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Deciding whether a model provides a good description of data is often based on a goodness-of-fit

criterion summarized by a p-value. Although there is considerable confusion concerning the meaning of

p-values, leading to their misuse, they are nevertheless of practical importance in common data analysis

tasks. We motivate their application using a Bayesian argumentation. We then describe commonly and

less commonly known discrepancy variables and how they are used to define p-values. The distribution of

these are then extracted for examples modeled on typical data analysis tasks, and comments on their

usefulness for determining goodness-of-fit are given.
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I. INTRODUCTION

Progress in science is the result of an interplay between
model building and the testing of models with experimen-
tal data. In this paper, we discuss model evaluation and
focus primarily on situations where a statement is desired
on the validity of a model without explicit reference to
other models. We introduce different discrepancy varia-
bles1 for this purpose and define p-values based on these.
We then study the usefulness of the p-values for passing
judgments on models with a few simple examples reflect-
ing commonly encountered analysis tasks.

In the ideal case, it is possible to calculate the degree-of-
belief in a model based on the data. This option is only
available when a complete set of models and their prior
probabilities can be defined. However, the conditions nec-
essary for this ideal case are usually not met in practice. We
nevertheless often want to make some statement concern-
ing the validity of the model(s). We then are left with using
probabilities2 of data outcomes assuming the model to try
to make some judgments. These probabilities can be de-
termined deductively since the model is assumed, and
therefore frequencies of possible outcomes can be pro-
duced within the context of the model. These can then be
used to produce frequency distributions of discrepancy
variables, and p-values (one-sided probabilities for the
discrepancy variables) can be calculated using the distri-
butions and the observed values. The use of p-values has
been widely discussed in the literature [2] and many au-
thors have commented that p-values are frequently mis-
used in claiming support for models [3]. We give a
Bayesian argumentation for the use of p-values to make
judgments on model validity, and it is in this Bayesian
sense that we will use p-values.

We start with a review of model testing in a Bayesian
approach when an exhaustive set of models is available and
a coherent probability analysis is possible. We then move
to situations where this is not the case, and review some
possible choices of discrepancy variables for goodness-of-
fit (GoF) tests. Next, we define the p-values for the dis-
crepancy variables and evaluate their usefulness for several
example data sets. Note that we omit a discussion of
Bayes’ factors since these require the definition of at least
two models for evaluation.

II. FULL SET OF MODELS AVAILABLE

A. Formulation

Assume we have a complete set of models available for
describing the data, such that we are sure the data can be
described by one of the models available. The models can
be used to calculate ‘‘direct probabilities;’’ i.e., relative
frequencies of possible outcomes of the results were one to
reproduce the experiment many times under identical con-
ditions. The probability of a model,M, is denoted by PðMÞ,
with

0 � PðMÞ � 1; (1)

while the probability densities of the model parameters, ~�,
are typically continuous functions.3 In the Bayesian ap-

proach, the quantities PðMÞ and Pð ~�jMÞ are treated as
probabilities, although they are not frequency distributions
and are more accurately described as ’degrees-of-belief’
(DoB). This DoB is updated by comparing data with
the predictions of the models. PðM ¼ AÞ ¼ 1 represents

1A discrepancy variable [1] is an extension of classical test
statistics to allow possible dependence on unknown (nuisance)
parameters.

2We use probability to also include probability density.

3Note that there is in principle no mathematical distinction
between model and parameters. In practice, we distinguish them
because models are fixed constructs for which we evaluate the
degree-of-belief that the model is correct, whereas parameters
can take on a range of values and the analysis is used to extract a
degree-of-belief for a particular value.
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complete certainty that A is the model which describes the
data, and PðAÞ ¼ 0 represents completely certainty that A
is not the correct model.

The procedure for updating our DoB using experimental
data is

Piþ1ð ~�;Mj ~DÞ / Pð ~x ¼ ~Dj ~�;MÞPið ~�;MÞ; (2)

where the index on P represents a ‘‘state-of-knowledge.’’
The posterior probability density function, Piþ1, is usually
written simply as P, and the prior is written as P0. The
posterior describes the state-of-knowledge after the experi-

ment is analyzed. The quantity Pð ~x ¼ ~Dj ~�;MÞ represents a
probability of getting the data ~D given the model and
parameter values, and can usually be defined in a number
of ways (see, for example, Sec. IVC).

Normalizing (2), and using

Pð ~DÞ ¼ X
M

Z
Pð ~x ¼ ~Dj ~�;MÞP0ð ~�;MÞd ~�

yields

Pð ~�;Mj ~DÞ ¼ Pð ~Dj ~�;MÞP0ð ~�;MÞ
Pð ~DÞ : (3)

This is the classic equation due to Bayes and Laplace [4].
Models can be compared and the DoB in a model can be

obtained using

PðMj ~DÞ ¼
Z

Pð ~�;Mj ~DÞd ~�: (4)

This evaluation requires the specification of a full set of
models and a definition of the prior beliefs such thatX

M

P0ðMÞ ¼ 1: (5)

It is very sensitive to the definitions of the priors when the
data are not very selective.

B. Example with full set of models

An example where this approach was used is given in
[5], and is reviewed here. The analysis is to be performed
on an observed energy spectrum, for which we can form
a background-only hypothesis, or a backgroundþ signal
hypothesis. An example is the search for neutrinoless
double beta decay.

In the following, H denotes the hypothesis that the
observed spectrum is due to background only; the nega-
tion, interpreted here as the hypothesis that the signal
process contributes to the spectrum,4 is labeled �H. The
posterior probabilities forH and �H can be calculated using

PðHjspectrumÞ ¼ PðspectrumjHÞ � P0ðHÞ
PðspectrumÞ ; (6)

and

Pð �HjspectrumÞ ¼ Pðspectrumj �HÞ � P0ð �HÞ
PðspectrumÞ : (7)

The probability PðspectrumÞ is
PðspectrumÞ ¼ PðspectrumjHÞ � P0ðHÞ

þ Pðspectrumj �HÞ � P0ð �HÞ: (8)

The probabilities for a given spectrum can be calculated
based on assumptions on the signal strength and back-
ground shape as described in [5]. Evidence for a signal
or a discovery is then decided based on the resulting value
for PðHjspectrumÞ.
In this analysis, it was assumed that the observed spec-

trum must come from either the background model or a
combination of the background and double beta decay
signal. The probability of each case is evaluated and con-
clusions are drawn from these probabilities.

