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A common source for neutrino and sparticle masses1

Andrea Brignole

INFN, Sezione di Padova, I-35131 Padua, Italy

Filipe R. Joaquim

CERN, Theory Division, CH-1211 Geneva 23, Switzerland

Anna Rossi

Dipartimento di Fisica “G. Galilei”, Università di Padova, I-35131 Padua, Italy

Abstract. We discuss supersymmetric scenarios in which neutrino masses arise from effective
d = 6 operators in the Kähler potential (including SUSY-breaking insertions). Simple explicit
realizations of those Kähler operators are presented in the context of the type II seesaw.
An appealing scenario emerges upon identifying the seesaw mediators with SUSY-breaking
messengers.

The smallness of neutrino masses can be explained by the conventional seesaw mechanism
in which mν ∼ v2/M , where v is the electroweak scale and M ≫ v is a heavy mass. It
is also conceivable that neutrino masses are suppressed by a higher power of the heavy scale
M , like mν ∼ mv2/M2, where m ≪ M is another mass parameter. In a SUSY framework
this mass behaviour may stem from either superpotential or Kähler d = 6, ∆L = 2 effective

operators. Two examples of the latter have been proposed in [2], namely
∫

d4θ (H†
1L)(H2L)/M

2

and
∫

d4θ (H†
1L)

2/M2, which imply m ∼ µ (the superpotential Higgsino mass parameter). We
point out the importance of including SUSY-breaking insertions to this approach and find new
contributions to neutrino masses. We also present the simplest explicit realization of the Kähler

operator (H†
1L)

2, including SUSY-breaking effects, and discuss a predictive scenario where the
heavy seesaw mediators are also messengers of SUSY breaking.

1. Neutrino masses from Kähler operators and broken SUSY

Let us focus on the ∆L = 2 effective operator (H†
1L)

2/M2. In general, this will appear along with
similar operators containing insertions of the type X/MS , X

†/MS , XX†/M2
S , where X = θ2FX

is a SUSY-breaking spurion superfield and MS is the SUSY-breaking mediation scale, which can
be either larger or smaller than M . Hence, the relevant ∆L = 2 effective lagrangian can be
parametrized as

Leff =

∫

d4θ
1

2M2

(

κ+ θ2Bκ + θ̄2B̃κ + θ2θ̄2Cκ

)

ij
(H†

1Li)(H
†
1Lj) + h.c. , (1)

1 Based on Ref. [1]. Presented at “PASCOS 2010, the 16th International Symposium on Particles, Strings
and Cosmology” (Valencia, Spain) and “SUSY 2010, the 18th International Conference on Supersymmetry and
Unification of Fundamental Interactions” (Bonn, Germany).
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where κ is dimensionless, Bκ, B̃κ and Cκ are dimensionful SUSY-breaking parameters and
i, j = e, µ, τ are flavour indices. The magnitude and flavour structure of all those parameters
depend on the underlying physics which generates the effective operators.

The scale dependence of the above quantities is governed by their renormalization group
equations (RGEs), which can be derived using the general expression of the one-loop corrected
Kähler potential obtained in [3]. The RGE for κ can be found in [2], while the ones for the
remaining operator coefficients have been obtained in [1]. For instance, the RGE for B̃κ is:

8π2 dB̃κ

dt
=

[

g2 + g′2 +Tr(Y†
eYe + 3Y†

dYd)
]

B̃κ −
1

2

[

B̃κY
†
eYe + (Y†

eYe)
T B̃κ

]

+
[

g2M∗
2 + g′2M∗

1 − 2Tr(A†
eYe + 3A†

dYd)
]

κ+ κA†
eYe + (A†

eYe)
T
κ . (2)

All four operators of eq. (1) contribute to neutrino masses. Those with coefficients κ and B̃κ

contribute to mν at the tree-level, in such a way that mν ≃ m
(κ)
ν +m

(B̃κ)
ν . The κ-operator leads

to a lagrangian term of the form (F †
H1

L)(H†
1L), which contributes to neutrino masses as [2]

m(κ)
ν = 2κ µ

v2

M2
sin β cos β . (3)

The B̃κ-operator gives a lagrangian term of the form (H†
1L)

2, which induces [1]

m(B̃κ)
ν = B̃κ

v2

M2
cos2 β . (4)

