

A novel approach to detector calibration parameter determination and detector monitoring

Eduardo Rodrigues On behalf of the LHCb VELO Group

CHEP 2010, Taipei, Taiwan, 21 October 2010

OUTLINE:

- LHCb, vertex detector
- Data processing
- Detector parameters optimisation

The LHCb experiment @ the LHC

Tracking system requirements

- Precise reconstruction and separation of primary and secondary vertices
 - identification of beauty & charm meson decays

Tracking

- **Excellent pattern recognition**
- Precise determination of track parameters
 - \Rightarrow excellent momentum resolution $\delta p/p = 0.35\%$ to 0.55%
 - ⇒ excellent impact parameter (IP) resolutions

Beauty & charm mesons Excellent

- mass resolution 15-40 MeV
- propertime resolution ~50 fs

21 April 2010: first reconstructed beauty particle

LHCb Event Display

Hi resolution for VELO sensors

Hit resolution versus strip pitch for 2 bins of the projected angle

Evaluated for R sensors using residuals of long tracks

Hit resolution depend to 1st order on:

- projected angle
- strip pitch

Precise tracking and vertexing (2/2)

The LHCb VErtex LOcator

Highest precision vertex detector at the LHC

VELO – VErtex LOcator

VELO – modules

Purpose :

- **U** Hold the sensors fixed wrt module support
- **Connect electrical readout to the sensors and routing of signals to DAQ system**
- **Provide means of cooling to the sensors**

Sensor-sensor positioning accuracy < 5μm

VELO – sensors

- □ Highly segmented; n⁺ on n
- **2048** strips per sensor
- **Design operation at -7 degrees**
- **Read out at 1 MHz**

Φ sensors	R sensors
 Measure the azimuthal angle 	 Measure the radial distance
 Stereo angle 20° for the inner strips (10° for the outer strips) ⇒ 2 regions 	 Divided in quadrants Pitch: 40 -102 μm
■Pitch: 36 -97 μm	

VELO data processing

Achieving the best performance

Data processing chain

- □ VELO sends analogue → signal digitised on TELL1s
- TELL1s: 4 FPGAs with firmware, which work on integers (Why FPGAs? Faster / better / more reliable / cheaper)
- □ Mimicking the integer operations on FPGAs: need for a software emulation

VELO data output (i.e. raw event) types

\Box ZS data rate: 50 bytes x 1 MHz = 50 Mb / s

TELL1 acquisition boards processing

= not used for now

Set of algorithms on TELL1 board

- Data synchronisation, buffering
- TELL1s first digitise the analogue signals from the sensors
- Suppress noise and perform clusterisation
- Algorithms implemented in FPGAs on TELL1s

Algorithms require ~ 10⁶ configuration parameters:

- □ Most important are
 - Pedestals
 - Clusterisation thresholds

Detector parameter determination & optimisation

Standard approach :

□ FPGA algorithm parameters typically determined via standalone calculations or measurements

But how to achieve the best performance given

- complex chain of algorithms
- very large number of configuration/calibration parameters

Novel approach :

- Integrate determination of detector parameters in the data processing framework itself
 - Full integration in the LHCb software framework
- Use non-zero-suppressed data output by the TELL1s and emulate the data processing to tune its calibration parameters

TELL1 processing and emulation

The Vetra software project

Main characteristics of Vetra :

- **LHCb** software project for the VELO detector (also silicon tracker)
- □ Mimics the whole processing sequence
- □ Implements in C an emulation of the TELL1 algorithms run on the FPGAs (VHDL)
- Can treat as input the same data format(s) as output by the TELL1s
 NZS, ZS, etc.
- □ Highly flexible and configurable, with Python

⇒ Unique framework for the determination and tuning of the various types of TELL1 parameters

Other benefits :

- □ Allows for self-consistency checks ↔ bit-perfectness of the TELL1 emulation
- Provides monitoring of all processing steps
- Provides at the same time a software framework and tools for TELL1 studies (e.g. new algorithms) and the online and offline monitoring of the VELO
- □ Also used in test-beam and laboratory tests