III. INCOMPLETE SET OF MODELS

In most cases, we analyze data without having an ex-
haustive set of models available, but nevertheless want to
reach conclusions on how well the models account for the
data. This information can be used, for example, to guide
the search for new models. In the example given above, it
is possible that there are unknown sources of background
for which predictions are not possible before the experi-
ment is performed. The quantities PðspectrumjHÞ and
Pðspectrumj �HÞ could be individually examined and, if
both are on the small side of the expected distribution,
doubts concerning the completeness of our set of models
could arise.

A. General approach to GoF tests

For a given model, we can define one or more discrep-
ancy variable(s) and calculate the expected frequency dis-
tribution of this discrepancy variable. If the discrepancy
variable is well chosen, then the distribution for a ‘‘good’’
model should look significantly different than for a ‘‘bad’’
model. Finding the discrepancy variable in the region
populated by incorrect models then gives us cause to think
our model is not adequate.

B. Definition of a p-value

A p-value is the probability that, in a future experiment,
the discrepancy variable will have a larger value (indicat-
ing greater deviation of the data from the model) than the
value observed, assuming that the model is correct and all
experimental effects are perfectly known. In other words,
not only is the model the correct one to describe the
physical situation, but correct distribution functions are

4Since the shape of the background spectrum is assumed to be
known the case of unknown background sources contributing to
the measured spectrum is ignored. However, the overall level of
background is allowed to vary.
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used to represent data fluctuations away from the ‘‘true
values.’’ We will focus on GoF tests for the underlying
model, but it should be clear that incorrect formulations of
the data fluctuations will bias the p-value distributions to
lower (if the data fluctuations are underestimated) or higher
(if the data fluctuations are overestimated) values.

In general, any discrepancy variable which can be
calculated for the observations can be used to define a

p-value. We use Rð ~xj ~�;MÞ and Rð ~Dj ~�;MÞ to denote dis-
crepancy variables evaluated with a possible set of obser-
vations ~x for given model and parameter values, and for the

observed data, ~x ¼ ~D, respectively. To simplify the nota-
tion, we will occasionally drop the arguments on R and use
RD to denote the value of the discrepancy variable found
from the data set at hand. R can be interpreted as a random
variable (e.g., possible �2 values for a given model),
whereas RD has a fixed value (e.g., the observed �2 derived
from the data set at hand).

Assuming that smaller values of R imply better agree-
ment between the data and model predictions, the defini-
tion of p (for continuous distributions of R) is written as

p ¼
Z
R>RD

PðRj ~�;MÞdR: (9)

The quantity p is the ‘‘tail-area’’ probability to have
found a result with Rð ~xÞ>RD, assuming that the modelM

and the parameters ~� are valid. If the modeling is correct
(including that of the data fluctuations), p will have a flat
probability distribution between ½0; 1�. For discrete distri-
butions of R, the integral is replaced by a sum, the p-value
distribution is no longer continuous, and the cumulative
distribution for p will be steplike.

If the existing data are used to modify the parameter
values, the extracted p-value will be biased to higher
values. The amount of bias will depend on many aspects,
including the number of data points, the number of pa-
rameters, and the priors. We can remove the bias for the
number of fitted parameters in �2 fits by evaluating the
probability of R ¼ �2 for N � n degrees-of-freedom,
Pð�2jN � nÞ, where N is the number of data points and
n is the number of parameters fitted [6], when

(i) the data fluctuations are Gaussian and independent
of the parameters,

(ii) the function to be compared to the data depends
linearly on the parameters, and

(iii) the parameters are chosen such that �2 is at its
global minimum.

In general, the bias introduced by the number of fitted
parameters becomes small if N � n.

p-values cannot be turned into probabilistic statements
about the model being correct without priors, and state-
ments of ‘‘support’’ for a model directly from the p-value
behave ‘‘incoherently’’ [3]. Furthermore, approximations
used for the distributions of the discrepancy variables,

biases introduced when model parameters are fitted and
difficulties in extracting reliable information from numeri-
cal algorithms used to evaluate the discrepancy variable
(see Sec. IVA2) further complicate their use. p-values
should therefore be handled with care. Nevertheless, we
discuss the use of p-values to make judgments about the
models at hand. The judgment will be based on a sequence
of considerations of the type:
(i) the p-value distribution for a good model is expected

to be (reasonably) flat between ½0; 1�;
(ii) the p-values for bad models usually have sharply

falling distributions starting at p ¼ 0;
(iii) small p-values are worrisome; if we know that

other models can be reasonably constructed which
would have higher p-values, then a small p-value
for the model under consideration indicates that we
may have picked a poor model;

(iv) if the p-value is not too small, then our model is
adequate to describe the existing data.

C. Bayesian argumentation

We contend that the use of p-values for the evaluation of
models as just described is essentially Bayesian in charac-
ter. Following the arguments given above, assume that the
p-value probability density for a good model, M0, is flat,

PðpjM0Þ ¼ 1;

and that for poor models, Miði ¼ 1 . . . kÞ can be repre-
sented by

PðpjMiÞ � cie
�cip;

where ci � 1 so that the distribution is strongly peaked at
0 and approximately normalized to 1. The DoB assigned to
model M0 after finding a p-value p is then

PðM0jpÞ ¼ PðpjM0ÞP0ðM0ÞP
k
i¼0 PðpjMiÞP0ðMiÞ

: (10)

If we take all models to have similar prior DoBs, then

PðM0jpÞ � PðpjM0ÞP
k
i¼0 PðpjMiÞ

:

In the limit p ! 0, we have

PðM0jpÞ � 1

1þP
k
i¼1 ci

� 1;

while for cip � 1 8i > 0

PðM0jpÞ � 1:

Although this formulation in principle allows for a
ranking of models, the vague nature of this procedure
indicates that any model which can be constructed to yield
a reasonable p-value should be retained. A further consid-
eration is that the correct distributions for the data fluctua-
tions are often not known (due to the vague nature of
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systematic uncertainties) and best guesses are used. This
will generally also lead to nonflat p-value distributions for
good models.

