
Modular Software Performance Monitoring

Daniele Francesco Kruse – CERN – PH / SFT

Karol Kruzelecki – CERN – PH / LBC

Summary

1. Motivation and Goal

2. Introduction
• Performance Monitoring
• Performance Counters

3. Challenge
• Monolithic vs. Modular Monitoring
• Modularity in CMSSW, Gaudi and Geant4

4. Solution
• Analysis Overview
• What do we monitor?

5. Simple example of successful usage

6. Conclusions
2

Motivation and Goal

• HEP software is huge and complex and is developed
by a multitude of programmers often unaware of
performance issues

• The software produced is suboptimal in terms of
efficiency and speed

• Unfortunately CPU speed is not likely to be increased
in the near future as we were used to in the past

• The goal is then to find an effective method to
improve SW through monitoring and optimization

• Better performance (more throughput) means savings both
in hardware and power needed 3

Performance Monitoring

DEF : The action of collecting information related
to how an application or system performs

HOW : Obtaining micro-architectural level information
from hardware performance counters

WHY : To identify bottlenecks, and possibly remove them
in order to improve application performance

4

Performance Counters

• All recent processor architectures include a
processor–specific PMU

• The Performance Monitoring Unit contains several
performance counters

• Performance counters are able to count
micro-architectural events from many hardware
sources (cpu pipeline, caches, bus, etc…)

• We focus on the two main Intel® cpu families
currently on the market: Core and Nehalem

• Nehalem processors feature 4 programmable counters
while Core processors have 2 programmable counters 5

Monolithic vs. Modular Monitoring

Monolithic
“Black Box”1 RUN 1 set of results

VS.

6

Res.
A1

Res.
A2

Res.
A3

Res.
AN

Res.
A

AVG.

Res.
C1

Res.
C2

Res.
C3

Res.
CN

Res.
C

AVG.

Res.
B1

Res.
B2

Res.
B3

Res.
BN

Res.
B

AVG.

Module C

Module B

Module A

Event 1
Event 2
Event 3

Event N

1 RUN

set of results for A

set of results for B

set of results for C

For each CPU performance
event that we monitor...

Monolithic vs. Modular Monitoring

• When we face large and complex software monolithic
analysis becomes less useful

• “Traditional” monitoring tools (using performance
counters) are monolithic. Examples: PTU and pfmon

• Even sampling over symbols (functions) is not enough
for code division. Solution: modular monitoring!

• Code instrumentation (minimal in HEP software) and
ad-hoc interface to the monitoring tool needed

• Advantage: narrowing down the possible location of
performance problems leads to easier optimization

7

Modularity in HEP SW

• CMSSW code is organized into modules that are
sequencially executed during each event processed, and
it provides hooks to execute user defined actions at the
beginning and at the end of modules

• Hooks is what we use to start and stop the monitoring
process and to collect results for each module

• More on CMSSW performance in Matti Kortelainen’s talk

• Gaudi provides a similar mechanism to instrument its
code (modules are called algorithms)

• Geant4 is handled differently: binning into triples
<particle type, energ y range, physical volume> 8

Analysis flow-graph

Analysis
Configuration

Start

Performance
Data Taking

Program
Run

Performance
Data Output

Performance
Data Analysis

Browsable
HTML results

End

9

CMSSW
or

Gaudi
or

Geant4

What and why do we monitor?

Total Cycles (Application total execution time)

Issuing μops Not Issuing μops

Stalled
(no work)

Not retiring μops
(useless work)

Retiring μops
(useful work)

Ifetch
misses

Load
Stalls FP Exceptions BranchesDivs & Sqrts

10

Example of usage – LHCb (Gaudi)

• Tested on Brunel v37r7
GaudiRun <options>

GaudiProfiler <options>

• GaudiProfiler – python script handling sequential run of
application for all the necessary counters and postprocessing

No code instrumentation needed

11

Choice of an alghorithm
• Objective: to reduce the number of Total cycles

(execution time) of one algorithm
• As a simple example we choose to focus on reducing

the cycles in which instructions were retired
• How: This is done by reducing the number of

Instructions Retired – a very stable and reliable counter

12

Symbols – Looking deeper in

• After choosing Algorithm, in the detailed symbol view
 .cpp file and function

• Inlined functions are not shown, they are counted
in the “parent” functions

13

Detailed profiling of one function

• We modify the body of function
adding start() and stop() commands
for profiler

• Results is shown after the run of
application is over

14

Improving small parts of code

• Optimization
procedure loop:

