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ARSTRACT

Transverse forces acting on charged particles passing off-axis through
resonant structures can lead to instabilities and beam break-up in
high-energy particle accelerators or storage rings. These forces can
be calculated from the resonant transverse modes, which are calculated
here for a structure consisting of periodically repeating circular-
cylindrical cavities connected by concentric side tubes. Results for
the dipole mode are presented graphically for a wide variety of
geometries, as well as Brillouin diagrams for m=1 and m=2.

INTRODUCTION

We investigate a perfectly conducting structure consisting of circular cylindrica}l
cavities of radius b and length 2g, connected by concentric tubes of radius a, and repea-
ted periodically withperiod 2#R.  The '‘longitudinal’ i.e. axi-symmetric resonances have

)

been obtained previously1 by matching the expansion coefficicents of the fields in
cylindrical subregions. The ''transverse' resonances, i.e. fields with azimuthal dependance,
are complicated by the fact that they do no longer separate into the familiar T™M and TE
modes, but are in general '*hybrid modes" for which all 6 field components are present.
Further complications arise for the ''synchronous case' when the phase-velocity of the tra-
velling wave equals the light-velocity.

Nevertheless, the lowest deflecting (dipole) modes in such structures have been obtai-
ned in the past for the design of RF particle separatorsz)’sl For stability calculations,
however, one needs a large number of transverse resonances, and the techniques had to be
refined in order to obtain all resonances in a given frequency interval within reasonable

time on a high-speed computer4).

The results of these computations are presented in graphical form as a function of ca-
vity dimensions for the synchronous case, and in the form of Brillouin diagrams for a
particular geometry. An application of this program to the Stanford Linear Accelerator

structure 1is discussed in another paper at this Conference.

THE HERTZ VECTORS

Electro-magnetic resonances for a loss-less structure can be obtained by looking for
the existence of fields in the absence of any excitation. In this case it is advantageous
to derive the 6 electro-magnetic field components from the electric and magnetic Hertz vec-

tors IlF and 1T, for which only the two axial components are non-zero in any uniform cylin-

M?
drical region. The field components can then be found by pure differentiations
1 BHM
E = curl curl HE - curl F Tl



, 1 9
3On = curl curl HM + curl T (m
We divide the gcometry into subregions with uniform cross-section in the z-direction,
onc consisting of the infinitecircular cylinder r<a which can support travelling waves,
and the others of the annular cylinders a<r <b, -g +nmR<z<g+nyR in which only stand-
ing waves are possible. Using the Floquet condition for periodic structures, we need to
calculate the fields only in one of these annular regions if we prescribe either the

phase~-shift per period or the phase velocity of the travelling wave.

The Hertz vectors are determined by the wave-equation, which reduces to the Helmholtz
equation for a single frequency w (or wave number k = %). We use cylindrical coordinates
and expand the Hertz vectors into infinite series of product-solutions which fulfill a

number of boundary conditions. For region I (0<r<a) we take for a given azimuthal mode-
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where Im are modified Besselfunctions of order m. These expressions fulfill the Floquet-

condition if

By = B, * (3)

F=ll=1

where 80 is the phase shift per cell divided by the period @rBO=Bk for the synchronous case

with v=Rc). The Helmholtz equation requires
x2=R2-k?2 (€))]
n n
The denominator X; Im(xna) is completely arbitrary and only taken for later conve-
nience. In region II {(a<r<b, ~g<z<g) we take
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where Rm and Sm are combinations of the modified Besselfunctions Im and Km which fulfil
- t -
Rm(Fb) = §,(rb) =0 (6)

This satisfies the boundary conditions at r=b, and we have to take as==%§ @)
in order to fulfil the boundary conditions at z=+#g. The Helmholz equation is satisfied if
"2 - 2 L 2
15 g k (8)

The four infinite sets of expansion coefficients An, Bn’ C;, Dé are still completely
free and will be determined by field-matching at r=a. In order to obtain purely real

equations, we take C, D equal C', D' for even s and equal jC', jD' for odd s.



FIELD MATCHING

At the common boundary of the two regions r=a, |z|<g the 4 tangential ficld-compo-
nents have to be equal. In addition, the tangential electric field components have to
vanish at the (perfectly conducting) tube-wall r=a, g< |z| <«R. Using the orthogonality

of exp (- ian) in (-wR,wR) we obtain

An - Z an ('s’

sy (9)
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where
o = u%ﬁ (10)

is the circumference factor,
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Similarly, using the orthogonality of sinas(z+ g) or cosas(z+ g) we find
= N >
Rs C5+Qs Ds 2 “Z:;oo an (In An * In Bn)’
I (13)
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where R = R R (14)
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We thus have 4 infinite sets of real equations for the unknown expansion coefficients.
We can rewrite them in matrix notation if we remember that the index n varies between -o»

and +o, while the index s runs from 0 to e (or from 1 to o« since Mno= 0). We thus obtain

G2)GE) =G (2)(5)
(B)s) -G8 G

where 1 stands for the unit matrix, and M, N are the transpose matrices of M and N.

#

il

Substitution of the first into the second equation yields a single homogeneous equa-

tion for the vector ; . Since some of the matrix elements diverge for X, = 0 or FS = (),



: . Co . -C :
we transform this cquation into one for the vector (QC + SD). Since it is still homogenous,

it only has selutions when det (G - 20KUK) = 0 (16)
1 2 - Im? .

Yo — B .
(Q”S R QS_]) (P b ) (N 0)
where G = _ _ , H= _ _ and K = (17)
~ o br] -1 0 M

The equations are symmetric, and the coefficients no longer diverge for I' or x vanish-

ing (the latter happens when the phase-velocity equals the light velocity).

The computer program '"TRANSVERSE' searches for zeros of the truncated determinant by
stepping up in frequency after dividing out known poles. These zeros are the resonant fre-
quencies, with which we can then obtain the expansion coefficients (except for an arbitrary
common factor). One can then calculate the stored energy for each resonance, and hence

the loss~factors and the geometrical factor R/Q

Vv w R
k=—4—1j"ﬁ1(6> (18)

where V is the accelerating voltage per cell seen by a synchronous particle withv=c at r=a,
0=0. The results of these calculations are illustrated in the figures which show the w=-f
diagram for two fixed geometries, and the resonant frequencies as well as R/Q as a function

of a/b for a number of cavity and period lengths for the two lowest dipole modes.
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Fig. 1 Brillouin diagrams of the two lowest modes fer m=1 and m=2 in a particular
geometry. ' ' '
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Normalized frequency wb/c (full line) and transverse R/Q (in Q)(dashed line) versus
the ratio of the tube cavity to tube diameter a/b for several values of cavity and

period length for the first two dipole modes (label 1 and 2) for the synchronous

case (vp=c).