This novel contribution to mν can dominate over m
(κ)
ν . The remaining operators of eq. (1),

with coefficients Bκ and Cκ, contribute to neutrino masses through finite one-loop diagrams
involving gauginos and sleptons. Considering the soft mass matrix of ‘left-handed’ sleptons L̃ as
m2

L̃
= m̃2

L(1l +∆L) (m̃
2
L sets the overall mass scale and the dimensionless matrix ∆L accounts

for the flavour dependence), we get the following contributions to mν (at first order in ∆L)

δBκmν ≃ 1

32π2

[

−
(

g2

M2
fL2+

g′2

M1
fL1

)

Bκ+

(

g2

M2
hL2+

g′2

M1
hL1

)

(Bκ ∆L+∆T
L
Bκ)

]

2µ v2

M2
sinβ cos β , (5)

δCκmν ≃ 1

32π2

[

−
(

g2

M2
fL2+

g′2

M1
fL1

)

Cκ+

(

g2

M2
hL2+

g′2

M1
hL1

)

(Cκ ∆L+∆T
L
Cκ)

]

v2

M2
cos2β , (6)

where fLa = f(m̃2
L/|Ma|

2), hLa = h(m̃2
L/|Ma|

2), f(x) = (x − 1 − log x)/(x − 1)2 and
h(x) = (x2 − 1 − 2x log x)/(x − 1)3. Both the flavour structure and the size of δBκmν , δCκmν

are model dependent.

2. Type II seesaw realizations

Among the three variants of the seesaw mechanism (which generate the familiar d = 5
superpotential operator at the tree level), the type II is the natural one in which the above d = 6
operators emerge. In fact, the tree-level exchange of type I or type III mediators leads to ∆L = 0
Kähler operators of the form |H2L|

2, whereas the type II mediators induce both ∆L = 0 and
∆L = 2 operators. The type II seesaw mechanism is realized through the exchange of SU(2)W
triplet states T and T̄ in a vector-like SU(2)W ×U(1)Y representation, T ∼ (3, 1), T̄ ∼ (3,−1).

The relevant superpotential is: W ⊃ 1√
2
Y

ij
T LiTLj +

1√
2
λ1H1TH1 + 1√

2
λ2H2T̄H2 + MTT T̄ ,

where Yij
T is a 3× 3 symmetric matrix, λ1,2 are dimensionless couplings and MT is the (SUSY)

triplet mass. By integrating out the triplets one obtains ∆L = 2 effective operators of dimension



d = 5, i.e. Weff ⊃ λ2

2MT
Y

ij
T (LiH2)(LjH2), and d = 6, i.e. Keff ⊃

λ∗

1

2|MT |2Y
ij
T (H

†
1Li)(H

†
1Lj)+h.c.,

both of which can generate neutrino masses. The former operator is usually leading, but we
assume it to be strongly suppressed (absent) by a very small (vanishing) value of λ2, which can
be justified by symmetry arguments. In this case the leading ∆L = 2 operator is the Kähler
one, which can be matched to the SUSY part of eq. (1) through the identification: κ = λ∗

1YT

and M2 = |MT |
2. The resulting contribution to neutrino masses is the tree-level term m

(κ)
ν of

eq. (3).
One can now ask how the SUSY-breaking operators of eq. (1) arise in the type II seesaw

framework. The answer to this question depends on the ordering of the SUSY-breaking
mediation scale MS and the triplet mass MT : MS < MT ; MS > MT or MS = MT .

•MS < MT . If SUSY breaking mediation occurs at MS < MT via a messenger sector coupled
to the MSSM through gauge interactions only (pure gauge mediation), then SUSY-breaking
gaugino and (flavour blind) sfermion masses arise at MS through loop diagrams, while trilinear
terms are driven below MS by gaugino mass terms in the RGEs. As for our ∆L = 2 operators
of eq. (1), only the SUSY one with coefficient κ is present above MS (it is generated at MT ),
whereas the SUSY-breaking ones receive finite two-loop contributions at MS , and logarithmic
ones below MS through RGEs. The dominant source of neutrino masses is, generically, the

SUSY contribution m
(κ)
ν of eq. (3).

