A, 10B [65, 105] 2+1 135 Interpolation to the physical point.

RBC/UKQCD 10A [106] 2+1 290

Blum 10 [74, 108] 2+1 242 (valence),
330 (sea)

Extrapolation done on the basis of PQχPT
formulae with virtual photons.

PACS-CS 09 [42] 2+1 135 Physical point reached by reweighting
technique, no chiral extrapolation needed.

HPQCD 09, 10 [104, 107] 2+1

MILC 09A, 09 [6, 59] 2+1 177, 240 NLO SU(3) RSχPT, continuum χPT
at NNLO and NNNLO and NNNNLO
analytic terms. The lightest Nambu-
Goldstone mass is 177 MeV (09A) and 224
MeV (09) (at a =0.09fm) and the lightest
RMS mass is 258MeV (at a =0.06fm).

PACS-CS 08 [63] 2+1 156 NLO SU(2) χPT and SU(3) (Wilson)χPT.

RBC/UKQCD 08 [108] 2+1 242 (valence),
330 (sea)

SU(3) PQχPT and heavy kaon NLO SU(2)
PQχPT fits.

CP-PACS/JLQCD 07 [109] 2+1 620 NLO Wilson χPT fits to meson masses.

HPQCD 05 [110] 2+1 240 PQ RSχPT fits.

HPQCD/MILC/UKQCD 04,
MILC 04

[77, 111] 2+1 240 PQ RSχPT fits.

Table 25: Chiral extrapolation/minimum pion mass in determinations of mud and ms with
Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 10B [94] 2 270 Fits based on NLO χPT and Symanzik ex-
pansion up to O(a2)

.

JLQCD/TWQCD 08A [95] 2 290 NLO χPT fits.

RBC 07 [73] 2 440 NLO fit including O(α) effects.

ETM 07 [49] 2 300 Polynomial and PQχPT fits.

QCDSF/UKQCD 06 [96] 2 520 (valence),
620 (sea)

NLO (PQ)χPT fits.

SPQcdR 05 [97] 2 600 Polynomial fit.

ALPHA 05 [98] 2 560 LO χPT fit.

QCDSF/UKQCD 04 [99] 2 520 (valence),
620 (sea)

NLO (PQ)χPT fits.

JLQCD 02 [100] 2 560 Polynomial and χPT fits.

CP-PACS 01 [101] 2 430 Polynomial fits.

Table 26: Chiral extrapolation/minimum pion mass in determinations of mud and ms with
Nf = 2 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

PACS-CS 10 [64] 2+1 cf. PACS-CS 08

MILC 10A [103] 2+1 cf. MILC 09A,09

BMW 10A, 10B [65, 105] 2+1 & 5.0 & 4.0 FS corrections below 5 per mil
on the largest lattices.

RBC/UKQCD 10A [106] 2+1 2.7 & 4.0

Blum 10 [74] 2+1 1.8, 2.7 — Simulations done with dy-
namical photons; large fi-
nite volume effects analyti-
cally corrected for, but not re-
lated to MπL.

PACS-CS 09 [42] 2+1 2.9 2.0 Only one volume.

HPQCD 09, 10 [104, 107] 2+1

MILC 09A, 09 [6, 59] 2+1 2.5, 2.9, 3.4,
3.6, 3.8, 5.8

4.1, 3.8

PACS-CS 08 [63] 2+1 2.9 2.3 Correction for FSE from χPT
using [323].

RBC/UKQCD 08 [108] 2+1 1.8, 2.7 4.6 Various volumes for compar-
ison and correction for FSE
from χPT [194, 195, 323].

CP-PACS/JLQCD 07 [109] 2+1 2.0 6.0 Estimate based on the com-
parison to a L = 1.6 fm vol-
ume assuming powerlike de-
pendence on L.

HPQCD 05 [110] 2+1 2.4, 2.9 3.5

HPQCD/MILC/UKQCD 04,
MILC 04

[77, 111] 2+1 2.4, 2.9 3.5 NLO SχPT.

Table 27: Finite volume effects in determinations of mud and ms with Nf = 2 + 1 quark
flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 10B [94] 2 & 2.0 3.5 One volume L = 1.7 fm at
mπ = 495, a = 0.054fm.

JLQCD/TWQCD 08A [95] 2 1.9 2.8 Corrections for FSE based on
NLO χPT.

RBC 07 [73] 2 1.9 4.3 Estimate of FSE based on a
model.

ETM 07 [49] 2 2.1 3.2 NLO PQχPT

QCDSF/UKQCD 06 [96] 2 1.4–1.9 4.7

SPQcdR 05 [97] 2 1.0–1.5 4.3 Comparison between 1.0 and
1.5 fm.

ALPHA 05 [98] 2 2.6 7.4

QCDSF/UKQCD 04 [99] 2 1.7–2.0 4.7

JLQCD 02 [100] 2 1.8 5.1 Numerical study with three
volumes.

CP-PACS 01 [101] 2 2.0–2.6 5.7

Table 28: Finite volume effects in determinations of mud and ms with Nf = 2 quark flavours.
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Collab. Ref. Nf Description

PACS-CS 10 [64] 2+1 Non-perturbative renormalization and running;
Schrödinger functional method.

MILC 10A [103] 2+1 cf. MILC 09A,09

BMW 10A, 10B [65, 105] 2+1 Non-perturbative renormalization (tree-level im-
proved RI-MOM), non-perturbative running.

RBC/UKQCD 10A [106] 2+1 Non-perturbative renormalization (RI/SMOM).

Blum 10 [74] 2+1 Relies on non-perturbative renormalization fac-
tors calculated by RBC/UKQCD 08; no QED
renormalization.

PACS-CS 09 [42] 2+1 Non-perturbative renormalization; Schrödinger
functional method.

HPQCD 09, 10 [104, 107] 2+1 Lattice calculation of ms/mc: ms derived from
the perturbative determination of mc.

MILC 09A, 09 [6, 59] 2+1 2-loop perturbative renormalization.

PACS-CS 08 [63] 2+1 1-loop perturbative renormalization.

RBC/UKQCD 08 [108] 2+1 Non-perturbative renormalization, 3-loop pertur-
bative matching.

CP-PACS/JLQCD 07 [109] 2+1 1-loop perturbative renormalization, tadpole im-
proved.

HPQCD 05 [110] 2+1 2-loop perturbative renormalization.

HPQCD/MILC/UKQCD 04,
MILC 04

[77, 111] 2+1 1-loop perturbative renormalization.

Table 29: Renormalization in determinations of mud and ms with Nf = 2+1 quark flavours.
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Collab. Ref. Nf Description

ETM 10B [94] 2 Non-perturbative renormalization.