Scientific prejudices (Occam’s razor, elegance, or es-
thetics, etc.) will influence the decision and act as a guide
in selecting the ‘‘best’’ model in cases where several good
models are available.

D. Discrepancy variables considered in this paper

1. �2 test for data with Gaussian uncertainties

For uncorrelated data assumed to follow Gaussian
probability distributions relative to the model predictions,
the �2 value is a natural discrepancy variable for a GoF
test:

RG ¼ �2 ¼ XN
i

ðyi � fðxij ~�;MÞÞ2
�2

i

; (11)

where the N data points are given by fðxi; yiÞg, and the

prediction of the model for yi is fðxij ~�;MÞ. The modeling
of the data fluctuations uses fixed standard deviations �i.

If the parameters of the model are fitted to the data by

minimizing �2 and there are n parameters we replace ~� in

the formula above with ~��. The �2 probability distribution
is evaluated for N � n degrees-of-freedom. In the special
case where f is linear in the parameters, this procedure
again yields a flat p-value distribution between ½0; 1�.

2. Runs test

The standard �2 test does not take into account the
clustering of data below or above expectations. To detect
clusters the ordered set of N observations fðxi; yiÞg is
partitioned into subsets containing the success and failure
runs [defined as sequences of consecutive yi above or

below the expectation from the model, fðxij ~�;MÞ, respec-
tively]. Several discrepancy variables based on success
runs can be found in the literature [7] but these do not

take into account the size of the deviation, yi � fðxij ~�;MÞ.
Recently, a discrepancy variable for runs incorporating this
extra information was proposed for ordered data with
Gaussian fluctuations [8].

Let Aj denote the subset of the observations of the j-th

success run. The weight of the j-th success run is then
taken to be

�2
run;j ¼

Xj1þNj�1

i¼j1

ðyi � fðxij ~�;MÞÞ2
�2

i

;

where the sum over i covers the fðxi; yiÞg 2 Aj andNj is the

length of the run. The discrepancy variable is the largest
weight of any run

Rsr ¼ max
j

�2
run;j:

The explicit distribution of Rsr, used to define the
p-value, p ¼ PðRsr > RD

srjNÞ, is given in [8] for the case

when ð ~�;MÞ are fully specified (no fitting). A similar
discrepancy variable can be defined for failure measure-
ments, Rfr.

To illustrate the definition we present a simple example.
Suppose N ¼ 5 observations at x positions (1, 2, 3, 4, 5)

with standardized residuals ðyi � fðxij ~�;MÞÞ=�i given by
ð0:3;�0:1;�0:8; 0:4; 0:2Þ: Then there are two success runs
A1 ¼ fð1; 0:3Þg, A2 ¼ fð4; 0:4Þ; ð5; 0:2Þg and we find Rsr ¼
0:16þ 0:04 ¼ 0:2 due to the second run. Similarly, for the
single failure run, Rfr ¼ 0:65.

3. �2 tests for Poisson distributed data

In the case of binned, Poisson distributed data, the
quantity

RP ¼ �2
P ¼ XNb

i¼1

ðmi � �iÞ2
�i

(12)

can be used as a discrepancy variable where Nb is the
number of bins, themi are the numbers of measured events,

and �i ¼ �ið ~�;MÞ are the model expectations for event bin
i; for an expectation �i the expected variance is �i. This
Pearson �2 statistic [9] was originally proposed for multi-
nomial data but has found wide use in analyzing Poisson
distributed data. Rather than using the probability distri-
bution of this discrepancy variable directly, Pð�2jNbÞ is
often used as an approximation for PðRPÞ.5 The distribu-
tion of RP has been shown to asymptotically reach a �2

distribution for multinomially distributed data, giving
some justification for this procedure. Practically, this is
the case for data with a large number of entries mi in all
bins. When parameters are first estimated from a fit to the
data, the parameter values which minimize RP are used to
calculate the �i, and the p-value is evaluated using
Pð�2jNb � nÞ.
It is often seen that the expected weight, �i, is replaced

with the observed weight,mi, in the denominator (Neyman
�2 [10]). The discrepancy variable is then

RN ¼ �2
N ¼ XNb

i¼1

ðmi � �iÞ2
mi

: (13)

Again, rather than using the probability distribution of this
discrepancy variable directly, it is assumed that RN has a
distribution which approximates a �2 distribution with Nb

degrees-of-freedom and Pð�2jNbÞ is used as an approxi-
mation for PðRNÞ. In cases where mi ¼ 0, practitioners of
this approach set mi ¼ 1 to avoid divergence. Sometimes
bins with mi ¼ 0 are ignored, which can lead to very
misleading results since finding mi ¼ 0 is valuable

5The use of this approximation probably dates back to a time
when complicated numerical calculations were not possible.
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information. When parameters are first estimated from a fit
to the data, the parameter values which minimize RN are
used, and the p-value is evaluated using Pð�2jNb � nÞ.

Note that in both of these cases, we do not expect flat
p-value distributions since only approximations are used
for PðRP=NÞ. The deviations from flatness are expected to

be greatest when small event numbers are present in the
data sets.

4. Likelihood ratio test for Poisson distributed data

Another option for a Poisson model is based on the (log
of) the likelihood ratio [11] (sometimes referred to as the
Cash statistic [12])

RC ¼ 2 log
Pð ~xj�i ¼ miÞ

Pð ~xj�i ¼ �ið ~�ÞÞ

¼ 2
XNb

i¼1

�
�i �mi þmi log

mi

�i

�
: (14)

In bins wheremi ¼ 0, the last term is set to 0. Again, rather
than using the probability distribution of this discrepancy
variable directly, since RC has a distribution which approx-
imates a �2 distribution with Nb degrees-of-freedom for
large �i, Pð�2jNbÞ is used as an approximation for PðRCÞ.
The validity of this approximation is critically discussed in
[13]. When parameters are first estimated from a fit to the
data, the parameter values which maximize the likelihood
are used, and the p-value is evaluated using Pð�2jNb � nÞ.
Note that the distribution of RC asymptotically converges
faster to the �2 distribution than the distribution of RP

(see [14]).