•MS > MT . Suppose that SUSY-breaking terms are generated at MS > MT through,
e.g., gravity or gauge mediation. This means that all the MSSM and triplet fields have SUSY-
breaking mass parameters at MT . In this case, the tree-level decoupling of the triplets generates
all the ∆L = 2 effective operators of eq. (1), with coefficients κ = λ∗

1YT , Bκ = λ∗
1(YTBT −AT ),

B̃κ = (λ∗
1B

∗
T −A∗

1)YT , Cκ = (λ∗
1B

∗
T −A∗

1)(YTBT −AT )− λ∗
1YTm

2
T̄
.

3. MS = MT : Seesaw mediators as SUSY-breaking messengers

The MS = MT scenario is obtained by identifying T and T̄ as being SUSY-breaking mediators.
They are embedded in a messenger sector which (in order to generate the gluino mass)
should also include coloured fields. We also require that perturbative unification of gauge
couplings be preserved and that all messenger masses be of the same order. This implies
that the messenger sector should have a common total Dynkin index N for each subgroup
of SU(3)C ×SU(2)W ×U(1)Y . Since the T + T̄ pair has SU(2) index N2 = 4, we are constrained
to N ≥ 4. The minimal case (N = 4) can be built by adding a pair of SU(3)C triplets
(3, 1,−1/3) + (3̄, 1,+1/3) and an SU(3)C adjoint (8, 1, 0) to T and T̄ .

The MSSM SUSY-breaking parameters are generated at the quantum level by a messenger
sector of the type described above, coupled to the MSSM fields through both gauge and Yukawa
interactions [4]. At the one-loop level, the gaugino masses Ma, the Higgs B-term BH and

the trilinear terms Ax are: Ma = −NBT

16π2 g2a, BH = 3BT

16π2 |λ1|
2 Ae = 3BT

16π2Ye(Y
†
TYT + |λ1|

2),

Ad = 3BT

16π2Yd|λ1|
2 and Au = 0, where g21 = (5/3)g′2 and g22 = g2. Non-vanishing O(B2

T )
contributions for the squared scalar masses arise at the two-loop level. For sleptons these are:

m2
L̃

=

(

|BT |

16π2

)2 [

N

(

3

10
g41 +

3

2
g42

)

−

(

27

5
g21 + 21g22

)

Y
†
TYT + 3|λ1|

2(Y†
TYT −Y†

eYe)

+3Y†
T (Y

†
eYe)

TYT + 18 (Y†
TYT )

2 + 3Y†
TYTTr(Y

†
TYT )

]

, (7)

m2
ẽc

=

(

|BT |

16π2

)2 [

N

(

6

5
g41

)

− 6Ye(Y
†
TYT + |λ1|

2)Y†
e

]

. (8)

Notice that the flavour structures of Ae, m
2
L̃
and m2

ẽc
are controlled by YT and Ye, which in

turn are determined by the low-energy lepton masses and mixing angles. Such minimal LFV
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Figure 1. Plots of the N = 4 model for BT = 60 TeV and normally ordered neutrino spectrum
with 0 = m1 < m2 ≪ m3 and s13 = 0. Left panels: The (λ1,MT ) parameter space for µMa > 0
(left) and µMa < 0 (right). The white region is the allowed one. The dashed lines correspond
to BR(µ → eγ) = 10−12, 10−13, 10−14 (from top to bottom.). Right panel: Sparticle and Higgs
spectrum for MT = 8× 107 GeV and λ1 = 0.25 (point ⋆ of the parameter space).

properties are a characteristic feature of the SUSY type II seesaw [4, 5]. Our scenario is a
flavoured variant of gauge mediation and possesses the property of minimal flavour violation in
both the quark and lepton sectors.

Upon decoupling the triplets, the MSSM SUSY-breaking masses are generated through finite
radiative effects, while the ∆L = 2 SUSY-breaking parameters Bκ, B̃κ and Cκ arise at the tree
level. The latter have a very simple form: Bκ = BT κ, B̃κ = B∗

T κ and Cκ = |BT |
2
κ, where

κ = λ∗
1YT . Eqs. (3) and (4) imply that the tree-level contribution to mν is:

mν = κ (B∗
T + 2µ tan β) cos2β

v2

|MT |2
. (9)

Notice that the SUSY-breaking parameter BT acts as a common source for both sparticle and
neutrino masses.

