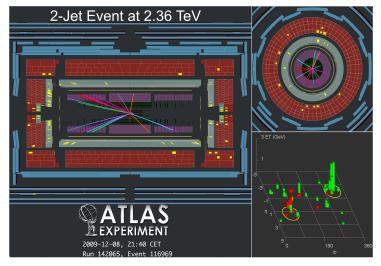


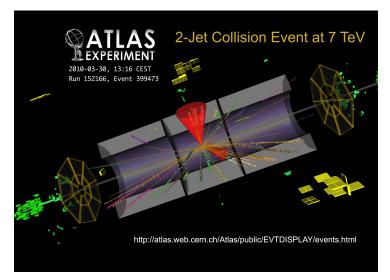
Nick Barlow

ATLAS 1 / 18

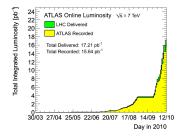
LHC milestones (1)


• LHC delivered first collisions, at 900GeV CM energy, on 23rd November 2009.

CHEP 2010


LHC milestones (2)

 December 8th 2009, became the world's highest energy collider, with 2.36TeV collisions.


LHC milestones (3)

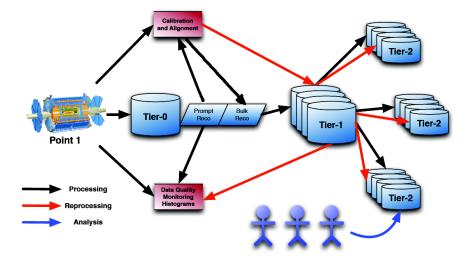
• March 30th 2010, first collisions at 7TeV CM energy.

LHC milestones (4)

- On each of those occasions, data were processed, scanned, and the result (with event displays) made available, within *minutes* of the collisions taking place!
- Luminosity delivered by LHC increasing rapidly...

• Despite this, data continue to be reconstructed, monitored, and distributed ready for analysis in very short timescale.

```
Nick Barlow
```


- RAW (a.k.a. ByteStream) files output of ATLAS DAQ.
- ESD (Event Summary Data) POOL format, used for detailed analysis.
- AOD (Analysis Object Data) POOL format, intended for most user analysis.
- dESD (dAOD) derived ESD (AOD), formerly known as DPD (Derived Physics Data).
 - Interesting events skimmed from ESD (AOD) files, and/or uninteresting containers within events removed.
 - Several variants, used by specific performance (physics) groups.
- TAG (formerly also TAG_COMM) ROOT TTree, for fast browsing of data.
 - Also uploaded to TAG database can be queried with different event selections and used to provide "skimmed" ESD or AOD files.
- HIST (NTUP) ROOT histograms (TTrees) used for data quality monitoring (and calibration).

- Data are organized into inclusive *streams*, based on trigger chains.
- Calibration streams:
 - Partial events, used by specific ATLAS subdetectors.
- Express stream:
 - Used to check the data quality, calculate calibration constants..
 - Subset of the physics data, corresponding to 10Hz
- For early data, physics streams were based on L1 trigger:
 - MinBias, MuonswBeam, L1Calo, L1CaloEM, CosmicCalo, CosmicCaloEM
- As luminosity increased, moved to final streaming model:
 - MinBias, EGamma, Muons, JetTauEtMiss, CosmicCalo

- Focus on robustness, rather than latest features.
- *Production cache* built on top of full ATLAS release, can be built and deployed within matter of hours if necessary.
- "Frozen Tier0" policy no changes allowed that affect reconstruction.
 - Ability to combine first-processed data with reprocessed data for analysis.
 - Also have MC re-reconstructed with same release.
- Last reprocessing was in May, all data since then has been processed with a compatible release.
- Autumn reprocessing campaign getting under way with new release, with many code improvements.
 - Will be used at Tier-0 for first 2011 pp collisions.