JLQCD/TWQCD 08A [95] 2 Non-perturbative renormalization.

RBC 07 [73] 2 Non-perturbative renormalization.

ETM 07 [49] 2 Non-perturbative renormalization.

QCDSF/UKQCD 06 [96] 2 Non-perturbative renormalization.

SPQcdR 05 [97] 2 Non-perturbative renormalization.

ALPHA 05 [98] 2 Non-perturbative renormalization.

QCDSF/UKQCD 04 [99] 2 Non-perturbative renormalization.

JLQCD 02 [100] 2 1-loop perturbative renormalization.

CP-PACS 01 [101] 2 1-loop perturbative renormalization.

Table 30: Renormalization in determinations of mud and ms with Nf = 2 quark flavours.
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B.2 Notes to section 4 on |Vud| and |Vus|

Collab. Ref. Nf a [fm] Description

RBC/UKQCD 07,10[158, 159] 2+1 0.114(2) Scale fixed through Ω baryon mass. Add
(ΛQCDa)

2 ≈ 4% systematic error for lat-
tice artifacts. Fifth dimension with exten-
sion Ls = 16, therefore small residual chi-
ral symmetry breaking and approximate
O(a)-imrovement.

ETM 10D [160] 2 0.054, 0.068,
0.086, 101

Scale set through Fπ. Automatic O(a)
impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

ETM 09A [161] 2 0.069, 0.883(6), 0.103 Scale set through Fπ. Automatic O(a)
impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

Three lattice spacings only for pion mass
470MeV.

QCDSF 07 [162] 2 0.075 Scale set with r0. Non-perturbatively
O(a)-improved Wilson fermions, not clear
whether currents improved.

RBC 06 [163] 2 0.12 Scale set through Mρ. Automatic O(a)-
improvement due to approximate chiral
symmetry of the action.

JLQCD 05 [164] 2 0.0887 Scale set through Mρ. Non-perturbatively
O(a)-improved Wilson fermions.

Table 31: Continuum extrapolations/estimation of lattice artifacts in determinations of f+(0).
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Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 07,10 [158, 159] 2+1 330 NLO SU(3) χPT with phenomenological
ansatz for higher orders.

ETM 10D [160] 2 260 NLO heavy kaon SU(2) χPT and NLO
SU(3) χPT and phenomenological ansatz
for higher orders. Average of f+(0)-fit and
joint f+(0)-fK/fπ-fit.

ETM 09A [161] 2 260 NLO heavy kaon SU(2) χPT and NLO
SU(3) χPT and phenomenological ansatz
for higher orders.

QCDSF 07 [162] 2 591 Only one value for the pion mass.

RBC 06 [163] 2 490 NLO SU(3) χPT and phenomenological
ansatz for higher orders.

JLQCD 05 [164] 2 550 NLO SU(3) χPT and phenomenological
ansatz for higher orders.

Table 32: Chiral extrapolation/minimum pion mass in determinations of f+(0).

Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 07,10 [158, 159] 2+1 2.7 4.7 Two volumes for all but the lightest
pion mass.

ETM 10D [160] 2 1.7-2.8 3.7

ETM 09A [161] 2 2.1, 2.8 3.2 Two volumes at Mπ = 300MeV
and χPT-motivated estimate of the
error due to FSE.

QCDSF 07 [162] 2 1.9 5.4

RBC 06 [163] 2 1.9 4.7

JLQCD 05 [164] 2 1.8 4.9

Table 33: Finite volume effects in determinations of f+(0).
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Collab. Ref. Nf a [fm] Description

ETM 10E [170] 2+1+1 0.061, 0.078 Scale set through fπ/mπ. Two lattice
spacings but a-dependence ignored in all
fits. Finer lattice spacing from [249].

RBC/UKQCD 10A [106] 2+1 0.114, 0.087 Scale set through MΩ.

MILC 10 [171] 2+1 0.045 - 0.09 3 lattice spacings, continuum extrapola-
tion by means of RSχPT.

BMW 10 [41] 2+1 0.065, 0.083,
0.124

Scale set through MΩ,Ξ. Perturbative
O(a)-improvement.

JLQCD/TWQCD 08A [95] 2+1 0.100(2) Scale set through Fπ. Automatic O(a)-
improvement due to chiral symmetry of ac-
tion.

MILC 09A [59] 2+1 0.045, 0.06, 0.09 Scale set through r1 and Υ and continuum
extrapolation based on RSχPT.

MILC 09 [6] 2+1 0.045, 0.06,
0.09, 0.12

Scale set through r1 and Υ and continuum
extrapolation based on RSχPT.

Aubin 08 [173] 2+1 0.09, 0.12 Scale set through r1 and Υ and continuum
extrapolation based on MAχPT.

PACS-CS 08, 08A [63, 174] 2+1 0.0907(13) Scale set through MΩ. Non-perturbatively
O(a)-improved.

HPQCD/UKQCD 07 [175] 2+1 0.06, 0.09, 0.15 Scale set through r1 and Υ and contin-
uum extrapolation on continuum-χPT mo-
tivated ansatz. Taste breaking of sea
quarks ignored.

RBC/UKQCD 08 [108] 2+1 0.114(2) Scale set through MΩ. Automatic O(a)-
improvement due to appoximate chiral
symmetry. (ΛQCDa)

2 ≈ 4% systematic er-
ror due to lattice artifacts added.

NPLQCD 06 [176] 2+1 0.125 Scale set through r0 and Fπ. Taste break-
ing of sea quarks ignored.

ETM 10D [160] 2 0.054, 0.068,
0.086, 0.101

Scale set through Fπ. Automatic
O(a) impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

ETM 09 [177] 2 0.07, 0.09, 0.10 Scale set through Fπ. Automatic O(a)
impr., flavour symmetry breaking:
(M0

PS)
2 − (M±

PS)
2 ∼ O(a2).

QCDSF/UKQCD 07 [178] 2 0.06, 0.07 Scale set through Fπ. Non-perturbative
O(a)-improvement.

Table 34: Continuum extrapolations/estimation of lattice artifacts in determinations of
fK/fπ.
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 10E [170] 2+1+1 265 Pion mass on finer lattice from [324].

RBC/UKQCD 10A [106] 2+1 290 Results are based on heavy kaon NLO SU(2)
PQχPT.

MILC 10 [171] 2+1 258 Lightest Nambu-Goldstone mass is 177MeV (at
0.09 fm) and lightest RMS mass is 258MeV (at
0.06 fm). NLO rSχPT and NNLO χPT.

BMW 10 [41] 2+1 190 Comparison of various fit-ansätze: SU(3) χPT,
heavy kaon SU(2) χPT, polynomial.