This scenario has a small number of free parameters, namely MT , BT , λ1 and the messenger
index N . Once these are fixed, the remaining parameters YT , tan β and µ are determined by the
low-energy neutrino data and by requiring proper EWSB. Concerning neutrino data, we recall
that the neutrino mass matrix mν is related to the low-energy observables as mν = U∗mD

ν U
†,

where mD
ν = diag(m1,m2,m3), ma are the neutrino masses and U is the lepton mixing matrix.

Some representative numerical results for the N = 4 model are shown in Fig. 1, for BT = 60 TeV
and a normally ordered neutrino spectrum, with 0 = m1 < m2 ≪ m3 and s13 = 0. In the left
part of Fig. 1 we show two plots of the (λ1,MT ) parameter space, including contours of tan β
and µ (extracted by imposing EWSB). The left (right) panel corresponds to solutions of the
EWSB conditions with µMa > 0 (µMa < 0 ). The main phenomenological constraints come
from the LFV decay µ → eγ and the lightest Higgs mass. In the right panel of Fig. 1 we show
the sparticle and Higgs spectrum for MT = 8 × 107 GeV and λ1 = 0.25 (which corresponds to
tan β ≃ 11), again for BT = 60 TeV. The Higgs sector is in the decoupling regime, since the
states A,H and H+ are much heavier than h. Gluino and squarks are the heaviest sparticles and
the lightest of them is t̃1 (which is mainly t̃R). In the electroweak sector, the heaviest chargino
and neutralinos (χ̃+

2 , χ̃
0
3,4) are mainly Higgsino-like, while χ̃+

1 and χ̃0
2 are mostly Wino-like. The

(mainly left-handed) sleptons ℓ̃4,5,6 and the sneutrinos ν̃1,2,3 are somewhat lighter than those
states, and the Bino-like neutralino χ̃0

1 is even lighter. Finally, the lightest MSSM sparticles are
the (mainly right-handed) sleptons ℓ̃1,2,3, as generically occurs in gauge mediated models with



messenger index N > 1 and not too large mediation scale. The slepton ℓ̃1 (which is mainly τ̃R)
is the next-to-lightest SUSY particle (NLSP), while the gravitino G̃ is the lightest one (LSP).

The scenario described above can be tested at current and future colliders. For instance, if
a pp collision at the LHC produces two squarks, each of them can decay through well known
chains, such as q̃R → qχ̃0

1 → qτ ℓ̃1, or q̃L → qχ̃0
2 → qℓℓ̃ → qℓ+ℓ−χ̃0

1 → qℓ+ℓ−τ ℓ̃1, or similar
ones with charginos and/or sneutrinos (and neutrinos). Hence, in general, the final state of such
a collision contains SM particles and two NLSPs ℓ̃1, which eventually decay to τG̃ with rate
Γ = m5

ℓ̃1
/(16πF 2). The latter decays can occur either promptly, or at a displaced vertex, or

even outside the main detector.
Since LFV is intrinsically present in our framework, LFV processes are a crucial tool to

discriminate our model from pure gauge mediation ones. For moderate tan β, the leading LFV

structure Y
†
TYT , which appears in m2

L̃
(and Ae), can be related to the neutrino parameters as

(m2
L̃
)ij ∝ B2

T (Y
†
TYT )ij ∝

(

M2
T tan2β

λ1

)2
[

V(mD
ν )

2V†
]

ij
∝ tan5βM4

T

[

V(mD
ν )

2V†
]

ij
. (10)

LFV signals can therefore appear either at high-energy colliders or in low-energy processes.
Concerning the former possibility, LFV could show up at the LHC in, e.g., neutralino decays,
such as χ̃0

2 → ℓ±i ℓ̃
∓
a → ℓ±i ℓ

∓
j χ̃

0
1 with i 6= j, followed by the flavour-conserving decay χ̃0

1 → τ+τ−G̃

(or χ̃0
1 → ℓ̃±1 τ

∓ if the NLSP is long-lived).
As for low-energy LFV processes, let us focus on the radiative decays ℓi → ℓjγ. By using

eq. (10), we can infer that

BR(ℓi → ℓjγ) ∝
|(m2

L̃
)ij |

2

m̃8
tan2β ∝

(

MT

BT

)8

(tan β)12
∣

∣

∣

∣

[

V(mD
ν )