1. modify code
2. compile
3. profile

• Compare average
count of
Instructions Retired

-6.5 %

15

Re-run after changes

• Even small changes are
visible in Instructions Retired

• Total Cycles decreased
– it is faster

• ~6.5% improvement in one
function gave ~2%
improvement in the algorithm

16

Conclusions

• We implemented a modular ad-hoc performance
counters-based monitoring tool for three major
HEP frameworks: CMSSW, Gaudi and Geant4

• This tool is supposed to help developers optimizing
existing code to improve its performance without the
need for code instrumentation

• The tool has been successfully used to optimize code
in Gaudi and has shown the potential to be used for
other applications as well

• GaudiProfiling package will be available in the next
release of Gaudi

17

Thank you, Questions ?

backup slides

19

BACKUP: The 4-way Performance Monitoring

1. Overall
Analysis

2. Symbol Level
Analysis

3. Module Level
Analysis

4. Modular Symbol
Level Analysis

Overall (pfmon) Modular

Sampling

Counting

20

BACKUP: Core and Nehalem PMUs - Overview

Intel Core Microarchitecture PMU

• 3 fixed counters
(INSTRUCTIONS_RETIRED, UNHALTED_CORE_CYCLES, UNHALTED_REFERENCE_CYCLES)

• 2 programmable counters

Intel Nehalem Microarchitecture PMU

• 3 fixed core-counters
(INSTRUCTIONS_RETIRED, UNHALTED_CORE_CYCLES, UNHALTED_REFERENCE_CYCLES)

• 4 programmable core-counters
• 1 fixed uncore-counter (UNCORE_CLOCK_CYCLES)

• 8 programmable uncore-counters

21

BACKUP: Perfmon2

• A generic API to access the PMU (libpfm)
• Developed by Stéphane Eranian
• Portable across all new processor micro-architectures
• Supports system-wide and per-thread monitoring
• Supports counting and sampling

CPU Hardware

Linux Kernel
Generic Perfmon

Architectural Perfmon

PMU

User spacePfmon Other libpfm-based Apps

libpfm

BACKUP: Nehalem : Overview of the architecture

Core 0 Core 1 Core 2 Core 3

Level 3 Cache
shared, writeback (lazy write) and inclusive (contains L1 & L2 of each core)

Integrated Memory
Controller

Link to local memory (DDR3)

Quick Path Interconnect
Link to I/O hub

(& to other processors, if present)

L1D Cache

L1I Cache

L2 Cache

TLBs

writeback

writeback

unified, writeback, not-inclusive

DTLB0 & ITLB (1st Level), STLB (unified 2nd Level)

23

BACKUP: μops flow in Nehalem pipeline

Instruction Fetch
& Branch Prediction Unit

Decoder

Retirement
& Writeback

Re-Order
Buffer

Resource
Allocator

Execution
Units

Reservation
Station

UOPS_ISSUED

UOPS_RETIRED

UOPS_EXECUTED

• We are mainly interested in UOPS_EXECUTED (dispatched)
and UOPS_RETIRED (the useful ones).

• Mispredicted UOPS_ISSUED may be eliminated before being
executed.

24

BACKUP: Cycle Accounting Analysis

Total Cycles (Application total execution time)

Issuing μops Not Issuing μops

Stalled
(no work)

Not retiring μops
(useless work)

Retiring μops
(useful work)

Store-FwdL2 miss L2 hit LCPL1 TLB miss

BACKUP: New analysis methodology for Nehalem
BASIC STATS: Total Cycles, Instructions Retired, CPI;

IMPROVEMENT OPPORTUNITY: iMargin, iFactor;

BASIC STALL STATS: Stalled Cycles, % of Total Cycles, Total Counted Stalled Cycles;

INSTRUCTION USEFUL INFO: Instruction Starvation, # of Instructions per Call;

FLOATING POINT EXCEPTIONS: % of Total Cycles spent handling FP exceptions;

LOAD OPS STALLS: L2 Hit, L3 Unshared Hit, L2 Other Core Hit, L2 Other Core Hit
Modified, L3 Miss -> Local DRAM Hit, L3 Miss -> Remote DRAM Hit, L3 Miss -> Remote
Cache Hit;

DTLB MISSES: L1 DTLB Miss Impact, L1 DTLB Miss % of Load Stalls;

DIVISION & SQUAREROOT STALLS: Cycles spent during DIV & SQRT Ops;

