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Recently, André Martin has proved a rigorous upper bound on the inelastic cross section�inel at high

energy, which is one-fourth of the known Froissart-Martin-Lukaszuk upper bound on �tot. Here, we obtain

an upper bound on �inel in terms of �tot and show that the Martin bound on �inel is improved significantly

with this added information.
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I. INTRODUCTION

The total cross section �totðsÞ for two particles to go to
anything at c.m. energy

ffiffiffi
s

p
must obey the Froissart-Martin

bound,

�totðsÞ �s!1 C½lnðs=s0Þ�2; (1)

proved at first from the Mandelstam representation by
Froissart [1] and later from the basic principles of axiom-
atic field theory by Martin [2]. Of the two unknown con-
stants, the constant C was fixed by [3] to obtain,

�totðsÞ �s!1 4�=t0½lnðs=s0Þ�2; (2)

where, t ¼ t0 is the lowest singularity in the t-channel. For
many physically interesting cases, such as ��, KK, K �K,
�K, �N, �� scattering, t0 ¼ 4m2

� � �, � being an arbi-
trary small positive constant, and m� the pion-mass [4]. In
some cases, we can take � ¼ 0, e.g. for pion-pion scatter-
ing if the D-wave scattering length is finite [5]. It will be
convenient to denote the right-hand side of the bound on
�totðsÞ as

�maxðsÞ ¼ 4�=t0½lnðs=s0Þ�2: (3)

In Eq. (3), s0 is unknown. However, if one assumes
that the total and elastic cross sections are increasing
beyond a certain energy, or if one works with cross sections
averaged over a certain energy interval, one can, using
fixed t dispersion relations, fix the scale [6]. A reasonable
guess is that s0 lies between the square of the pion mass and
the square of the nucleon mass. This means an uncertainty
of �10% at the present energy of the LHC. The Froissart-
Martin bound has been seminal both to the development of
the field of high energy theorems in axiomatic field theory
(see e.g. the review [7]) and to that of phenomenological

models leading to accurate predictions of total and elastic
cross sections before their experimental measurements [8].
Remarkably, one of us (A.M.) has recently obtained a
bound on the total inelastic cross section at high energy [9],

�inelðsÞ �s!1 �=t0½lnðs=s0Þ�2; (4)

which is one-fourth of the bound �maxðsÞ on the total cross
section, thus improving the simple bound �inel � �tot.
The present paper is inspired by Martin’s bound on the

inelastic cross section. In fact, Wu [10], by extending
Martin’s variational calculation to incorporate a given total
cross section, and independently S.M. Roy and Virendra
Singh [11], by exploiting their previous upper bound on the
differential cross section in terms of elastic cross section,
[12,13] realized that one could solve a more general prob-
lem: find a bound on the inelastic cross section as a
function of the value of the total cross section. It is obvious
that if the total cross section vanishes the inelastic cross
section also vanishes. but it is also extremely plausible that
if one maximizes the total cross section, the important
partial wave amplitudes will be imaginary and maximal;
so that, from the unitarity condition, there is no room left
for the inelastic cross section which will receive only
negligible contributions from the tail of the partial wave
distribution.
The net result exhibiting both these features is the bound

we present in this paper,

�inelðsÞ �s!1 �totðsÞð1��totðsÞÞ; (5)

where,

�totðsÞ � �totðsÞ=�maxðsÞ; (6)

and

�inelðsÞ � �inelðsÞ=�maxðsÞ: (7)

Maximizing with respect to �tot, we get the factor 1=4
announced at the beginning of this paper, i.e.

�inelðsÞ �s!1 �maxðsÞ=4: (8)
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In Section II, we summarize our notations and recall the
basic results from axiomatic field theory. We then present
two possible derivations of the bound on the inelastic cross
section in terms of total cross section, the direct variational
approach in Sec. III, and the approach using the 1970
bound on the differential cross section in terms of the
elastic cross section [12,13] in Sec. IV. Section V contains
concluding remarks including directions for future work on
high energy phenomenology.