JLQCD/TWQCD 08A [95] 2+1 340 NNLO SU(3) χPT.

MILC 09A [59] 2+1 177 NLO SU(3) RSχPT, continuum χPT at NNLO
and NNNLO and NNNNLO analytic terms and
heavy kaon SU(2) RSχPT with NNLO contin-
uum chiral logs on a smaller sub-set of the lat-
tices. The lightest Nambu-Goldstone mass is
177MeV (at a = 0.09 fm) and the lightest RMS
mass is 258MeV (at a = 0.06 fm).

MILC 09 [6] 2+1 240 NLO SU(3) RSχPT with continuum χPT
NNLO and NNNLO analytic terms added.
According to [59] the lightest sea Nambu-
Goldstone mass is 224MeV and the lightest
RMS mass is 258MeV (at a = 0.06 fm).

Aubin 08 [173] 2+1 240 NLOMAχPT. According to [59] the lightest sea
Nambu-Goldstone mass is 246MeV (at a = 0.09
fm) and the lightest RMS mass is 329MeV (at
a = 0.09 fm).

PACS-CS 08, 08A [63, 174] 2+1 156 NLO SU(2) χPT and SU(3) (Wilson)χPT.

HPCD/UKQCD 07 [175] 2+1 240 NLO SU(3) chiral perturbation theory with
NNLO and NNNLO analytic terms. The sea
RMS mass for the employed lattices is heavier
than 250MeV.

RBC/UKQCD 08 [108] 2+1 330 While SU(3) PQχPT fits were studied, final
results are based on heavy kaon NLO SU(2)
PQχPT.

NPLQCD 06 [176] 2+1 300 NLO SU(3) χPT and some NNLO terms. The
sea RMS mass for the employed lattices is heav-
ier.

ETM 10D [160] 2 260 NLO SU(3) χPT and phenomenological ansatz
for higher orders. Joint f+(0)-fK/fπ-fit.

ETM 09 [177] 2 270 NLO heavy meson SU(2) χPT and NLO SU(3)
χPT.

QCDSF/UKQCD 07 [178] 2 300 Linear extrapolation of lattice data.

Table 35: Chiral extrapolation/minimum pion mass in determinations of fK/fπ.

93



Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 10E [170] 2+1+1 1.9 - 2.9 & 3.9 Simulation parameters from [249,
324].

RBC/UKQCD 10A [106] 2+1 2.7 & 4.0

MILC 10 [171] 2+1 2.52 4.11 L≥2.9 fm for the lighter masses.

BMW 10 [41] 2+1 2.0, 2.6, 2.7,
3.0, 4.0

4.0 Various volumes for comparison
and correction for FSE from χPT
using [323].

JLQCD/TWQCD 08A [95] 2+1 1.6 2.8 Estimate of FSE using χPT [323,
325]

MILC 09A [59] 2+1 2.5, 2.9, 3.4,
3.6, 3.8, 5.8

4.1

MILC 09 [6] 2+1 2.4, 2.5, 2.9,
3.0, 3.4, 3.6,
3.8, 5.8

3.8 Various volumes for comparison
and correction for FSEs from
(RS)χPT [323].

Aubin 08 [173] 2+1 2.4, 3.4 4.0 Correction for FSE from MAχPT.

PACS-CS 08, 08A [63, 174] 2+1 2.9 2.3 Correction for FSE from χPT using
[323].

HPCD/UKQCD 07 [175] 2+1 2.3, 2.4, 2.5,
2.9

3.8 Correction for FSE from χPT using
[323].

RBC/UKQCD 08 [108] 2+1 1.8, 2.7 4.6 Various volumes for comparison
and correction for FSE from χPT
[194, 195, 323].

NPLQCD 06 [176] 2+1 2.5 3.8 Correction for FSE from SχPT [28,
30]

ETM 10D [160] 2 2.0-2.5 3.7

ETM 09 [177] 2 2.0, 2.4, 2.7 3.3 Correction for FSE from χPT [194,
195, 323].

QCDSF/UKQCD 07 [178] 2 1.4,. . . ,2.6 4.2 Correction for FSE from χPT

Table 36: Finite volume effects in determinations of fK/fπ.

94



B.3 Notes to section 5 on Low-Energy Constants

Collab. Ref. Nf a [fm] Description

Bernardoni 10 [244] 2 0.0784(10) Scale fixed through MK . Non-perturbative O(a) im-
provement. No estimate of systematic error.

JLQCD/TWQCD 10 [240] 2 0.11 One lattice spacing, scale fixed through r0. Estimate
of 7% systematic error due to finite lattice spacing.

JLQCD/TWQCD 09 [252] 2 0.1184(21) Automatic O(a) impr., exact chiral symmetry. Scale
fixed through r0. Scale ambiguity added as system-
atic error.

ETM 09B [246] 2 0.063, 0.073 Automatic O(a) impr. Estimate of lattice artifacts
(4% − 10% effect, not added in final result) by com-
paring two lattice spacings. r0 = 0.49 fm used to
convert results in physical units.

.

ETM 09C [237] 2 0.051 - 0.1 Automatic O(a) impr. Scale fixed through Fπ. 4
lattice spacings, continuum extrapolation.

ETM 08 [235] 2 0.07-0.09 Automatic O(a) impr. Discretization effects esti-
mated by comparing two lattice spacings. Scale fixed
through Fπ.

JLQCD/TWQCD 08A
JLQCD 08A

[95]
[264]

2 0.1184(3)(21) Automatic O(a) impr., exact chiral symmetry. Scale
fixed through r0. Scale ambiguity added as system-
atic error.

CERN 08 [215] 2 0.0784(10) Scale fixed through MK . Non-perturbative O(a) im-
provement. No estimate of systematic error.

HHS 08 [247] 2 0.1153(5) Tree level O(a) improvement. Scale fixed through r0.
Estimate of lattice artifacts via WχPT in [326].

JLQCD/TWQCD 07 [248] 2 0.1111(24) Automatic O(a) impr., exact chiral symmetry. Scale
fixed through r0. No estimate of lattice artifacts.

JLQCD/TWQCD 07A [245] 2 ≃ 0.12 Automatic O(a) impr., exact chiral symmetry. Scale
fixed through r0. No estimate of lattice artifacts.

CERN-TOV 06 [254] 2 0.0717(15),
0.0521(7),
0.0784(10)

Scale fixed through MK . The lattice with a =
0.0784(10) is obtained with non-perturbative O(a)
improvement. No estimate of systematic error.

QCDSF/UKQCD 06A [260] 2 0.07-0.115 5 lattice spacings. Non-perturbative O(a) improve-
ment. Scale fixed through r0.