L2 IFETCH MISSES: Total L2 IFETCH misses, IFETCHes served by Local DRAM, IFETCHes
served by L3 (Modified), IFETCHes served by L3 (Clean Snoop), IFETCHes served by
Remote L2, IFETCHes served by Remote DRAM, IFETCHes served by L3 (No Snoop);

BRANCHES, CALLS & RETS: Total Branch Instructions Executed, % of Mispredicted
Branches, Direct Near Calls, Indirect Near Calls, Indirect Near Non-Calls, All Near
Calls, All Non Calls, All Returns, Conditionals;

ITLB MISSES: L1 ITLB Miss Impact, ITLB Miss Rate;

INSTRUCTION STATS: Branches, Loads, Stores, Other, Packed UOPS; 26

BACKUP: PfmCodeAnalyser, fast code monitoring
• Unreasonable (and useless) to run a complete analysis for

every change in code

• Often interested in only small part of code and in one
single event

• Solution: a fast, precise and light “singleton” class called
PfmCodeAnalyser

• How to use it:
#include<PfmCodeAnalyser.h>

PfmCodeAnalyser::Instance(“INSTRUCTIONS_RETIRED”).start();

//code to monitor

PfmCodeAnalyser::Instance().stop(); 27

BACKUP: PfmCodeAnalyser, fast code monitoring

PfmCodeAnalyser::Instance("INSTRUCTIONS_RETIRED", 0, 0,
"UNHALTED_CORE_CYCLES", 0, 0,
"ARITH:CYCLES_DIV_BUSY", 0, 0,
"UOPS_RETIRED:ANY", 0, 0).start();

Event: INSTRUCTIONS_RETIRED
Total count:105000018525

Number of counts:10
Average count:10500001852.5

Event: UNHALTED_CORE_CYCLES
Total count:56009070544

Number of counts:10
Average count:5600907054.4

Event: ARITH:CYCLES_DIV_BUSY
Total count:28000202972

Number of counts:10
Average count:2800020297.2

Event: UOPS_RETIRED:ANY
Total count:138003585913

Number of counts:10
Average count:13800358591.3 28

BACKUP: What can we do with counters?

Question:

Is all this useful?

Answer:
We don’t know,
but we shall see

• Lack of papers and literature about the subject

• An empirical study is underway to find out:
1. A relationship between counter results and coding practices
2. A practical procedure to use counter results to optimize a program

• A procedure has already been developed and will be tested

• The trial study will be conducted on Gaudi together with
Karol Kruzelecki (PH-LBC group) 29

BACKUP: The 3-step optimization procedure
• We start from counter results and choose one algorithm to

work on using the Improvement Margin and the iFactor.

• We then apply the following procedure:

MyAlg : Total Cycles: 1000 , Total Instructions: 1000 → CPI: 1.00

MyAlg : Total Cycles: 300 , Total Instructions: 250 → CPI: 1.20

MyAlg : Total Cycles: 250 , Total Instructions: 250 → CPI: 1.00

MyAlg : Total Cycles: 230 , Total Instructions: 250 → CPI: 0.92

1. Change to a more efficient algorithm and vectorize it

2. Remove stall sources (L1 & L2 misses, store-fwd, etc..)

3. Remove misprediction sources (branches, calls, etc..)

30

BACKUP: Overall Analysis

• Uses Pfmon and it is based on the Cycle Accounting
Analysis

• Good for showing overall performance and for
checking improvements

• Good for identifying general software problems

• Good for comparing different versions of the code

• NOT enough for
• finding inefficient parts of the software
• finding bad programming practices

BACKUP: Overall Analysis

BACKUP: Symbol Level Analysis

• Uses sampling capabilities of pfmon

• Good for identifying general bad programming
practices

• Can identify problems of functions which are
frequently used

• Shows functions that use most of the execution
cycles and functions that spend a lot of time doing
nothing (stalling)

• NOT good for finding specific problems in the code

Stalled Cycles

BACKUP: Symbol Level Analysis

Total Cycles

counts %self symbol
54894 3.79% _int_malloc
50972 3.52% __GI___libc_malloc
41321 2.85% __cfree
36294 2.51% ROOT::Math::SMatrix::operator=
31100 2.15% __ieee754_exp
25636 1.77% ROOT::Math::SMatrix::operator=
24833 1.72% do_lookup_x
23206 1.60% ROOT::Math::SMatrix::operator=
22970 1.59% __ieee754_log
21741 1.50% __atan2
20467 1.41% ROOT::Math::SMatrix::operator=
19922 1.38% _int_free
18354 1.27% G__defined_typename
16026 1.11% strcmp
15979 1.10% TList::FindLink
14601 1.01% G__defined_tagname

counts %self symbol
24955 5.09% _int_malloc
19797 4.04% do_lookup_x
19084 3.89% __GI___libc_malloc
14282 2.91% __ieee754_exp
13564 2.77% strcmp
13065 2.66% __cfree
9927 2.02% __atan2
8998 1.83% __ieee754_log
7666 1.56% TList::FindLink
7575 1.54% _int_free
5392 1.10% std::basic_string::find
4911 1.00% computeFullJacobian
4410 0.90% malloc_consolidate
4285 0.87% operator new
4104 0.84% ROOT::Math::SMatrix::operator=
3949 0.81% 33.84% makeAtomStep