5. Probability of the data test

Any probability of the data can be chosen as the dis-
crepancy variable:

RL ¼ Pð ~xj ~�;MÞ:
In this case, larger values of RL imply better agreement

with the data. The probability Pð ~xj ~�;MÞ can be used to
extract the probability for RL as

PðRLÞdRL ¼
Z
RL<Pð ~xj ~�;MÞ<RLþdRL

Pð ~xj ~�;MÞd~x:

An example of how this is done numerically for Poisson
distributed data and using

Pð ~mj ~�;MÞ ¼ YNb

i

e��i�mi
i

mi!

is given in the Appendix. Once we have PðRLj ~�;MÞwe can
then evaluate

p ¼
Z
RL<RD

L

PðRLÞdRL;

where RD
L is the value observed with the data set at hand.

In a model with Gaussian uncertainties where we use a
product of Gaussian densities,

Pð ~xj ~�;MÞ / YN
i

Pðxij�i; �iÞ;

where xi 	N ð�i; �iÞ, then taking RL ¼ Pð ~xj ~�;MÞ is
equivalent to the usual �2 test.
If the model parameters are first fitted using the data, we

propose the following correction for the number of fitted
parameters:

(i) calculate the p-value taking RD
L ¼ Pð ~x ¼ ~Dj ~��;MÞ,

but assuming a simple hypothesis (no fitted
parameters);

(ii) calculate the �2 value which corresponds to this
p-value using the inverse �2 distribution corre-
sponding to N degrees-of-freedom;

(iii) recalculate the p-value using the �2 value and
N � n degrees-of-freedom.

This procedure is valid for the case where we have
Gaussian uncertainties, but is ad hoc for other cases. We
test its usefulness below.
Care must be taken in using RL as a discrepancy vari-

able, particularly when it is written as the product of
individual probability densities. The overall shape of the
distribution is potentially not tested, and large p-values can
be produced with incorrect model choices. An example of
this is given below in Sec. IVC.

6. Partial/prior/posterior-predictive p-value

Rather than using the parameters at the mode of the
posterior, it is also possible to define a p-value by averag-
ing over the parameter values according to a probability
distribution [15].
For the posterior-predictive case [16], assuming we are

using a probability of the data as discrepancy variable,

p ¼
Z �Z

RL<RD
L

PðRLj ~�;MÞdRL

�
Pð ~�j ~D;MÞd ~�: (15)

While the partial posterior-predictive p-value [15] has
the desirable property of a flat distribution on ½0; 1�, at least
in the large sample limit as N ! 1, it is not known in
general how to compute it for realistic problems.
Furthermore, the numerical effort required to evaluate the
double integral in (15) quickly becomes prohibitive.
Therefore, these p-value definitions are not considered
here despite their appeal from a Bayesian perspective.

7. Johnson test

Johnson [17] proposed a modification of the �2 defini-
tion to take into account the posterior probability density
for the parameters of a model. Rather than evaluating the
probability of the data at fixed values of the parameters, the
parameters are given values according to their probability
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density after evaluating the data. Johnson’s statistic, RJ, is
expected to behave asymptotically as a �2 distribution with
Nb � 1 degrees-of-freedom, where Nb is a number of bins
to be defined, regardless of the number of parameters.
Imagine the data is given by a vector of values ~x and these
values are expected to deviate from the model prediction

according to individual probabilities Pðxjj ~�;MÞ. The

Johnson prescription is to define Nb bins, where bin i
contains a probability Pi. Intervals �xi;j are defined for

each data point j via

Pið ~�Þ ¼
Z
�xi;j

Pðxjj ~�;MÞdxj:

The intervals �xi;j cover the full range of possible values

for each xj and are ordered so that they include increasing

values of x. The definition of the intervals depends on the

values of the parameters ~� and vary for each data point j.
The parameter values are to be sampled from the full

posterior probability Pð ~�j ~D;MÞ. For each ~�, a discrepancy
variable RJ is calculated according to

RJ ¼
XNb

i¼1

ðmi � NPið ~�ÞÞ2
NPið ~�Þ

; (16)

where mi is the actual number of data points falling within
the intervals �xi;j and N is the total number of data points

in the data set. In [17] it is shown that asymptotically RJ is
distributed as a �2 variable with Nb � 1 degrees-of-
freedom, regardless of the number of fitted parameters n.
Hence the p-value is calculated using Pð�2jNb � 1Þ.

For data where the ~x follow continuous probability
densities the bins are usually chosen to have equal proba-
bilities. The number of bins to be chosen is given by a rule
of thumb due to Mann/Wald [18] with a modification for
small number of bins such that there are at least three:

Nb ¼ be0:4�logðNÞ þ 2c:
This means by default we have NbðN ¼ 25Þ ¼ 5,
NbðN ¼ 100Þ ¼ 8, NbðN ¼ 1000Þ ¼ 17.

In case the values of ~x follow a discrete distribution it is
usually not possible to have equal probabilities for all Pi.
In this case, a randomization procedure is used to allocate
data points to bins.

IV. TEST OF p-VALUE DEFINITIONS

In the following, we test the usefulness of the different
p-values given above by looking at their distributions for
specific examples motivated from common situations faced
in experimental physics. We first consider a data set which
consists of a background known to be smoothly rising and,
in addition to the background, a possible signal. This could
correspond, for example, to an enhancement in a mass
spectrum from the presence of a new resonance. The width
of the resonance is not known, so that awide range ofwidths

must be allowed for. Also, the shape of the background is
not well known.We do not have an exhaustive set of models
to compare and want to look at GoF’s for models individu-
ally to make decisions. In this example, wewill first assume
that distributions of the data relative to expectations are
modeled with Gaussian distributions. We then consider the
same problem with small event numbers, so that Poisson
statistics are appropriate, and again test our different
p-value definitions. These examples were also discussed
in [19]. Finally, we consider the case of testing an exponen-
tial decay law on a sample of measured decay times.