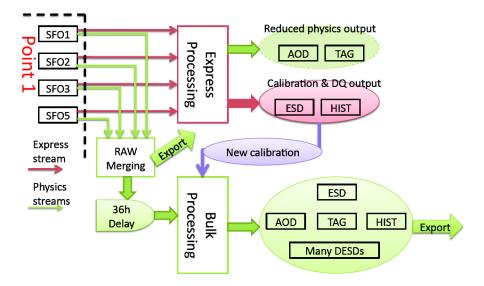
- Extensive tests run on nightly builds of production cache:
 - ATN (ATLAS Testing Nightly) tests run on very small number of events, mainly to test that jobs to not crash in various configurations.
 - RTT (RunTime Tester) tests run on a few more events, more possibility to analyze output.
 - Both are checked daily by dedicated shifters, who file bug reports to appropriate trackers.
- Also more detailed tests:
 - TCT (Tier-0 Chain Test) runs full Tier-0 workflow (RAW→ESD,AOD,TAG etc.).
 - Tools to compare output files from successive nightlies also help enforce "frozen Tier-0" policy.
 - BCT (Big Chain Test) several million events, run on the grid.

ATLAS computing model

• Tier-0 tasks:

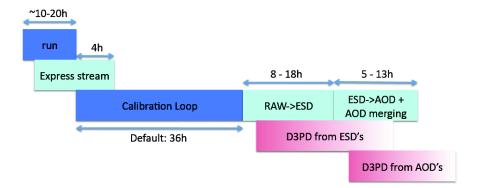
- First pass ESD, AOD, dESD, TAG file production.
- First pass calibration and alignment processing.
- Upload TAG files into TAG databases
- Merging of RAW files.
- Registration of data files (RAW and derived) with ATLAS DDM (Distributed Data Management).

Tier-0 throughput and performance


- In 2010, Tier-0 has run > 4M jobs.¹
 - Includes express-stream reco, bulk reco, merging of RAW, ESD, AOD, TAG files, TAG upload.
- Extremely high success rate!
 - Of 163588 reconstruction jobs in past 30 days, 19 jobs (0.012%) crashed due to software problems.
 - 7 of those failures were due to corruption in RAW files.
- Average reconstruction time per event varies according to software release, stream pile-up, but is typically 11s.
- Can cope with 200Hz output of ATLAS at 100% LHC lifetime.
 - LHC beam time less than 100% this year, as expected for new collider!
 - ATLAS recording rate recently between 200Hz and 300Hz, but Tier-0 still keeping up..

¹more details in talk by I.Ueda.

• Two-pass reconstruction:


- Express stream reconstructed at Tier-0, and outputs sent to CERN Analysis Facility (CAF) for analysis.
- e.g. Beamspot determination (run at Tier-0), dead and noisy channel corrections.
- Calibrated run is assessed at the daily Data Quality meeting before bulk processing starts.
- Calibration constants are uploaded to COOL database, then used in bulk processing of the rest of the data, which starts automatically, 36 hours after the end-of-run time.
 - If calibrations are not ready in time, start of bulk processing can be delayed by manual intervention.
 - Database upload tools disallow calibration updates for runs that have already been bulk-processed, to guarantee reproducibility.

Prompt processing flowchart

Data availability

- Many users perform final analysis on "D3PD" ntuple format.
- Can be produced from either (d)ESD or (d)AOD, depending on required level of detail.

- With luminosity increasing so fast, one extra day of data can make a big difference to physics plots and results.
- In exceptional circumstances, can reduce latency between data being recorded and being available for analysis:
 - Fast-track calibration loop when finished begin bulk reconstruction jobs manually rather than waiting for 36 hours to elapse.
 - Manual killing of "tails", last 0.1% jobs can hold up processing of a run.
- For ICHEP this summer, data taken on a Monday was reconstructed, analyzed, and results were approved, in time to be presented on Friday the same week!

- Prompt assessment of data quality (DQ)² is vital for feedback to detector operations.
- Online DQ for each subdetector is loaded into COOL conditions database, for each lumi block (2 minutes).
- Tier-0 populates histograms every 10 minutes for further DQ checks.
- More than 20,000 histograms generated on demand per run per stream, and cached for future use.

²For more details see talk by J. Frost.

- Prompt reconstruction of ATLAS data is working well!
 - Result of extensive preparations in cosmic ray and single beam runs.
- Short latency between raw data being recorded, and reconstructed, calibrated, data being signed-off by DQ and becoming available to the collaboration.
 - Can be reduced even more in extreme circumstances...
- Systems will improve, become more automated.
- Ready for the challenge of more and more data from LHC!