BACKUP: Module Level Analysis
• Uses the Perfmon2 interface (libpfm) directly

• Analyses each CMSSW module separately

• Allows the identification of “troubled” modules
through a sortable HTML table

• Gives instruction statistics and produces detailed
graphs to make analysis easier

• It requires 21 identical cmsRun’s (no multiple sets of
events are used → more accurate results), but it can be
parallelized so (using 7 cores): time = ~3 runs

• Code outside modules is not monitored (framework)

DEMO

http://dkruse.web.cern.ch/dkruse/2010_03_11_CMSSW_3_6_0_pre2_slc5_amd64_gcc434_hlt_HLT_no_output/�

BACKUP: Module Level Analysis - Results Snapshot

BACKUP: Single Module Graphs

37

BACKUP: Modular Symbol Level Analysis
• Uses the Perfmon2 interface (libpfm) directly and analyses

each CMSSW module separately

• Sampling periods are specific to each event in order to
have reasonable measurements

• The list of modules is a HTML table sortable by number
of samples of UNHALTED_CORE_CYCLES

• For each module the complete set of usual events (Cycle
Accounting Analysis & others) is sampled

• Results of each module are presented in separate HTML
pages in tables sorted by decreasing sample count

38

BACKUP: The List of Modules

39

BACKUP: Table Example of a Module

40

Version with
graphs

BACKUP: Structure and libraries

Analysis
Configuration

Start

Performance
Data Taking

Program
Run

Performance
Data Output

Performance
Data Analysis

Browsable
HTML results

End

libpng

zlib
libSDL

libSDL_ttflibpfm

zlib

41

BACKUP: The Sampling Process

Algorithm
executes its code

Sampling starts

Buffer full?

Buffer flushes
content to memory

Algorithm stops
executing its code

Sampling stops

Algorithm
finished?

End

Start

Yes

No

Yes

No

For each algorithm...

Start

Sampler
initialization

Sampler
termination

Samples dumped
to output files

End
Buffer flushes

content to memory

Sampling stops

42

BACKUP: Module Level Analysis Results Snapshot

BACKUP: Improvement Margin and iFactor

iMargin (CPI reduction effects)

data: cur_CPI, exp_CPI, local_cyc_bef, glob_cyc_before.
•loc_imp_ratio = cur_CPI/exp_CPI
•loc_cyc_after = local_cyc_bef/ loc_imp_ratio
•glob_cyc_after = glob_cyc_before – loc_cyc_before + loc_cyc_after
•improvement_margin = 100 – (glob_cyc_after/glob_cyc_before) * 100

iFactor (Improvability Factor)

data: simd_perc, missp_ratio, stalled_cycles.
•simd_factor = 1 – normalized(simd_perc)
•missp_factor = normalized(missp_ratio)
•stall_factor = normalized(stalled_cycles)
•iFactor = stall_factor * (simd_factor + missp_factor + stall_factor)

44

BACKUP: “ Vertical ” vs. “ Horizontal ” cut

• For Gaudi and CMSSW we used a “ horizontal ” cut

• Geant4 doesn’t provide hooks for any horizontal cut

• Modular analysis through User Actions

• “ Time division ” instead of “ Code division ”

• Useful or not? maybe... taking particles, energies and
volumes into consideration

• Moreover modular symbol analysis still provides “ Code
division ”

BACKUP: Choice of granularity

• Different levels of granularity were considered (run, event,
track and step) as each offered User Actions

• Step-level granularity was the final winner

• At each step the particle, its energy (at the beginning) and
the physical volume that it is running through are used

• Interesting volumes (at any level in the geometry tree) are
given through an input file and used in the results view

• Other volumes are labeled as “OTHER”

• Results are browsable by any of the above variables

BACKUP: “ Total ” vs. “ Average ” count

• CMSSW and Gaudi used average counts of performance
events

• All modules were “used” the same number of times during
a single execution

• No longer true in Geant4 steps since “modules” here are a
combination of physics variables

• Therefore we chose to display total counts of all
performance counters

• Exception: for the number of UNHALTED_CORE_CYCLES we
provide both average and total counts

BACKUP: (1/3) How to use it?