Table 37: Continuum extrapolations/estimation of lattice artifacts in Nf = 2 determinations
of the Low-Energy Constants.
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Collab. Ref. Nf a [fm] Description

ETM 10 [60] 2+1+1 0.078, 0.086 Scale fixed through Fπ/Mπ. Systematic error
taken into account by considering two lattice spac-
ings.

MILC 10, 10A [103, 171] 2+1 0.045 - 0.09 3 lattice spacings, continuum extrapolation by
means of RSχPT.

JLQCD/TWQCD 10 [240] 2+1, 3 0.11 One lattice spacing, scale fixed through mΩ.

RBC/UKQCD 10A [106] 2+1 0.1106(27),
0.0888(12)

Two lattice spacings. Data combined in global
chiral-continuum fits.

JLQCD 09 [241] 2+1 0.1075(7) Scale fixed through r0. Systematic error associ-
ated to lattice artifacts of order 7.4% estimated
through mismatch of the lattice spacing obtained
from different inputs.

MILC 09, 09A [6, 59] 2+1 0.045 - 0.18 Total of 6 lattice spacings, continuum extrapola-
tion by means of RSχPT.

TWQCD 08 [242] 2+1 0.122(3) Scale fixed through mρ, r0. No estimate of sys-
tematic effects.

JLQCD/TWQCD 08B [243] 2+1 0.1075(7) Scale fixed through r0. No estimate of systematic
effects for the observable adopted in this work.

PACS-CS 08 [63] 2+1 0.0907 Only one lattice spacing, no attempt to estimate
size of cut-off effects.

RBC/UKQCD 08 [108] 2+1 0.114 Only one lattice spacing, attempt to estimate size
of cut-off effects via formal argument.

RBC/UKQCD 08A [250] 2+1 0.114 Only one lattice spacing, attempt to estimate size
of cut-off effects via formal argument.

NPLQCD 06 [176] 2+1 0.125 Only one lattice spacing, continuum χPT used.

LHP 04 [259] 2+1 ≃ 0.12 Only one lattice spacing, mixed discretization ap-
proach.

Table 38: Continuum extrapolations/estimation of lattice artifacts in Nf = 2+1 and 2+1+1
determinations of the Low-Energy Constants.
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Collab. Ref. Nf Mπ,min [MeV] Description

Bernardoni 10 [244] 2 297, 377, 426 NLO SU(2) fit of the topological sus-
ceptibility.

JLQCD/TWQCD 10 [240] 2 mΣV < 1 (ǫ-reg.)
m ≃ ms/6−ms (p-reg.)

Quark masses both in the p and in the
ǫ-regime. NLO chiral fit of the spectral
density interpolating the two regimes.
(

+1.2%
−1.8%

)

for Σ1/3 associated to chiral fit.

JLQCD/TWQCD 09 [252] 2 290 LECs extracted from NNLO chiral fit
of vector and scalar radii 〈r2〉πV,S .

ETM 09B [246] 2 µ = mΣV ≃ 0.11− 0.35 NLO SU(2) ǫ-regime fit.

ETM 09C [237] 2 280 NNLO SU(2) fit. Systematic error esti-
mated by performing a large set of dif-
ferent fits.

ETM 08 [235] 2 260 LECs extracted from pion form factor
using NNLO χPT and fixing the pion
scalar radius to the experimental value.

JLQCD/TWQCD 08A
JLQCD 08A

[95]
[264]

2 290 NNLO SU(2) fit up to Mπ = 750 MeV.
Estimate of systematic error due to
truncation of chiral series.

CERN 08 [215] 2 mq,min=13 MeV NLO SU(2) fit for the mode number of
the Dirac operator.

HHS 08 [247] 2 µ1 = mΣV1 ≃ 0.7− 2.9
µ2 = mΣV2 ≃ 2.1− 5.0

ǫ-regime: higher values might be too
large to be considered in the ǫ-regime.
NLO SU(2) ǫ-regime fit.

JLQCD/TWQCD 07 [248] 2 µ = mΣV ≃ 0.556 NLO SU(2) ǫ-regime fit.

JLQCD/TWQCD 07A [245] 2 mud = ms/6−ms Quark condensate extracted from topo-
logical susceptibility, LO chiral fit.

CERN-TOV 06 [254] 2 403, 381, 377 NLO SU(2) fit up to Mπ ≃ 540 MeV.

QCDSF/UKQCD 06A [260] 2 400 Several fit functions to extrapolate the
pion form factor.

Table 39: Chiral extrapolation/minimum pion mass in Nf = 2 determinations of the Low-
Energy Constants.
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 10 [60] 2+1+1 270 SU(2) NLO and NNLO fits.

MILC 10, 10A [103, 171] 2+1 Cf. MILC 09A.

JLQCD/TWQCD 10 [240] 2+1,3 mudΣV < 1 (ǫ-reg)
mud = ms/6 − ms

(p-reg.),
ms ∼ phys.

For the Nf = 2 + 1 runs, light quark
masses both in the ǫ- and in the p-
regime. For the Nf = 3 runs, only
masses in the p-regime. NLO chiral fit of
the spectral density interpolating the two
regimes.

(

+2.2%
−0.2%

)

systematic error associ-

ated to Σ1/3 and ±8.7% to Σ
1/3
0 .

RBC/UKQCD 10A [106] 2+1 290-420 The range is 225-420 MeV for partially
quenched pions. NLO SU(2) χPT fits are
used.

JLQCD 09 [241] 2+1 mudΣV < 1 (ǫ-reg)
mud = ms/6 − ms

(p-reg.),
ms ∼ phys.

Quark masses both in the ǫ and in the p-
regime. NLO chiral fit of the spectral den-
sity interpolating the two regimes.

(

+2.2
−0.7

)

% systematic error estimated by varying
the fit range and using formulae for SU(2)
versus SU(3) χPT.

MILC 09 [6] 2+1 240 Value taken from text of [6]; according
to [59] lightest Nambu-Goldstone mass
is 224MeV and lightest RMS mass is
258MeV (at 0.06 fm).

MILC 09A [59] 2+1 258 Lightest Nambu-Goldstone mass is
177MeV (at 0.09 fm) and lightest RMS
mass is 258MeV (at 0.06 fm).

TWQCD 08 [242] 2+1 mud = (ms −
3ms)/4, ms ∼ phys.

Quark condensate extracted from topolog-
ical susceptibility, LO chiral fit.

JLQCD/TWQCD 08B [243] 2+1 mud = ms/6−ms,
ms ∼ phys.

Quark condensate extracted from topolog-
ical susceptibility, LO chiral fit.