II. BASIC RESULTS FROM AXIOMATIC
FIELD THEORY

Let Fðs; tÞ be the elastic scattering amplitude for
ab ! ab at c.m. energy

ffiffiffi
s

p
and momentum transfer

squared t and be normalized such that the differential cross
section is given by

d�

d�
ðs; tÞ ¼

��������Fðs; tÞffiffiffi
s

p
��������2

(9)

with t being given in terms of the c.m. momentum k and the
scattering angle � by the relation,

t ¼ �2k2ð1� cos�Þ: (10)

Then, for fixed s larger than the physical s-channel thresh-
old, Fðs; cos�Þ � Fðs; tÞ is analytic in the complex
cos� -plane inside the Lehmann-Martin ellipse [2,14],
with foci �1 and þ1 and semi-major axis cos�0 ¼
1þ t0=ð2k2Þ, where t0 is independent of s. In fact, as
mentioned already, t0 ¼ 4m2

� � � for many interesting
cases. Within the ellipse, Fðs; tÞ has the partial wave
expansion,

Fðs; tÞ ¼
ffiffiffi
s

p
k

X1
l¼0

ð2lþ 1ÞalðsÞPlð1þ t=ð2k2ÞÞ; (11)

which converges absolutely and uniformly in t for jtj< t0;
hence Fðs; tÞ is analytic in t for jtj< t0. Unitarity implies
that,

Im alðsÞ � jalðsÞj2 (12)

in the physical region. Further, [15] for fixed t in the region
jtj< t0, Fðs; tÞ satisfies dispersion relations in s with two
subtractions. This implies, in particular, that the s-channel
absorptive part for 0 � t < t0 has the convergent partial
wave expansion,

Aðs; tÞ � ImFðs; tÞ

¼
ffiffiffi
s

p
k

X1
l¼0

ð2lþ 1ÞImalðsÞPlð1þ t=ð2k2ÞÞ; (13)

and obeysZ 1

C0
dsAðs; tÞ=s3 <1; 0 � t < t0: (14)

Hence, if we assume that Aðs; tÞ is continuous in s, there
exist sequences of s ! 1 such that

Aðs; tÞ< Const
s2

lnðs=s0Þ ; 0 � t < t0: (15)

For simplicity, in this paper, we deduce asymptotic bounds
on �inelðsÞ only for such sequences. Bounds on energy
averages will be considered later to avoid this restriction.

III. VARIATIONAL BOUND ON INELASTIC CROSS
SECTION IN TERMS OF TOTAL CROSS SECTION

Since �inel ¼ �tot � �el, this problem is equivalent to
finding a lower bound on �el. Further,

�elðsÞ ¼ 4�

k2
X1
l¼0

ð2lþ 1ÞjalðsÞj2

� 4�

k2
X1
l¼0

ð2lþ 1ÞðImalðsÞÞ2 � �el;imðsÞ: (16)

So, it suffices to find a variational lower bound on �el;im.

We vary the Im alðsÞ subject to the unitarity constraints

Im alðsÞ � 0; (17)

to a given value of,

�totðsÞ ¼ 4�

k2
X1
l¼0

ð2lþ 1ÞImalðsÞ; (18)

and to the constraint

Aðs; t0Þ �
ffiffiffi
s

p
k

X1
l¼0

ð2lþ 1ÞImalðsÞPlð1þ t0=ð2k2ÞÞ

< Const
s2

lnðs=s0Þ : (19)

For simplicity, since we work at a fixed-s, we suppress the
s-dependence of ImalðsÞ, �el;imðsÞ ,and �totðsÞ. Denoting,

z0 ¼ 1þ t0=ð2k2Þ; (20)

the lower bound on �el;im is obtained by choosing,

Im al ¼ �ð1� Plðz0Þ=PLþrðz0ÞÞ; for 0 � l � L;