2V†
]

ij

∣

∣

∣

∣

2

, (11)

where the flavour-dependence is determined by the low-energy neutrino parameters only
[5, 4]. If we take ratios of BRs, we have that, for a normal neutrino mass spectrum,
BR(τ → µγ)/BR(µ → eγ) ≃ 400 (2) [3] and BR(τ → eγ)/BR(µ → eγ) ≃ 0.2 (0.1) [0.3] if
s13 = 0 (s13 = 0.2, δ = 0) [s13 = 0.2, δ = π]. These approximate results hold for small or
moderate tan β. Special features may emerge for large tan β [6].

In the left panel of Fig. 2 the three BR(ℓi → ℓjγ) are shown as a function of tan β, taking
either BT = 60TeV (solid lines) or BT = 100TeV (dashed lines), for MT = 8 × 107 GeV,
normally ordered neutrino spectrum and s13 = 0. In both examples BR(µ → eγ) can be tested
at the MEG experiment for suitable ranges of tan β. If BR(µ → eγ) is close to its present bound,
BR(τ → µγ) is above 10−9, within the reach of future Super Flavour Factories.

The double panel on the right of Fig. 2 illustrates the dependence of the BRs on the least
known neutrino parameters, namely s13 and δ, for BT = 60TeV, MT = 8 × 107 GeV and two
values of tan β. Regarding BR(µ → eγ) and BR(τ → eγ), the solid (dashed) curves correspond
to δ = 0 (π), while the region between such curves is spanned by intermediate values of δ. The
dependence of BR(τ → µγ) on s13 and δ is negligible. The first subpanel corresponds to a
scenario which could be tested very soon at MEG through the search of µ → eγ, if s13 ≪ 0.01.
Notice that BR(τ → µγ) in this example is around 4 × 10−9, within the reach of future Super
Flavour Factories, while τ → eγ would be unobservable because BR(τ → eγ) ∼ 10−12. For
s13 ∼ 0.01, BR(µ → eγ) and BR(τ → eγ) can be either enhanced or suppressed since, depending

on the value of δ, a cancellation can occur in the LFV quantity
[

V(mD
ν )

2V†
]

ij
[4, 6]. The

cancellation takes place in BR(µ → eγ) [BR(τ → eγ)] for δ = π (0) in the case of normal
ordering, while the opposite occurs for inverted ordering. If BR(µ → eγ) is suppressed by that
cancellation mechanism, only τ → µγ can be observed. In such a case, we can even obtain
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Figure 2. Plots of BR(ℓi → ℓjγ) for MT = 8 × 107 GeV. Left panel: The BRs as a function
of tan β for BT = 60TeV (solid lines) or BT = 100TeV (dashed lines), with s13 = 0. Right

panel: The BRs as a function of s13 for BT = 60TeV, with tan β = 13 (8) in the first (second)
subpanel. For BR(µ → eγ) and BR(τ → eγ), the solid (dashed) curves correspond to δ = 0 (π)
assuming a normally-ordered neutrino spectrum.

values of BR(τ → µγ) above 10−8 by slightly changing the model parameters. In the case of
partial cancellations, µ → eγ could be still probed by MEG for values of s13 up to about 0.03,
which are in the potential reach of future Neutrino Factories. The second subpanel shows an
alternative possibility, in which LFV τ decays are unobservable, whereas BR(µ → eγ) lies in
the range 10−13 − 5× 10−12 if 0.05 ∼ s13 < 0.2. Those values of BR(µ → eγ) should be probed
by MEG next year, while the indicated range of s13 is within the sensitivity of the present and
incoming neutrino experiments. This example shows the importance of the interplay between
LFV searches and neutrino oscillation experiments.

In conclusion, we have summarized the investigation of Ref. [1] on an interesting alternative

neutrino mass mechanism, which relies on the d = 6, ∆L = 2 Kähler operator (H†
1L)

2/M2. We
have presented both a general effective-theory description and explicit realizations in the context
of the type II seesaw mechanism. If the seesaw mediators are also identified with SUSY-breaking
messengers, strong correlations arise between neutrino parameters, sparticle and Higgs masses,
as well as LFV processes.
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