PACS-CS 08 [63] 2+1 156 To date, lightest published quark mass
reached in a direct simulation.

RBC/UKQCD 08 [108] 2+1 330 Other unitary masses are 419, 557, 672
MeV, lightest non-unitary pion goes down
to 242MeV.

RBC/UKQCD 08A [250] 2+1 330 Pion electromagnetic form factor com-
puted at one pion mass. Low values
of q2 reached thanks to partially twisted
boundary conditions. LECs determined
from NLO χPT fit in q2.

NPLQCD 06 [176] 2+1 460 Value refers to lightest RMS mass at a =
0.125 fm as quoted in [59].

LHP 04 [259] 2+1 318 Pion form factor extracted from vector
meson dominance fit.

Table 40: Chiral extrapolation/minimum pion mass in Nf = 2+1 and 2+1+1 determinations
of the Low-Energy Constants.
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Collab. Ref. Nf L [fm] Mπ,minL Description

Bernardoni 10 [244] 2 1.88 2.8 Finite-volume effects included in the
NLO chiral fit.

JLQCD/TWQCD 10 [240] 2 1.8-1.9 Finite volume effects estimated
through differences between different
topological sectors. Systematic error
of 3.7% on Σ1/3.

JLQCD/TWQCD 09 [252] 2 1.89 2.9 Finite-volume corrections for form
factor estimated through NLO χPT
[327, 328]. Additional finite-volume
effect for fixed topological charge
[329].

ETM 09B [246] 2 1.3, 1.5 ǫ-regime Topology: not fixed. Comparison be-
tween 2 volumes, estimate of 8% sys-
tematic effect (not quoted in the final
result). Volume might be too small
for ǫ-expansion.

ETM 09C [237] 2 2.0-2.5 4.4, 3.7, 3.2,
3.5

Several volumes. Finite-volume ef-
fects estimated through [323].

ETM 08 [235] 2 2.1, 2.8 3.4, 3.7 For pion form factor only data with
MπL & 4 are considered in the final
analysis. FSE for pion masses and de-
cay constants are taken into account
according to [323].

JLQCD/TWQCD 08A
JLQCD 08A

[95]
[264]

2 1.89 2.9 Finite-volume corrections estimates
through [323]. Additional finite-
volume effect for fixed topological
charge [329].

CERN 08 [215] 2 1.88, 2.51 - For the specific observable stud-
ied here the finite-volume effects ∝
e−MΛL/2, with MΛ ≫ Mπ . Finite-
volume effects checked by comparing
2 volumes.

HHS 08 [247] 2 1.84, 2.77 ǫ-regime Topology: not fixed. Comparison be-
tween 2 volumes.

JLQCD/TWQCD 07 [248] 2 1.78 ǫ-regime Topology: fixed to ν = 0.

JLQCD/TWQCD 07A [245] 2 1.92 - Topology fixed to ν = 0 gives finite-
volume effects estimated through
[329].

CERN-TOV 06 [254] 2 1.72, 1.67, 1.88 3.5, 3.2, 3.6 No estimate of finite-volume effects.

QCDSF/UKQCD 06A [260] 2 1.4-2.0 3.8 Use NLO χPT [327] to investigate
finite-volume effects.

Table 41: Finite volume effects in Nf = 2 determinations of the Low-Energy Constants.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 10 [60] 2+1+1 1.9-2.8 3.0 Finite-size effects studied us-
ing [323]. LECs are extrac-
ted from data which satisfy
Mπ+L & 4, but Mπ0L ∼ 2.

MILC 10, 10A [103, 171] 2+1 2.52 4.11 L ≥ 2.9 fm for the lighter
masses.

JLQCD/TWQCD 10 [240] 2+1, 3 1.9, 2.7 Finite volume effects esti-
mated by comparing with
larger volume for a fixed quark
mass. For F estimated to be
3%, for Σ1/3 and Σ

1/3
0

(

+0.3%
−1.0%

)

.

RBC/UKQCD 10A [106] 2+1 2.7 ≃ 4 Finite-volume corrections in-
cluded by means of χPT.

JLQCD 09 [241] 2+1 1.72 ǫ/p-regime Finite-volume effects esti-
mated by comparing with
larger volume (L = 2.58 fm)
for a fixed mud, ms.

MILC 09, 09A [6, 59] 2+1 2.4/2.9 3.5/4.11 Lmin = 2.4 fm, but L ≥ 2.9 fm
for lighter masses; one coarse
ensemble with MπL= 3.5, all
fine ones have MπL>4.11.

TWQCD 08 [242] 2+1 1.95 - No estimate of finite-volume
effects.

JLQCD/TWQCD 08B [243] 2+1 1.72 - Topology fixed to ν = 0 gives
finite-volume effects estimated
through [329].

PACS-CS 08 [63] 2+1 2.9 2.3 Possible finite volume effects
are the main concern of the
authors.

RBC/UKQCD 08 [108] 2+1 2.74 4.6 Good setting to correct resid-
ual finite-volume effects by
means of χPT.

RBC/UKQCD 08A [250] 2+1 2.74 4.6 Finite-size effects on the form
factor and radius estimated to
be < 1% using χPT

NPLQCD 06 [176] 2+1 2.5 3.7 Value refers to lightest valence
pion mass.

LHP 04 [259] 2+1 ≃ 2.4 3.97 Value refers to domain-wall
valence pion mass.

Table 42: Finite volume effects in Nf = 2+1 and 2+1+1 determinations of the Low-Energy
Constants.
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Collab. Ref. Nf Description

ETM 10 [60] 2+1+1 Non-perturbative

JLQCD/TWQCD 10 [240] 2+1, 3 Non-perturbative

MILC 10, 10A [103, 171] 2+1 2 loop

RBC/UKQCD 10A [106] 2+1 Non-perturbative

JLQCD 09 [241] 2+1 Non-perturbative

MILC 09, 09A [6, 59] 2+1 2 loop

TWQCD 08 [242] 2+1 Non-perturbative

JLQCD/TWQCD 08B [243] 2+1 Non-perturbative

PACS-CS 08 [63] 2+1 1 loop

RBC/UKQCD 08, 08A [108, 250] 2+1 Non-perturbative

NPLQCD 06 [176] 2+1 —

LHP 04 [259] 2+1 —

All collaborations 2 Non-perturbative

Table 43: Renormalization in determinations of the Low-Energy Constants.
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B.4 Notes to section 6 on Kaon B-parameter BK

In the following, we summarize the characteristics (lattice actions, pion masses, lattice spac-
ings, etc.) of the recent Nf = 2 + 1 and Nf = 2 runs. We also provide brief descriptions of
how systematic errors are estimated by the various authors.