(21)

and,

Im al ¼ 0; for l > L; (22)

with the constants 0 � r < 1, �> 0, and the positive
integer L being fixed from the given value of �tot and the
given upper bound on Aðs; t0Þ. We omit the straight forward
proof which is by direct subtraction of a �el;im with arbi-

trary partial waves obeying the given constraints from the
variational result. After carrying out the summations over
l, the constraint equations become,

�totk
2=ð4��Þ

¼ ðLþ 1Þ2 � ðP0
Lþ1ðz0Þ þ P0

Lðz0ÞÞ=PLþrðz0Þ; (23)
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and

Aðs; t0Þ k

�
ffiffiffi
s

p ¼P0
Lþ1ðz0ÞþP0

Lðz0Þ

� ðLþ 1Þ2P2
Lðz0Þ� ðz20� 1ÞðP0

Lðz0ÞÞ2
PLþrðz0Þ ; (24)

and the bound on �el becomes,

k2=ð4��2Þ�el� k2=ð4��2Þ�el;im

�ðLþ1Þ2�2ðP0
Lþ1ðz0ÞþP0

Lðz0ÞÞ=PLþrðz0Þ

þðLþ1Þ2P2
Lðz0Þ�ðz20�1ÞðP0

Lðz0ÞÞ2
ðPLþrðz0ÞÞ2

:

(25)

At high energies, using s=�tot ! 1, the two constraint
equations yield easily that L ¼ Oð ffiffiffi

s
p

lnðs=s0ÞÞ; we may
therefore set r ¼ 0 and use the following approximations
for the Legendre polynomials,

PLðz0Þ ¼ I0ð�Þð1þOðL=sÞÞ;
� � ð2Lþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � 1Þ=2 ;

q
P0
Lðz0Þ

¼ ð1=2ÞL
ffiffiffiffiffiffiffiffiffi
s=t0

q
I1ð�Þð1þOðL=sÞÞ;

I�ð�Þ ¼ exp�ffiffiffiffiffiffiffiffiffiffi
2��

p ð1� ð4�2 � 1Þ=ð8�Þ þ . . .Þ;

� ! 1; for s ! 1; L=
ffiffiffi
s

p ! 1; L=s ! 0;

(26)

where the I�ð�Þ denote the modified Bessel functions. We
then have,

�totk
2=ð4��Þ � L2 � I1ð�Þ

I0ð�ÞL
ffiffiffiffiffiffiffiffiffi
s=t0

q
(27)

� L2ð1þOð ffiffiffi
s

p
=LÞÞ; (28)

Aðs; t0Þ k

�
ffiffiffi
s

p � I1ð�ÞL
ffiffiffiffiffiffiffiffiffi
s=t0

q
þ L2 I1ð�Þ2 � I0ð�Þ2

I0ð�Þ (29)

� I0ð�Þ L
ffiffiffi
s

p
2

ffiffiffiffi
t0

p ð1þOð ffiffiffi
s

p
=LÞÞ: (30)

The asymptotic bounds on elastic and inelastic cross sec-
tions become, with these approximations,

k2=ð4��2Þ�el

� L2 � 2L
ffiffiffiffiffiffiffiffiffi
s=t0

q I1ð�Þ
I0ð�Þ þ L2

�
1�

�
I1ð�Þ
I0ð�Þ

�
2
�
; (31)

and

k2=ð4��Þ�inel � ð1� 2�Þ
�
L2 � L

ffiffiffiffiffiffiffiffiffi
s=t0

q I1ð�Þ
I0ð�Þ

�

þ �L2

�
I1ð�Þ
I0ð�Þ

�
2
: (32)

We now use the assumed upper bound on Aðs; t0Þ to evalu-
ate L, � for high energies. We have,

Const s=ð�tot lnðs=s0ÞÞ ¼ I0ð�Þ
ffiffiffi
s

p
2L

ffiffiffiffi
t0

p ð1þOð ffiffiffi
s

p
=LÞÞ;

(33)

which yields,

Lffiffiffi
s

p ¼ ð1=ð2 ffiffiffiffi
t0

p ÞÞ ln
�

s

s20�tot

�
ð1þOðlnðs=s0ÞÞ�1Þ (34)