A. Data with Gaussian uncertainties

1. Definition of the data

A typical data set is shown in Fig. 1. It is generated from
the function

fðxiÞ ¼ Aþ Bxi þ Cx2i þ
D

�
ffiffiffiffiffiffiffi
2�

p e�ððxi��Þ2=2�2Þ; (17)

with parameter values (A ¼ 0, B ¼ 0:5,C¼0:02,D ¼ 15,
� ¼ 0:5, � ¼ 5:0). The yi are generated from fðxiÞ as

yi ¼ fðxiÞ þ zi � 4;
where zi is sampled according to N ð0; 1Þ.
The x domain is ½0; 20� and two cases were considered:

N ¼ 25 data points evenly sampled in the range, and
N ¼ 100 data points evenly sampled in the range. The
experimental resolution (Gaussian with width 4) is
assumed known and correct. Ensembles consisting of
10 000 data sets with N ¼ 25 or N ¼ 100 data points
each were generated and four different models were fitted
to the data. Table I summarizes the parameters available in
each model and the range over which they are allowed to
vary. In all models, flat priors were assumed for all pa-
rameters for ease of comparison between results.

x
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FIG. 1 (color online). Example data set for the case N ¼ 25
with Gaussian fluctuations. The fits of the four models are
superposed on the data.
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The models were fitted one at a time. Two different
fitting approaches were used:

(1) The fitting was performed using the gradient-based
fitter MIGRAD from the MINUIT package [20] ac-
cessed from within BAT [19]. The starting values
for the parameters were chosen at the center of the
allowed ranges given in Table I.

(2) The Markov Chain Monte Carlo (MCMC) imple-
mented in BAT was run with its default settings first,
and then MIGRAD was used to find the mode of the
posterior using the parameters at the mode found by
the MCMC as starting point.

Since it is known that the distributions of the data are
Gaussian and flat priors were used for the parameters, the
maximum of the posterior probability corresponds to the
minimum of �2. The p-values were therefore extracted for
each model fit using the �2 probability distribution as
discussed in Sec. III D 1.

2. Comparison of p-values

The p-value distributions for the four models are given
in Fig. 2 for the case N ¼ 25 and using the small fit range
from Table I. Two different histograms are shown for each
model, corresponding to the two fitting techniques
described above. The distributions for models I and II are
peaked at small values of p for MIGRAD only and for
MCMCþ MIGRAD, and the models would be disfavored
in most experiments. For models III and IV, there is a
significant difference in the p-value distribution found
from fitting using only MIGRAD, or MCMCþ MIGRAD,
with the p-value distribution in the latter case being

much flatter. An investigation into the source of this be-
havior showed that the p-value distribution from MIGRAD

is very sensitive to the range allowed for the parameters.
This can be seen in Fig. 3 where the same fits were
performed but now using the large ranges for the parame-
ters (see table). In the case where larger parameter ranges
are allowed, MIGRAD will converge to parameter values
which are not at the global mode more often, and the
choice of the starting point and the (initial) step size for
the fit are crucial. Even in this rather simple fitting prob-
lem, it is seen that the use of the MCMC can make a
significant difference in the fitting results.
The results from the MCMCþ MIGRAD fits also de-

pended on the fit range, although to a lesser extent.
Figure 4 shows the p-value distributions from �2 fits to
N ¼ 25 data points for model IV for the two parameter
ranges. There are small but nevertheless significant differ-
ences in the distribution, indicating that the parameter
range is also an important factor in the p-value distribu-
tion. Note that we are not expecting flat p-value distribu-
tions since the correction for the number of fitted
parameters is only valid for models linearly dependent on
the parameters. This is not the case here since we have a
Gaussian term in the model [see (17)].
Focusing on the results from theMCMCþ MIGRAD fits,

models III and IV give flat p-value distributions and would
have a large DoB in a majority of experiments. In general,
these distributions satisfy our expectations and these
p-values can be used to update our DoBs in the models
as described in Sec. III C.
The p-value distributions for the four models and using

the Johnson discrepancy variable are given in Fig. 5. Note

TABLE I. Summary of the models fitted to the data, along with the ranges allowed for the parameters.

Small range Large range

Model Par Min Max Min Max

I. AI þ BIxi þ CIx
2
i AI 0 5 �50 200

BI 0 1.2 �50 200

CI �0:1 0.1 �50 200

II. AII þ DII

�II

ffiffiffiffiffi
2�

p e�ððxi��IIÞ2=2�2
IIÞ AII 0 10 �50 200

BII 0 200 �50 200

�II 2 18 0 50

�II 0.2 4 0 20

III. AIII þ BIIIxi þ DIII

�III

ffiffiffiffiffi
2�

p e�ððxi��IIIÞ2=2�2
III
Þ AIII 0 10 �50 200

BIII 0 2 �50 200

DIII 0 200 0 200

�III 2 18 0 50

�III 0.2 4 0 20

IV. AIV þ BIVxi þ CIVx
2
i þ DIV

�IV

ffiffiffiffiffi
2�

p e�ððxi��IVÞ2=2�2
IVÞ AIV 0 10 �50 200

BIV 0 2 �50 200

CIV 0 0.5 �50 200

DIV 0 200 0 200

�IV 2 18 0 50

�IV 0.2 4 0 20
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that in the results shown for this descrepancy variable, we

have used ~�� rather than sampling ~� according to the
posterior. We verified that this did not significantly change
the p-value distribution of this discrepancy variable. The
distributions show spiky behavior, which becomes much
smoother as the number of data points increases. However,
there is still very little discriminating power between the
models using this discrepancy variable. This was generally
the case for other examples considered, and we therefore
do not show any further results from the Johnson discrep-
ancy variable in this paper.