Collab. Ref. Nf a [fm] Description

SWME 11 [281] 2+1 0.12, 0.09, 0.06, 0.04 Continuum extrapolation of results ob-
tained at four lattice spacings; resid-
ual discretization error of 0.21% from
difference to result at smallest lattice
spacing.

RBC/UKQCD 10B [282] 2+1 0.114, 0.087 Two lattice spacings. Combined chiral
and continuum fits.

SWME 10 [283] 2+1 0.12, 0.09, 0.06 Continuum extrapolation of results ob-
tained at four lattice spacings; resid-
ual discretization error of 0.21% from
difference to result at smallest lattice
spacing.

Aubin 09 [269] 2+1 0.09, 0.12 Two lattice spacings; quote 0.3% dis-
cretization error, estimated from vari-
ous a2-terms in fit function

RBC/UKQCD 07A, 08 [108, 284] 2+1 0.114(2) Single lattice spacing; quote 4% dis-
cretization error, estimated from the
difference between computed and ex-
perimental values of fπ.

HPQCD/UKQCD 06 [285] 2+1 0.12 Single lattice spacing; 3% discretiza-
tion error quoted without providing
more details.

ETM 10A [286] 2 0.07, 0.09, 0.1 Three lattice spacings; 1.2% error
quoted.

JLQCD 08 [280] 2 0.118(1) Single lattice spacing; no error quoted.

RBC 04 [287] 2 0.117(4) Single lattice spacing; no error quoted.

UKQCD 04 [288] 2 0.10 Single lattice spacing; no error quoted.

Table 44: Continuum extrapolations/estimation of lattice artifacts in determinations of BK .
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Collab. Ref. Nf Mπ,min [MeV] Description

SWME 11 [281] 2+1 309, 292, 275,
334

The Mπ,min entries correspond to the four lattice
spacings. Chiral extrapolations based on SU(2)
staggered χPT at NLO, including some analytic
NNLO terms. Combined 1.1% error from various
different variations in the fit procedure.

RBC/UKQCD 10B [282] 2+1 327, 289 The Mπ,min entries correspond to two lattice spac-
ings. Combined chiral and continuum extrapola-
tions.

SWME 10 [283] 2+1 309, 292, 275 The Mπ,min entries correspond to the three lattice
spacings. Chiral extrapolations based on SU(2)
staggered χPT at NLO, including some analytic
NNLO terms. SU(3) staggered χPT as cross-
check. Combined 1.1% error from various differ-
ent variations in the fit procedure.

Aubin 09 [269] 2+1 240/370 The Mπ,min entries correspond to the smallest va-
lence/sea quark masses. Chiral & continuum fits
based on NLO mixed action χPT at NLO, includ-
ing a subset of NNLO terms. Systematic error
estimated from spread arising from variations in
the fit function. Relevant pion mass in the sea
quark sector is the singlet pion mass of 370MeV.

RBC/UKQCD 07A, 08[108, 284] 2+1 330 Fits based on SU(2) PQχPT at NLO. Effect of
neglecting higher orders estimated at 6% via dif-
ference between fits based on LO and NLO ex-
pressions.

HPQCD/UKQCD 06 [285] 2+1 360 3% uncertainty from chiral extrapolation quoted,
without giving further details.

ETM 10A [286] 2 300, 270, 400 Each Mπ,min entry corresponds to a different lat-
tice spacing. Simultaneous chiral & continuum
extrapolations, based on χPT at NLO, are car-
ried out. Systematic error from several sources,
including lattice calibration, quark mass calibra-
tion, chiral and continuum extrapolation etc., es-
timated at 3.1%.

JLQCD 08 [280] 2 290 Fits based on NLO PQχPT. Range of validity in-
vestigated. Fit error included in statistical uncer-
tainty.

RBC 04 [287] 2 490 Fits based on NLO PQχPT. Fit error included in
statistical uncertainty.

UKQCD 04 [288] 2 780 Fits to continuum chiral behaviour at fixed sea
quark mass. Separate extrapolation in sea quark
mass. Fit error included in overall uncertainty.

Table 45: Chiral extrapolation/minimum pion mass in determinations of BK .
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Collab. Ref. Nf L [fm] Mπ,minL Description

SWME 11 [281] 2+1 2.4/3.3, 2.4,
2.8, 2.8

& 3.5 Each L-entry corresponds to a dif-
ferent lattice spacing, with two
volumes at the coarsest lattice.
Central value obtained via finite-
volume staggered χPT. Residual
uncertainty of 0.6% from difference
obtained using χPT in infinite vol-
ume.

RBC/UKQCD 10B [282] 2+1 2.7 & 4.0 Finite-volume χPT applied; resid-
ual finite-volume error estimated
from the difference to fit to χPT in
infinite volume.

SWME 10 [283] 2+1 2.4/3.3, 2.4,
2.8

& 3.5 Each L-entry corresponds to a dif-
ferent lattice spacing, with two vol-
umes at the coarsest lattice. Finite-
volume error of 0.9% estimated
from difference obtained on two vol-
umes at the coarsest lattice spacing.

Aubin 09 [269] 2+1 2.4, 3.4 3.5 Each L entry corresponds to a
different lattice spacing. Keep
mπL >∼ 3.5; no comparison of re-
sults from different volumes; 0.6%
error estimated from mixed action
χPT correction.

RBC/UKQCD 07A, 08[108, 284] 2+1 1.83/2.74 4.60 Each L entry corresponds to a dif-
ferent volume at the same lattice
spacing; 1% error from difference in
results on two volumes.

HPQCD/UKQCD 06 [285] 2+1 2.46 4.49 Single volume; no error quoted.

ETM 10A [286] 2 2.2, 2.2/2.9,
2.1

3.3, 3.3/4.3,
5

Each L entry corresponds to a dif-
ferent lattice spacing, with two vol-
umes at the intermediate lattice
spacing. Results from these two
volumes at Mπ ∼ 300 MeV are
compatible.

JLQCD 08 [280] 2 1.89 2.75 Single volume; data points with
mval < msea excluded; 5% error
quoted as upper bound of PQχPT
estimate of the effect.

RBC 04 [287] 2 1.87 4.64 Single volume; no error quoted.

UKQCD 04 [288] 2 1.6 6.51 Single volume; no error quoted.

Table 46: Finite volume effects in determinations of BK .
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running
Collab. Ref. Nf Ren.

match.
Description

SWME 11 [281] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher orders
estimated at 4.4% by identifying the un-
known 2-loop coefficient with result at the
smallest lattice spacing.

RBC/UKQCD 10B [282] 2+1 RI PT1ℓ Variety of different RI-MOM schemes in-
cluding non-exceptional momenta. Resid-
ual uncertainty of 2% uncertainty in run-
ning & matching.