• Unpack the following archive in your application directory:
http://dkruse.web.cern.ch/dkruse/G4_pfm.tar.gz

• Add the following lines to your GNUmakefile (to link libpfm):
CPPFLAGS += -I/usr/include/perfmon
EXTRALIBS += -lpfm -ldl -

L/afs/cern.ch/sw/lcg/external/libunwind/0.99/x86_64-slc5-gcc43-
opt/lib -lunwind

EXTRALIBSSOURCEDIRS +=
/afs/cern.ch/sw/lcg/external/libunwind/0.99/x86_64-slc5-gcc43-opt

• Edit the “RUN_CONFIG” attribute in the pfm_config_arch.xml file
inserting the normal run command. Example:

RUN_CONFIG=“~/geant4/bin/Linux-g++/full_cms bench10.g4”

• Edit the pvs.txt file inserting the interesting physical volumes:
CALO MUON
VCAL BEAM
TRAK 48

http://dkruse.web.cern.ch/dkruse/G4_pfm.tar.gz�

BACKUP: (2/3) How to use it?

• Add the following lines to your main() before
runManager->Initialize():

#include "PfmSteppingAction.hh”
...
int base_arg_no = 2; //number of standard arguments including executable name
runManager->SetUserAction(new PfmSteppingAction(argv[base_arg_no],

argv[base_arg_no+1], atoi(argv[base_arg_no+2]),
(unsigned int)atoi(argv[base_arg_no+3]), (unsigned int)atoi(argv[base_arg_no+4]),

argv[base_arg_no+5], atoi(argv[base_arg_no+6]),
(unsigned int)atoi(argv[base_arg_no+7]), (unsigned int)atoi(argv[base_arg_no+8]),

argv[base_arg_no+9], atoi(argv[base_arg_no+10]),
(unsigned int)atoi(argv[base_arg_no+11]),(unsigned int)atoi(argv[base_arg_no+12]),

argv[base_arg_no+13], atoi(argv[base_arg_no+14]),
(unsigned int)atoi(argv[base_arg_no+15]),(unsigned int)atoi(argv[base_arg_no+16]),
(unsigned int)atoi(argv[base_arg_no+17]), argv[base_arg_no+18],
(bool)atoi(argv[base_arg_no+19])));

• Compile and link:
gmake
g++ -Wall -o create create_config_files_from_xml.cpp -lxerces-c
g++ -Wall -lz -o analyse pfm_gen_analysis.cpp

49

BACKUP: (3/3) How to use it?

• Create results directory:
mkdir results

• Create python run script “G4perfmon_runs.py”:
./create pfm_config_nehalem.xml

• Run the application with the perfmon monitor:
python G4perfmon_runs.py &

• Analyse the results (optionally generating csv file):
./analyse results/ --caa [--csv]

• Check your results using your favourite browser:
firefox results/HTML/index.html

50

BACKUP: XML configuration file

<?xml version="1.0" ?>
<PFM_CONFIG>
<PROPERTIES NAME="GeneralAnalysis" RUN_CONFIG="hlt_HLT.py" OUTPUT_DIR="results/" />
<CONFIG START_AT_EVENT="4" PARALLEL="0" />
<EVENTS>
<EVENT_SET>
<EVENT NAME="BR_INST_RETIRED:ALL_BRANCHES" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />
<EVENT NAME="ILD_STALL:ANY" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />
<EVENT NAME="MEM_INST_RETIRED:LOADS" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />
<EVENT NAME="MEM_INST_RETIRED:STORES" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />

</EVENT_SET>
<EVENT_SET>
<EVENT NAME="INST_RETIRED:ANY_P" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />
<EVENT NAME="ITLB_MISS_RETIRED" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />
<EVENT NAME="MEM_LOAD_RETIRED:DTLB_MISS" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />
<EVENT NAME="MEM_LOAD_RETIRED:L2_HIT" CMASK="0" INVMASK="0" SMPL_PERIOD="0" />

</EVENT_SET>
<EVENT_SET>
<EVENT NAME="ARITH:CYCLES_DIV_BUSY" CMASK="0" INVMASK="0" SMPL_PERIOD="1000" />

</EVENT_SET>
</EVENTS>

</PFM_CONFIG>

51

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