TELL1 parameter determination – procedure

CHEP 2010, Taipei, Taiwan, 21 Oct. 2010

Pedestal correction and its monitoring

Detector monitoring and data quality

Monitoring – the VeloMoniGUI

VELO Monitoring GUI			
Data Beference Settings Help ROOT file: VELODQM_79559_2010-09-22_12.02.09_NZS.root REFERENCE FILES I/V file not yet specified I/V reference not yet specified	HA LOC NTOR		
DQS Trends Noise Cross Talk Pedestals Bad Channels Time Samples Gain Clusters Clusters 2 Occupancies Tracks Error Banks IV Curves			
Ped. Subtraction Summary Link Subtraction Ped. Mean Link Subtraction Ped. RMS Prev Next O Pedestal O 1D Subtr	acted O 2D Subtracted		
R000 R001 R002 R003 R004 R005 R006 R007 R008 R010 R011 R012 R013 R014 R015 R016 R017 R021 R023 R024 R025 R026 R027 R028 R029 R030 R031 R032 R033 R034 R035 R036 R037 R038	R016 R019 R020 R039 R040 R041		
Ped_Sub_ADCs_vs_Chip_Channel_sensor_104	Entries 1.0246+07 Mean x 1024 ± 0.1848		
	Mean y -0.1341± 0.001246 RMS x 591.2 ± 0.1306 RMS y 3.988 ± 0.0008813 1200		
	1000		
	800		
	600		
	10. wh. 400		
	200		
0 500 1000 1500 Channel	2000 Number i		
P064 P065 P066 P067 P069 P070 P071 P072 P073 P074 P075 P076 P077 P078 P079 P080 P081 P085 P086 P082 P081 P082 P083 P084 P085 P082 P082 P101 P102	P082 P083 P084		
Contents of "Pedestal" monitoring: Filled for NZS data			
Pedestal - Pedestal values that are subtracted (from VeloCond database). 1D - Average pedestal subtracted values in each channel. 2D - pedestal subtracted values in each channel.			

VeloMoniGUI – Data Quality Summaries (DQS)

Data Reference Settings Help I/V file no	DATASET v VELODQM_80594_2010-10-14_15.15.10_NZS.root it yet specified	REFERENCE FILES ROOT file: Reference_Noise.root I/V reference not yet specified	
DS Trends Noise Cross Talk Pedestals Clusters 2 Occupancies Tracks Error Banks Bad Channels Time Samples Gain IV Curves Get the DQS ELOG submission ELOG submission FILE INFO NOISE CROSS TALK PEDESTALS ERRORS			
Time Stamp Avg noise (R) 1286857427007104 Events 1253078	2.04 # of noisy links # of large residuals 1.84 435 2474	# TELL1 with >50 errors in last 1k	
		PRIMARY VERTICES	
av #strips % 4 strip Avg % strip oc	N/A # VELO tracks N/A	Avg pos. X N/A	
Strips N/A N/A # strips >1%	N/A Avg # clusters/track N/A	Avg pos. Y N/A	
Clusters MPV FWHM	Avg module mismatch % N/A	Avg pos. Z N/A	
B N/A N/A	Sens with mismatch >20% N/A	Avg L-R × pos. N/A	
Phi N/A N/A	Avg pseudoeff % N/A	Dist beam-VELO centre X N/A	
	# sens with pseudoeff <90% N/A	Dist beam-VELO centre Y N/A	
	Avg residual pull N/A		
Data Quality Summary:			
QS information for RMS noise (NZS), occupancies (ZS), clusters (ZS), tracks (ZS), vertices (ZS), etc. ush "Get the DQS" first to fill this page, then "ELOG submission" to send the values to the Elog.			

VeloMoniGUI – trending also possible

Experience from the 2010 run

 We coped with the increase in LHC luminosity (LHCb runs under different conditions wrt ATLAS/CMS)

□ VELO calibration performed with the emulation suite

- New parameters determined and uploaded to the TELL1s acquisition boards when/if necessary
 ⇒ allows us to cope with extra increases in rate, via regular monitoring
 - and determination of new parameters

□ Approach successfully applied to collision data taken in 2010

- Integration in the data processing framework was the choice to make

Regular monitoring of the detector done on a daily basis

- Noise, pedestals stability, hit and cluster reconstruction performance, etc.

□ The Vetra software framework has also been adopted by the silicon tracker group for their tracking stations

So, does it work?

So, does it work?

Back-up slides

The LHCb detector

Hit resolutions for VELO sensors

Hit resolution versus strip pitch for 2 bins of the projected angle
 Evaluated for R sensors using residuals of long tracks

Hit resolution depend to 1st order on:

- projected angle
- strip pitch

Landaus – clusters and noise in the VELO