SWME 10 [283] 2+1 PT1ℓ PT1ℓ Uncertainty from neglecting higher orders
estimated at 5.5% by identifying the un-
known 2-loop coefficient with result at the
smallest lattice spacing.

Aubin 09 [269] 2+1 RI PT1ℓ Total uncertainty in matching & running of
3.3%, estimated from a number of sources,
including chiral extrapolation fit ansatz
for n.p. determination, strange sea quark
mass dependence, residual chiral symme-
try breaking, perturbative matching &
running.

RBC/UKQCD 07A, 08 [108, 284] 2+1 RI PT1ℓ Uncertainty from n.p. determination of
ren. factor included in statistical error; 2%
systematic error from perturbative match-
ing to MS estimated via size of correction
itself.

HPQCD/UKQCD 06 [285] 2+1 PT1ℓ PT1ℓ Uncertainty due to neglecting 2-loop order
in perturbative matching and running es-
timated by multiplying result by α2.

ETM 10A [286] 2 RI PT1ℓ Uncertainty from RI renormalization esti-
mated at 2.5%.

JLQCD 08 [280] 2 RI PT1ℓ Uncertainty from n.p. determination of
ren. factor included in statistical error;
2.3% systematic error from perturbative
matching to MS estimated via size of cor-
rection itself.

RBC 04 [287] 2 RI PT1ℓ Uncertainty from n.p. determination of
ren. factor included.

UKQCD 04 [288] 2 PT1ℓ PT1ℓ No error quoted.

Table 47: Running and matching in determinations of BK .
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weak vector currents, Nuovo Cim. 38 (1965) 1747.

[167] J. Gasser and H. Leutwyler, Low-energy expansion of meson form factors, Nucl. Phys.
B250 (1985) 517–538.

[168] D. Becirevic, G. Martinelli, and G. Villadoro, The Ademollo-Gatto theorem for lattice
semileptonic decays, Phys. Lett. B633 (2006) 84–88, [hep-lat/0508013].

[169] [RBC 08], J. M. Flynn, and C. T. Sachrajda, SU(2) chiral perturbation theory for Kl3
decay amplitudes, Nucl. Phys. B812 (2009) 64–80, [arXiv:0809.1229].

[170] [ETM 10E], F. Farchioni, G. Herdoiza, K. Jansen, M. Petschlies, C. Urbach, et. al.,
Pseudoscalar decay constants from Nf = 2 + 1 + 1 twisted mass lattice QCD, PoS
LAT2010 (2010) 128, [arXiv:1012.0200].

[171] [MILC 10], A. Bazavov, et. al., Results for light pseudoscalar mesons, PoS LAT2010

(2010) 074, [arXiv:1012.0868].

[172] [JLQCD/TWQCD 09A], J. Noaki, et. al., Chiral properties of light mesons with
Nf = 2 + 1 overlap fermions, PoS LAT2009 (2009) 096, [arXiv:0910.5532].

[173] [Aubin 08], C. Aubin, J. Laiho, and R. S. Van de Water, Light pseudoscalar meson
masses and decay constants from mixed action lattice QCD, PoS LAT2008 (2008)
105, [arXiv:0810.4328].

[174] [PACS-CS 08A] and Y. Kuramashi, PACS-CS results for 2+1 flavor lattice QCD
simulation on and off the physical point, PoS LAT2008 (2008) 018,
[arXiv:0811.2630].

[175] [HPQCD/UKQCD 07], E. Follana, C. T. H. Davies, G. P. Lepage, and J. Shigemitsu,
High precision determination of the π, K, D and Ds decay constants from lattice
QCD, Phys. Rev. Lett. 100 (2008) 062002, [arXiv:0706.1726].

[176] [NPLQCD 06], S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage, fK/fπ in
full QCD with domain wall valence quarks, Phys. Rev. D75 (2007) 094501,
[hep-lat/0606023].

[177] [ETM 09], B. Blossier, et. al., Pseudoscalar decay constants of kaon and D-mesons
from Nf = 2 twisted mass Lattice QCD, JHEP 07 (2009) 043, [arXiv:0904.0954].

116

http://xxx.lanl.gov/abs/hep-ph/0607162
http://xxx.lanl.gov/abs/hep-lat/0510068
http://xxx.lanl.gov/abs/hep-lat/0508013
http://xxx.lanl.gov/abs/0809.1229
http://xxx.lanl.gov/abs/1012.0200
http://xxx.lanl.gov/abs/1012.0868
http://xxx.lanl.gov/abs/0910.5532
http://xxx.lanl.gov/abs/0810.4328
http://xxx.lanl.gov/abs/0811.2630
http://xxx.lanl.gov/abs/0706.1726
http://xxx.lanl.gov/abs/hep-lat/0606023
http://xxx.lanl.gov/abs/0904.0954


[178] [QCDSF/UKQCD 07], G. Schierholz et al., Probing the chiral limit with clover
fermions I: The meson sector, talk given at Lattice 2007, Regensburg, Germany, PoS
LAT2007, 133,
http://www.physik.uni-regensburg.de/lat07/hevea/schierholz.pdf.

[179] [LR 84], H. Leutwyler, and M. Roos, Determination of the elements Vus and Vud of the
Kobayashi-Maskawa matrix, Z. Phys. C25 (1984) 91.

[180] P. Post and K. Schilcher, Kl3 form factors at order p6 in chiral perturbation theory,
Eur. Phys. J. C25 (2002) 427–443, [hep-ph/0112352].

[181] J. Bijnens and P. Talavera, Kl3 decays in chiral perturbation theory, Nucl. Phys. B669

(2003) 341–362, [hep-ph/0303103].

[182] M. Jamin, J. A. Oller, and A. Pich, Order p6 chiral couplings from the scalar Kπ form
factor, JHEP 02 (2004) 047, [hep-ph/0401080].

[183] V. Cirigliano et. al., The Green function and SU(3) breaking in Kl3 decays, JHEP 04

(2005) 006, [hep-ph/0503108].

[184] A. Kastner and H. Neufeld, The Kl3 scalar form factors in the Standard Model, Eur.
Phys. J. C57 (2008) 541–556, [arXiv:0805.2222].

[185] V. Bernard, M. Oertel, E. Passemar, and J. Stern, Dispersive representation and shape
of the Kℓ3 form factors: robustness, Phys. Rev. D80 (2009) 034034,
[arXiv:0903.1654].

[186] V. Bernard and E. Passemar, Chiral extrapolation of the strangeness changing Kπ
form factor, JHEP 04 (2010) 001, [arXiv:0912.3792].