For all further results presented in this paper, we have
performed MIGRAD only fits but with starting parameter
values located near the global mode (whose location can be
estimated since the underlying model is known). Only the
smaller fit ranges were used. In this way, we approximate
the results which would be achieved with optimal fitting.
This allows us to generate and analyze larger data sets, and
thus have more sensitivity to the shape of the p-value
distributions.

The p-value distributions for the four models and using
the ‘‘runs’’ discrepancy variable are given in Fig. 6. In this
figure, there are two p-value distributions in each plot

since we consider both cases where we have runs of data
points below the expectations, and runs of data points
above the expectations. For the correct model, the joint
distribution of pðRsrÞ and pðRfrÞ should be symmetric. The

p-values should generally not be too small. The distribu-
tion of pðRsrÞ vs pðRfrÞ is shown in Fig. 7 for the example

under consideration. The biasing of the p-values resulting
from the fitting of parameters is apparent. In using Rfr and

Rsr, rather large p-values should therefore be expected for
valid models.
The results for the ensembles with N ¼ 100 data points

are shown in Figs. 8 and 9. Models I and II now usually
result in very small p-values using both the standard �2

and runs discrepancy variables.
For the �2 fits, the p-value distribution for model IV is

again rather flat, as expected, but it would generally be
difficult to conclude that model III is not adequate.
Although this p-value distribution is falling, as opposed
to the case where we only had N ¼ 25 data points, there is
still a large probability to get a sizable p-value.
The runs statistic has a sharply peaked distribution near

p ¼ 0 (for success runs) for models I and II, and should
therefore have better discriminating power than the
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FIG. 2 (color online). p-value distributions based on RG. The parameters of the models discussed in Table I are fitted to N ¼ 25 data
points and allowing parameter values in the small range. The p-values correspond to N � n degrees-of-freedom, where n is the
number of fitted parameters.
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standard �2 test. In other words, it should more often lead
to the desired result that the incorrect models are discarded.
For model III, the success runs variable behaves similarly
to the �2 test, but the failure runs variable is rather flat. For

the correct underlying model, model IV, we see that both
success and failure runs variables have similar p-value
distributions.

B. Example with Poisson uncertainties

1. Definition of the data

We again use the function fðxÞ [see (17)], but now
generate data sets with fluctuations from a Poisson distri-
bution. The function is used to give the expected number of
events in a bin covering an x range, and the observed
number of events follows a Poisson distribution with this
mean. For Nb ¼ 25 bins, e.g., the third bin is centered at
x3 ¼ 2:0 and extends over [1.6, 2.4]. The expected number

of events in this bin is defined as �3 ¼
R
2:4
1:6

Nb

20 fðxÞdx.

2. Comparison of p-value distributions

For the Poisson case we consider the four discrepancy
variables described in Secs. III D 3–III D 5 to compare the
p-value distributions for the four models (I-IV). We also
show the p-value distribution for the ‘‘true’’ model for
comparison, where the p-value is calculated by evaluating

R ¼ Rð ~xj ~�true;MÞ.
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FIG. 3 (color online). p-value distributions based on RG. The parameters of the models discussed in Table I are fitted to N ¼ 25 data
points and allowing parameter values in the large range. The p-values correspond to N � n degrees-of-freedom, where n is the number
of fitted parameters.
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FIG. 4 (color online). p-value distributions based on RG for
model IV. The parameters of the model are fitted to N ¼ 25 data
points and allowing parameter values in the two ranges range.
The p-values correspond to N � n degrees-of-freedom, where n
is the number of fitted parameters.
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Different fits were performed for each of the different
discrepancy variable definitions. For the �2 discrepancy
variables, �2 minimization was performed using either the
expected or observed number of events as weight. For the
likelihood ratio test, a maximum likelihood fit was per-
formed. The likelihood was defined as

Pð ~mj ~�;MÞ ¼ YNb

i¼1

e��i�mi

i

mi!
; (18)

where mi is the observed number of events in a bin and

�i ¼ �ið ~�Þ. Since we use flat priors for the parameters, the
same results were used for the case where the discrepancy
variable is the probability of the data. A typical likelihood
fit result is shown in Fig. 10 together with the data, while
the p-value distributions are given in Figs. 11 and 12.

For all definitions of p-values considered here, models I
and II generally lead to low DoBs, while models III and IV
generally have high DoBs. However, there are differences
in the behavior of the p-values which we now discuss in
more detail.

The lower left panel in Figs. 11 and 12 show the p-value
distribution taking the true model and the true parameters,
and can be used as a gauge of the biases introduced by the

p-value definition. There is a bias for all discrepancy
variables shown in Fig. 11 because approximations are
used for the probability distribution of the discrepancy
variable (using Pð�2jNÞ rather than PðRPjNbÞ or
PðRNjNbÞ. This bias is usually small, except in the case
where the Neyman �2 discrepancy variable is used. In this
case, the probability of a very small p-value is much too
high even with the true parameters. The p-value distribu-
tion using the probability of the data, on the other hand, is
flat when the true parameters are used as seen in Fig. 12, so
that this choice would be optimal in cases where no pa-
rameters are fit.

3. Pearson �2 and Neyman �2

Comparison of the behavior of the Pearson �2 to the
Neyman �2, Fig. 11, clearly shows that using the expected
number of events as weight is superior. The spike at 0 in the
p-value distribution when using the observed number of
events indicates that this quantity does not behave as ex-
pected for a �2 distribution when dealing with small num-
bers of events, and will lead to undesirable conclusions
more often than anticipated. The behavior of the Pearson
�2 using the expected number of events for the different
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FIG. 5 (color online). p-value distributions based on RJ. The parameters of the models discussed in Table I are fitted to N ¼ 25 data
points and allowing parameter values in the small range. The p-values correspond to Nb � 1 degrees-of-freedom, where Nb ¼ 5 is the
number of bins.
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models is quite satisfactory, and this quantity makes a good
discrepancy variable even in this example with small num-
bers of events in the bins. Both of these p-value distribu-
tions become flat in the case of large number of events in
all bins.