� ¼ �totðsÞ
�̂totðsÞ ð1þOðlnðs=s0ÞÞ�1Þ (35)

where,

�̂ totðsÞ � 4�=t0

�
ln

�
s

s20�tot

��
2
: (36)

Hence, we have the lower bound on elastic cross sections,

�elðsÞ � ð�totðsÞÞ2
�̂totðsÞ ð1þOðlnðs=s0ÞÞ�1Þ: (37)

Note that �̂totðsÞ can be replaced by �maxðsÞ for s ! 1,
except in the unrealistic case �tot ! 0, for s ! 1 which
leads to a small inelastic cross section �inelðsÞ ! 0. Hence,
using Eq. (37), the upper bound on the inelastic cross
section valid in all cases is,

�inelðsÞ �s!1 �totðsÞð1� �totðsÞÞ; (38)

which leads to the announced bound on �inelðsÞ=�maxðsÞ
given by Eq. (5).

IV. UPPER BOUND ON INELASTIC CROSS
SECTION FROM AN UPPER BOUND
ON DIFFERENTIAL CROSS SECTION

IN TERMS OF ELASTIC CROSS SECTION

We show here that the inelastic cross section bound
can also be derived as a corollary of an upper bound on
the differential cross section in terms of the elastic cross
section established by two of us [12] many years ago,

d�

dt
ðs; t ¼ 0Þ �s!1

�elðsÞ
4t0

�
ln

�
s

s20�el

��
2
: (39)

This bound can also be written as [13],

�tot

�
1þ

�
ReFðs; t ¼ 0Þ
ImFðs; t ¼ 0Þ

�
2
�
�s!1

4��el

t0�tot

�
ln

�
s

s20�el

��
2
:

(40)

If the real part ReFðs; t ¼ 0Þ is unknown, we have the
weaker bound,
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�tot �s!1

ffiffiffiffiffiffiffi
4�

t0

s � ffiffiffiffiffiffiffi
�el

p �
ln

�
s

s20�tot

�
� ln

�
�el

�tot

���

�s!1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�el�̂tot

p þ ð2=eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��tot

t0

s
; (41)

where, in the last line, we have used the elementary in-
equality,

ffiffiffi
x

p
lnx � �2=e, for 0< x < 1. This equation

yields a lower bound on �elðsÞ for any asymptotic behavior
of �totðsÞ. As noted in the last section, for deducing
an upper bound on �inelðsÞ, it suffices to assume that �tot

does not vanish for s ! 1. In particular, if �totðsÞ>
16�=ðe2t0Þ, we have

�tot

� ffiffiffiffiffiffiffiffi
�tot

p � ð2=eÞ
ffiffiffiffiffiffiffi
4�

t0

s �
2 �s!1 �el�̂tot �

s!1�el�max

(42)

and hence the upper bound on the inelastic cross section,

�inel �s!1 �tot

�
1� �tot

�
1� ð2=eÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
4�

t0�tot

s �
2
�
; (43)

which yields the desired bound (5) on the inelastic cross
section if �totðsÞ ! 1, for s ! 1.

V. CONCLUSION

We have derived an asymptotic upper bound on the
inelastic cross section in terms of the total cross section
which improves Martin’s recent bound [9] when �totðsÞ �
Cðlnðs=s0ÞÞ2. Varying �totðsÞ over its allowed range, we
recover Martin’s result �inel <�max=4 for some sequences
of s ! 1 mentioned before. For applications to high
energy phenomenology, it is desirable to remove the un-
known scale factor s0 in these bounds, as well as the
restriction to special sequences of s ! 1. One way for-
ward is to derive bounds on energy averages of �inelðsÞ
given energy averages of �totðsÞ and Aðs; t0Þ. One of us
now has definitive results on the analogous problem of
finding bounds on energy averages of the inelastic cross
section, as well as of the total cross section [16].
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