[187] E. Passemar, Dispersive approach to Kℓ3 form factors, NA62 Physics Handbook
Workshop, CERN 2009 (2009).

[188] E. Passemar, Precision SM calculations and theoretical interests beyond the SM in Kℓ2

and Kℓ3 decays, PoS KAON09 (2009) 024, [arXiv:1003.4696].

[189] S. Di Vita et. al., Vector and scalar form factors for K- and D-meson semileptonic
decays from twisted mass fermions with Nf = 2, PoS LAT2009 (2009) 257,
[arXiv:0910.4845].

[190] [SPQcdR 04], D. Becirevic, et. al., The K → π vector form factor at zero momentum
transfer on the lattice, Nucl. Phys. B705 (2005) 339–362, [hep-ph/0403217].

[191] R. Kowalewski and T. Mannel, Determination of Vcb and Vub, in Review of Particle
Physics, J. Phys. G37 (2010) 075021, p. 1014.

[192] M. E. Fisher and V. Privman, First-order transitions breaking O(n) symmetry:
Finite-size scaling, Phys. Rev. B32 (1985) 447–464.

[193] E. Brezin and J. Zinn-Justin, Finite size effects in phase transitions, Nucl. Phys.
B257 (1985) 867.

117

http://www.physik.uni-regensburg.de/lat07/hevea/schierholz.pdf
http://xxx.lanl.gov/abs/hep-ph/0112352
http://xxx.lanl.gov/abs/hep-ph/0303103
http://xxx.lanl.gov/abs/hep-ph/0401080
http://xxx.lanl.gov/abs/hep-ph/0503108
http://xxx.lanl.gov/abs/0805.2222
http://xxx.lanl.gov/abs/0903.1654
http://xxx.lanl.gov/abs/0912.3792
http://xxx.lanl.gov/abs/1003.4696
http://xxx.lanl.gov/abs/0910.4845
http://xxx.lanl.gov/abs/hep-ph/0403217


[194] J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B184

(1987) 83.

[195] J. Gasser and H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B188

(1987) 477.

[196] J. Gasser and H. Leutwyler, Spontaneously Broken Symmetries: Effective Lagrangians
at Finite Volume, Nucl. Phys. B307 (1988) 763.

[197] P. Hasenfratz and H. Leutwyler, Goldstone boson related finite size effects in field
theory and critical phenomena with O(N) symmetry, Nucl. Phys. B343 (1990)
241–284.

[198] [CGL 01], G. Colangelo, J. Gasser, and H. Leutwyler, ππ scattering, Nucl. Phys.
B603 (2001) 125–179, [hep-ph/0103088].

[199] F. C. Hansen, Finite size effects in spontaneously broken SU(N)×SU(N) theories,
Nucl. Phys. B345 (1990) 685–708.

[200] F. C. Hansen and H. Leutwyler, Charge correlations and topological susceptibility in
QCD, Nucl. Phys. B350 (1991) 201–227.

[201] H. Leutwyler and A. V. Smilga, Spectrum of Dirac operator and role of winding
number in QCD, Phys. Rev. D46 (1992) 5607–5632.

[202] P. H. Damgaard, M. C. Diamantini, P. Hernandez, and K. Jansen, Finite-size scaling
of meson propagators, Nucl. Phys. B629 (2002) 445–478, [hep-lat/0112016].

[203] P. H. Damgaard, P. Hernandez, K. Jansen, M. Laine, and L. Lellouch, Finite-size
scaling of vector and axial current correlators, Nucl. Phys. B656 (2003) 226–238,
[hep-lat/0211020].

[204] S. Aoki and H. Fukaya, Chiral perturbation theory in a theta vacuum, Phys. Rev. D81

(2010) 034022, [arXiv:0906.4852].

[205] F. Bernardoni, P. H. Damgaard, H. Fukaya, and P. Hernandez, Finite volume scaling
of Pseudo Nambu-Goldstone Bosons in QCD, JHEP 10 (2008) 008,
[arXiv:0808.1986].

[206] P. H. Damgaard and H. Fukaya, The chiral condensate in a finite volume, JHEP 01

(2009) 052, [arXiv:0812.2797].

[207] H. Leutwyler, Energy levels of light quarks confined to a box, Phys. Lett. B189 (1987)
197.

[208] P. Hasenfratz, The QCD rotator in the chiral limit, Nucl. Phys. B828 (2010) 201–214,
[arXiv:0909.3419].

[209] F. Niedermayer and C. Weiermann, The rotator spectrum in the δ-regime of the O(n)
effective field theory in 3 and 4 dimensions, Nucl. Phys. B842 (2011) 248–263,
[arXiv:1006.5855].

118

http://xxx.lanl.gov/abs/hep-ph/0103088
http://xxx.lanl.gov/abs/hep-lat/0112016
http://xxx.lanl.gov/abs/hep-lat/0211020
http://xxx.lanl.gov/abs/0906.4852
http://xxx.lanl.gov/abs/0808.1986
http://xxx.lanl.gov/abs/0812.2797
http://xxx.lanl.gov/abs/0909.3419
http://xxx.lanl.gov/abs/1006.5855


[210] M. Weingart, The QCD rotator with a light quark mass, arXiv:1006.5076.

[211] A. Hasenfratz, P. Hasenfratz, F. Niedermayer, D. Hierl, and A. Schafer, First results
in QCD with 2+1 light flavors using the fixed-point action, PoS LAT2006 (2006) 178,
[hep-lat/0610096].

[212] [QCDSF 10], W. Bietenholz, et. al., Pion in a box, Phys. Lett. B687 (2010) 410–414,
[arXiv:1002.1696].

[213] P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys.
B171 (1980) 253.

[214] [TWQCD 09], Y.-Y. Mao, and T.-W. Chiu, Topological susceptibility to the one-loop
order in chiral perturbation theory, Phys. Rev. D80 (2009) 034502,
[arXiv:0903.2146].
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[297] M. Lüscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math.
Phys. 97 (1985) 59.

[298] Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice
action: two-dimensional nonlinear O(N) sigma model, Nucl. Phys. B258 (1985)
141–156.

[299] T. Takaishi, Heavy quark potential and effective actions on blocked configurations,
Phys. Rev. D54 (1996) 1050–1053.

[300] P. de Forcrand et. al., Renormalization group flow of SU(3) lattice gauge theory:
numerical studies in a two coupling space, Nucl. Phys. B577 (2000) 263–278,
[hep-lat/9911033].

[301] G. P. Lepage and P. B. Mackenzie, On the viability of lattice perturbation theory,
Phys. Rev. D48 (1993) 2250–2264, [hep-lat/9209022].
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