4. Likelihood ratio

While models I and II are strongly peaked at small
p-values, for this definition of a p-value models III and
IV also have a falling p-value distribution. This is some-
what worrisome. In assigning a DoB to models based on
this p-value, this bias towards smaller p-values should be
considered, otherwise good models will be assigned too
low a DoB. The behavior of the p-value extracted from
Pearson’s �2 is preferable to the likelihood ratio, as it will
lead to value judgments more in line with expectations.

5. Probability of the Data

Using this definition, the p-value distribution is flat for
the true model, since this is the only case where the correct
probability distribution of the discrepancy variable is
employed. For the fitted models, two p-value distributions
are shown—one uncorrected for the number of fitted
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FIG. 6 (color online). p-value distributions based on Rsr and Rfr. The parameters of the models discussed in Table I are fitted to
N ¼ 25 data points and allowing parameter values in the small range.
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FIG. 7 (color online). Joint distribution of the p-values for
success and failure runs. The results are for N ¼ 25 data points.
Marker sizes in each bin are chosen relative to the bin with the
highest probability of the individual model. Bins with probabil-
ity less than 3:5
 10�3 have been excluded from the plot for the
purpose of clarity.
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parameters, and one corrected for the fitted parameters as
described in Sec. III D 5. Using the uncorrected p-values,
both models III and IV show p-value distributions peaking
at p ¼ 1, so that both models would typically be kept. As
expected, the correction for the number of fitted parameters
pushes p to lower values, and produces a nearly flat dis-
tribution for model IV. This ad hoc correction works well
for this example. In general, this p-value definition has
similar properties to the Pearson �2 statistic, but with the
advantage of a flat p-value distribution when the true
model was used and no parameters were fit.

C. Exponential decay

When dealing with event samples with continuous
probability distributions for the measurement variables, it
is common practice when determining the parameters of a
model to use a product of event probabilities (unbinned
likelihood):

Pð ~xj ~�;MÞ ¼ YN
i¼1

Pðxij ~�;MÞ:

If the model chosen is correct, then this definition for
the probability of the data (or likelihood) can be used

successfully to determine appropriate ranges for the pa-

rameters of the model. However, Pð ~xj ~�;MÞ defined in this
way has no sensitivity to the overall shape of the distribu-
tion and can lead to unexpected results if this quantity is
used in a GoF test of the model in question. We use a
common example, exponential decay, to illustrate this
point (see also discussions in [6,21]).
Our model is that the data follows an exponential decay

law. We measure a set of event times, ~t, and analyze these
data to extract the lifetime parameter �. We define two

different probabilities of the data ~D ¼ ftigði ¼ 1 . . .NÞ
(I) Unbinned likelihood

Pð ~Dj�Þ ¼ YN
i¼1

1

�
e�ti=�:

(II) Binned likelihood

Pð ~Dj�Þ ¼ YNb

i¼1

�mi

i

mi!
e��i ;

�ið�Þ ¼
Z tiþ�t

ti

dt
N

�
e�t=�:
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FIG. 8 (color online). p-value distributions based on RG. The parameters of the models discussed in Table I are fitted to N ¼ 100
data points and allowing parameter values in the small range. The p-values correspond to N � n degrees-of-freedom, where n is the
number of fitted parameters.
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In the first case, the probability density is a product of the
densities for the individual events, while in the second case
the events are counted in time intervals and Poisson prob-
abilities are calculated in each bin. The expected number of

events is normalized to the total number of observed
events. We consider time intervals with a width �t ¼ 1
unit and time measurements ranging from t ¼ 0 to t ¼ 20.
The overall probability is the product of the bin probabil-
ities. For each of these two cases, we consider the p-value

determined from the distribution of R ¼ Pð ~Dj�Þ.
In order to make the point about the importance of the

choice for the discrepancy variable for GoF tests, we
generated data which do not follow an exponential distri-
bution. The data is generated according to a linearly rising
function, and a typical data set is shown in Fig. 13.

1. Product of exponentials

If the data are fitted using a flat prior probability for the
lifetime parameter, then we can solve for the mode of the
posterior probability of � analytically, and get the well-
known result

�� ¼ 1

N

X
ti:

Defining � � P
ti, so �� ¼ �=N, we can also solve

analytically for the p-value:
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FIG. 10 (color online). Example fits to one data set for the four
models defined in Table I for Nb ¼ 25 and the small parameter
range. The lines show the fit functions evaluated using the best-
fit parameter values.
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FIG. 9 (color online). p-value distributions based on Rsr and Rfr. The parameters of the models discussed in Table I are fitted to
N ¼ 100 data points and allowing parameter values in the small range.
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p ¼
Z
P

t0i>�
dt01

Z
dt02 . . . ð��Þ�Ne�

P
t0i=�

�
;

and the result is

p ¼ 1� PðN;NÞ;
with the regularized incomplete gamma function

Pðs; xÞ ¼ 	ðs; xÞ
�ðsÞ ¼

R
x
0 t

s�1e�tdtR1
0 ts�1e�tdt

:

Surprisingly, as N increases p is approximately constant
with a value p � 0:5. Regardless of the actual data, p is
never small and depends only on N. The best-fit exponen-
tial is compared to the data in Fig. 13, and yields a
large p-value although the data is not exponentially dis-
tributed. This p-value definition is clearly useless, and the
unbinned likelihood is seen to not be appropriate as a GoF
statistic.
The definition of �2 in the Gaussian data uncertainties

case also results from a product of probability densities, so
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FIG. 11 (color online). p-value distributions based on RP, RN , and RC. The parameters of the models discussed in Table I are fitted to
Nb ¼ 25 bins and allowing parameter values in the small range. The p-values correspond to N � n degrees-of-freedom, where n is the
number of fitted parameters.
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the question as to what is different in this case needs
clarification. The point is that in the case of fitting a curve
to a data set with Gaussian uncertainties, the data are in the
form of pairs, fðxi; yiÞg, where the measured value of y is

assigned to a particular value of x, and the discrepancy
between y and fðxÞ is what is tested. In other words, the
value of the function is tested at different x so the shape is
important. In the case considered here, the data are in the
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FIG. 12 (color online). p-value distributions based on RL. The parameters of the models discussed in Table I are fitted to Nb ¼ 25
bins and allowing parameter values in the small range. The p-values correspond to Nb and Nb � n degrees-of-freedom, where n is the
number of fitted parameters.
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form fxig, and there is no measurement of the value of the
function fðxÞ at a particular x. The orderings of the xi is
irrelevant, and there is no sensitivity to the shape of the
function.

Product of Poisson probabilities

In this case, the p-value for the model is determined
from the product of Poisson probabilities using event
counting in bins as described above. Since the expected
number of events now includes an integration of the proba-
bility density and cover a wide range of expectations, it is
sensitive to the distribution of the events and gives a
valuable p-value for GoF. The p-value using RP for the
data shown in Fig. 13 is p ¼ 0 within the precision of the

calculation. The exponential model assumption is now
easily ruled out.
In comparison to the unbinned likelihood case, the data

are now in the form ~m, where the mi now refer to the
number of events in a well-defined bin i which defines an x
range. In other words, we have now a measurement of the
height of the function fðxÞ at particular values of x, and are
therefore sensitive to the shape of the function.
As should be clear from this example, the choice of

discrepancy variable can be very important in GoF deci-
sions: maximum likelihood estimation with unbinned data
will always give an optimal parameter estimate in terms of
bias and variance, but it will give no information about the
correctness of the model.

V. DISCUSSION

We have investigated a number of possible discrepancy
variables and p-value definitions for goodness-of-fit tests,
with the understanding that these p-values are to be used to
make judgments on the acceptability of models. The sense
in which the p-values are used follows Bayesian logic as
described in Sec. III C. For this purpose, the p-value dis-
tributions should be reasonably uniform for models which
are considered good and they should peak at small values
for poor models. Using these requirements to guide us, we
classify our results in Table II for the example data sets and
models described in the text. Based on our experience with
these examples, we also summarize our suggestions for the
use of the different discrepancy variables and p-value
definitions considered here.
Most common p-values use approximations for the

distribution of the discrepancy variable. This leads to non-
flat distributions of the p-value even when no parameters
are fitted, and these deviations can be severe in some cases.
We discussed the use of the probability of the data itself as
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FIG. 13 (color online). Typical data set used for the fitting of
the exponential model. The individual event times are shown, as
well as the binned contents as defined in the text. The best-fit
exponential from the unbinned likelihood is also shown on the
plot, normalized to the total number of fitted events.

TABLE II. Summary of the discrepancy variables considered in this paper and their performance for different data types. Here, n is
the number of fit parameters, N is the number of events and Nb denotes the number of bins. The comment concerns the shape of the
p-value distribution for good models. The last column gives our recommendation for use as a discrepancy variable for model
judgments based on the given p-value definition.

Discrepancy variable p-value definition Data type Comment

RG Pð�2 >RD
GjN � nÞ ~D ¼ fðxi; yiÞg Flat if n ¼ 0 or model linear þ

Rsr=fr PðRsr=fr > RD
sr=frjNÞ ~D ¼ fðxi; yiÞg Generally not flat for n > 0 þ

RP Pð�2 >RD
P jNb � nÞ ~D ¼ ~m Reasonably flat þ

RN Pð�2 >RD
N jNb � nÞ ~D ¼ ~m Peaked at 0 for small numbers of events �

RC Pð�2 >RD
C jNb � nÞ ~D ¼ ~m Distribution for RC is less flat than that for RP þ

RL PðRL < RD
L j ~��;MÞ ~D ¼ fðxi; yiÞg Same as RG þ

RL PðRL < RD
L j ~��;MÞ ~D ¼ ~m Almost flat with correction þ

RL PðRL < RD
L j ~��;MÞ ~D ¼ fxig No sensitivity to shape �

RJ Pð�2 >RD
J jNb � 1Þ ~D ¼ fðxi; yiÞg Spiky distribution �

RJ Pð�2 >RD
J jNb � 1Þ ~D ¼ ~m Spiky distribution �
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a discrepancy variable, and showed that it is flat in the case
of no fitted parameters and Poisson distributed data. This
was due to the use of the correct probability distribution for
the discrepancy variable. The algorithm described in the
Appendix can be used to generate the correct p-value
distribution for any discrepancy variable for Poisson dis-
tributed data.

For composite models, where parameters of the model
are fit to the data before a p-value is calculated, we find
that p-value distributions can depend strongly on the tech-
nical approach used to fit the data. Using gradient-based
approaches to find minima or maxima requires consider-
able attention from the user and generally fine-tuning of fit
ranges and starting values. The fine-tuning will certainly
affect the p-value distributions, making their use more
difficult. Setting range limits effectively means defining a
prior, and impacts p-value distributions. First fitting the
data with a Markov Chain Monte Carlo before using
MIGRAD gave considerably better results, in the sense that

the p-value distributions extracted in this way followed
expectations. We therefore recommend using a MCMC to
map out the parameter space as a start to the fitting proce-
dure in situations where giving good starting values for a
gradient-based fit is difficult.

APPENDIX A: FAST p-VALUE EVALUATION
IN MCMC FOR POISSON DISTRIBUTED DATA

The peak probability for a Poisson distribution

Pðmj�Þ ¼ e���m

m!

occurs for m ¼ b�c. If the probability distribution of a data
set is modeled as a product of Poisson terms, then the
highest probability is given for fmig ¼ fb�icg. We use this
to define the starting point for a Markov Chain, and move
the bin contents up or down (chosen randomly) at each
iteration. For each attempted change in the bin content, we
apply the usual Metropolis test [22]. The probability

Pð ~mj ~�Þ is easily updated at each change. For example, if
the result in bin i increases from mi to m0

i, then the
probability changes by

P ! P
m0

i!

mi!
�
m0

i�mi

i :

A large number of experiments can be quickly simulated
and the p-value extracted.
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